CNY75(G) Series Vishay Semiconductors Optocoupler with Phototransistor Output Description The CNY75(G) series consists of a phototransistor optically coupled to a gallium arsenide infraredemitting diode in a 6-lead plastic dual inline package. The elements are mounted on one leadframe using a coplanar technique, providing a fixed distance between input and output for highest safety requirements. Applications Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation): 14827 D For appl. class I – IV at mains voltage ≤ 300 V D For appl. class I – III at mains voltage ≤ 600 V according to VDE 0884, table 2, suitable for: Switch-mode power supplies, line receiver, computer peripheral interface, microprocessor system interface. B 6 C 5 E 4 These couplers perform safety functions according to the following equipment standards: D VDE 0884 95 10805 VDE Standards 1 2 A (+) C (–) 3 n.c. Optocoupler for electrical safety requirements D IEC 950/EN 60950 Office machines (applied for reinforced isolation for mains voltage ≤ 400 VRMS) D VDE 0804 Telecommunication processing apparatus and data D IEC 65 Safety for mains-operated electronic and related household apparatus Order Instruction Ordering Code CTR Ranking CNY75A/ CNY75GA1) 63 to 125% CNY75B/ CNY75GB1) 100 to 200% CNY75C/ CNY75GC1) 160 to 320% 1) G = Leadform 10.16 mm; G is not marked on the body Rev. A4, 11–Jan–99 Remarks 1 (12) CNY75(G) Series Vishay Semiconductors Features D Rated recurring peak voltage (repetitive) Approvals: D BSI: BS EN 41003, BS EN 60095 (BS 415), BS EN 60950 (BS 7002), Certificate number 7081 and 7402 VIORM = 600 VRMS D Creepage current resistance according to VDE 0303/IEC 112 Comparative Tracking Index: CTI = 275 D Thickness through insulation ≥ 0.75 mm D FIMKO (SETI): EN 60950, Certificate number 12399 D Underwriters Laboratory (UL) 1577 recognized, file number E-76222 General features: D Isolation materials according to UL94-VO D Pollution degree 2 D VDE 0884, Certificate number 94778 (DIN/VDE 0110 part 1 resp. IEC 664) VDE 0884 related features: D Rated impulse voltage (transient overvoltage) VIOTM = 6 kV peak D Isolation test voltage (partial discharge test voltage) Vpd = 1.6 kV D Rated isolation voltage (RMS includes DC) VIOWM = 600 VRMS (848 V peak) D Climatic classification 55/100/21 (IEC 68 part 1) D Special construction: Therefore, extra low coupling capacity of typical 0.3 pF, high Common Mode Rejection D Low temperature coefficient of CTR D CTR offered in 3 groups D Coupling System A Absolute Maximum Ratings Input (Emitter) Parameter Reverse voltage Forward current Forward surge current Power dissipation Junction temperature Test Conditions tp ≤ 10 ms Tamb ≤ 25°C Symbol VR IF IFSM PV Tj Value 5 60 3 100 125 Unit V mA A mW °C Symbol VCBO VCEO VECO IC ICM PV Tj Value 90 90 7 50 100 150 125 Unit V V V mA mA mW °C Symbol VIO Ptot Tamb Tstg Tsd Value 3.75 250 –55 to +100 –55 to +125 260 Unit kV mW °C °C °C Output (Detector) Parameter Collector base voltage Collector emitter voltage Emitter collector voltage Collector current Collector peak current Power dissipation Junction temperature Test Conditions tp/T = 0.5, tp ≤ 10 ms Tamb ≤ 25°C Coupler Parameter AC isolation test voltage (RMS) Total power dissipation Ambient temperature range Storage temperature range Soldering temperature 2 (12) Test Conditions t = 1 min Tamb ≤ 25°C 2 mm from case, t ≤ 10 s Rev. A4, 11–Jan–99 CNY75(G) Series Vishay Semiconductors Electrical Characteristics (Tamb = 25°C) Input (Emitter) Parameter Forward voltage Reverse current Junction capacitance Test Conditions IF = 50 mA VR = 6 V VR = 0, f = 1 MHz Symbol VF IR Cj Min. Typ. 1.25 Max. 1.6 10 Unit V mA pF Test Conditions IC = 100 mA IC = 1 mA IE = 100 mA VCE = 20 V, IF = 0 Symbol VCBO VCEO VECO ICEO Min. 90 90 7 Max. 150 Unit V V V nA Test Conditions IF = 10 mA, IC = 1 mA Symbol VCEsat Min. Max. 0.3 Unit V VCE = 5 V, IF = 10 mA, RL = 100 f = 1 MHz fc 110 kHz Ck 0.3 pF 50 Output (Detector) Parameter Collector base voltage Collector emitter voltage Emitter collector voltage Collector emitter cut-off current Typ. Coupler Parameter Collector emitter saturation voltage Cut-off frequency Coupling capacitance W Typ. Current Transfer Ratio (CTR) Parameter IC/IF Test Conditions VCE = 5 V, IF = 1 mA VCE = 5 V, IF = 10 mA Rev. A4, 11–Jan–99 Type CNY75(G)A CNY75(G)B CNY75(G)C CNY75(G)A CNY75(G)B CNY75(G)C Symbol CTR CTR CTR CTR CTR CTR Min. 0.15 0.3 0.6 0.63 1 1.6 Typ. Max. Unit 1.25 2 3.2 3 (12) CNY75(G) Series Vishay Semiconductors Maximum Safety Ratings (according to VDE 0884) see figure 1 This device is used for protective separation against electrical shock only within the maximum safety ratings. This must be ensured by using protective circuits in the applications. Input (Emitter) Parameters Forward current Test Conditions Symbol Isi Value 130 Unit mA Test Conditions Tamb ≤ 25°C Symbol Psi Value 265 Unit mW Test Conditions Symbol VIOTM Tsi Value 6 150 Unit kV °C Output (Detector) Parameters Power dissipation Coupler Parameters Rated impulse voltage Safety temperature Insulation Rated Parameters (according to VDE 0884) Parameter Test Conditions Partial discharge test voltage – 100%, ttest = 1 s Routine test Partial discharge g test voltage g – tTr = 60 s, ttest = 10 s, Lot test (sample test) (see figure 2) Insulation resistance VIO = 500 V VIO = 500 V, Tamb ≤ 100°C VIO = 500 V, Tamb ≤ 150°C Symbol Vpd Min. 1.6 VIOTM Vpd RIO RIO 6 1.3 1012 1011 RIO 109 Typ. Max. Unit kV kV kV W W W (construction test only) VIOTM Ptot – Total Power Dissipation ( mW ) 275 V 250 t1, t2 = 1 to 10 s t3, t4 = 1 s ttest = 10 s tstres = 12 s Psi (mW) 225 200 175 VPd 150 VIOWM VIORM 125 100 75 Isi (mA) 50 25 0 0 0 95 10923 25 50 75 100 125 Tamb – Ambient Temperature ( °C ) Figure 1. Derating diagram 4 (12) 150 175 t3 ttest t4 t1 13930 tTr = 60 s t2 tstres t Figure 2. Test pulse diagram for sample test according to DIN VDE 0884 Rev. A4, 11–Jan–99 CNY75(G) Series Vishay Semiconductors Switching Characteristics of CNY75(G(A Parameter Delay time Rise time Fall time Storage time Turn-on time Turn-off time Turn-on time Turn-off time Test Conditions VS = 5 V, IC = 10 mA, RL = 100 ((see figure g 3)) W VS = 5 V, IF = 10 mA, RL = 1 k W ((see figure g 4)) Symbol td tr tf ts ton toff ton toff Typ. 2.0 2.5 2.7 0.3 4.5 3.0 10.0 25.0 Unit s s s s s s s s Symbol td tr tf ts ton toff ton toff Typ. 2.5 3.0 3.7 0.3 5.5 4.0 16.5 20 Unit s s s s s s s s Symbol td tr tf ts ton toff ton toff Typ. 2.8 4.2 4.7 0.3 7.0 5.0 11 37.5 Unit s s s s s s s s m m m m m m m m Switching Characteristics of CNY75(G)B Parameter Delay time Rise time Fall time Storage time Turn-on time Turn-off time Turn-on time Turn-off time Test Conditions VS = 5 V, IC = 10 mA, RL = 100 ((see figure g 3)) W VS = 5 V, IF = 10 mA, RL = 1 k W ((see figure 4)) g m m m m m m m m Switching Characteristics of CNY75(G)C Parameter Delay time Rise time Fall time Storage time Turn-on time Turn-off time Turn-on time Turn-off time Test Conditions VS = 5 V, IC = 10 mA, RL = 100 ((see figure g 3)) W VS = 5 V, IF = 10 mA, RL = 1 k Rev. A4, 11–Jan–99 W ((see figure g 4)) m m m m m m m m 5 (12) CNY75(G) Series Vishay Semiconductors IF 0 +5V IF IC = 10 mA ; Adjusted through input amplitude W RG = 50 tp = 0.01 T tp = 50 s 96 11698 IF m Channel I 50 W 100 Channel II W Oscilloscope RL CL w 1 MW v 20 pF 95 10891 0 t tp IC 100% 90% Figure 3. Test circuit, non-saturated operation I 0 I F +5V F I 10% 0 C W t tr R = 50 G t p = 0.01 T td m ts ton t = 50 s p Channel I Channel II 50 W 1k Oscilloscope R 1M L C 20 pF L w v W 14944 tp td tr ton (= td + tr) tf toff pulse duration delay time rise time turn-on time ts tf toff (= ts + tf) storage time fall time turn-off time W Figure 4. Test circuit, saturated operation Figure 5. Switching times Typical Characteristics (Tamb = 25_C, unless otherwise specified) 1000.0 Coupled device 250 I F – Forward Current ( mA ) P tot – Total Power Dissipation ( mW ) 300 200 Phototransistor 150 IR-diode 100 50 0 40 80 Tamb – Ambient Temperature ( °C ) Figure 6. Total Power Dissipation vs. Ambient Temperature 6 (12) 10.0 1.0 0.1 0 96 11700 100.0 120 0 96 11862 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VF – Forward Voltage ( V ) Figure 7. Forward Current vs. Forward Voltage Rev. A4, 11–Jan–99 CNY75(G) Series Vishay Semiconductors 100 VCE=5V IF=10mA 1.4 1.3 IC – Collector Current ( mA ) CTR rel – Relative Current Transfer Ratio 1.5 1.2 1.1 1.0 0.9 0.8 0.7 VCE=5V 10 1 0.1 0.6 0.5 –30 –20 –10 0 10 20 30 40 50 60 70 80 Tamb – Ambient Temperature ( °C ) 96 11918 0.01 0.1 Figure 8. Relative Current Transfer Ratio vs. Ambient Temperature 100 10 Figure 11. Collector Current vs. Forward Current 10000 100 IF=50mA VCE=30V IF=0 IC – Collector Current ( mA ) ICEO– Collector Dark Current, with open Base ( nA ) 1 IF – Forward Current ( mA ) 95 11040 1000 100 10 20mA 10 10mA 5mA 1 2mA 1mA CNY75A 1 0.1 0 25 50 75 100 Tamb – Ambient Temperature ( °C ) 95 11038 0.1 Figure 12. Collector Current vs. Collector Emitter Voltage 1 100 IF=50mA VCB=5V 0.1 0.01 0.001 10mA 10 5mA 2mA 1 1mA CNY75B 0.1 1 95 11039 20mA IC – Collector Current ( mA ) I CB – Collector Base Current ( mA ) 100 10 VCE – Collector Emitter Voltage ( V ) 95 11041 Figure 9. Collector Dark Current vs. Ambient Temperature 1 10 100 IF – Forward Current ( mA ) Figure 10. Collector Base Current vs. Forward Current Rev. A4, 11–Jan–99 0.1 95 11042 1 10 100 VCE – Collector Emitter Voltage ( V ) Figure 13. Collector Current vs. Collector Emitter Voltage 7 (12) CNY75(G) Series 100.0 IC – Collector Current ( mA ) IF=50mA 20mA 10mA 10.0 5mA 2mA 1.0 1mA CNY75C 0.1 0.1 1.0 10.0 100.0 VCE – Collector Emitter Voltage ( V ) 96 11919 0.8 CNY75C 0.6 0.4 0.2 20% 10% 0 1 100 10 IC – Collector Current ( mA ) 1000 VCE=5V CTR=50% 0.8 hFE – DC Current Gain VCEsat – Collector Emitter Saturation Voltage ( V ) CTR=50% Figure 17. Coll. Emitter Sat. Voltage vs. Coll. Current 1.0 CNY75A 0.6 0.4 20% 0.2 800 600 400 200 10% 0 1 IC – Collector Current ( mA ) 95 11034 0 0.01 100 10 1 10 100 Figure 18. DC Current Gain vs. Collector Current 1.0 1000 CTR – Current Transfer Ratio ( % ) CTR=50% 0.8 CNY75B 0.6 20% 0.4 0.2 95 11043 0.1 IC – Collector Current ( mA ) 95 11035 Figure 15. Coll. Emitter Sat. Voltage vs. Coll. Current VCEsat – Collector Emitter Saturation Voltage ( V ) 1.0 95 11044 Figure 14. Collector Current vs. Collector Emitter Voltage 10% CNY75A(G) VCE=5V 100 0 10 1 1 10 100 IC – Collector Current ( mA ) Figure 16. Coll. Emitter Sat. Voltage vs. Coll. Current 8 (12) VCEsat – Collector Emitter Saturation Voltage ( V ) Vishay Semiconductors 0.1 95 11036 1 10 100 IF – Forward Current ( mA ) Figure 19. Current Transfer Ratio vs. Forward Current Rev. A4, 11–Jan–99 CNY75(G) Series Vishay Semiconductors CNY75B(G) VCE=5V 100 10 1 1 toff 20 10 ton 0 5 50 CNY75C(G) Saturated Operation VS=5V RL=1k m CNY75C(G) VCE=5V 100 10 20 15 Figure 23. Turn on / off Time vs. Forward Current t on / t off – Turn on / Turn off Time ( s ) 1000 10 IF – Forward Current ( mA ) 95 11048 Figure 20. Current Transfer Ratio vs. Forward Current CTR – Current Transfer Ratio ( % ) W 30 100 10 IF – Forward Current ( mA ) 95 11045 1 40 toff W 30 20 10 ton 0 0.1 1 100 10 IF – Forward Current ( mA ) 95 11046 0 5 20 m CNY75A(G) Saturated Operation VS=5V RL=1k 40 W 30 toff 20 10 ton 20 15 Figure 24. Turn on / off Time vs. Forward Current t on / t off – Turn on / Turn off Time ( s ) 50 10 IF – Forward Current ( mA ) 95 11050 Figure 21. Current Transfer Ratio vs. Forward Current t on / t off – Turn on / Turn off Time ( m s ) CNY75B(G) Saturated Operation VS=5V RL=1k 40 0 0.1 0 CNY75A(G) Non Saturated Operation VS=5V RL=100 15 W ton 10 toff 5 0 0 95 11033 50 m t on / t off – Turn on / Turn off Time ( s ) CTR – Current Transfer Ratio ( % ) 1000 5 10 15 20 IF – Forward Current ( mA ) Figure 22. Turn on / off Time vs. Forward Current Rev. A4, 11–Jan–99 0 95 11032 2 4 6 8 10 IC – Collector Current ( mA ) Figure 25. Turn on / off Time vs. Collector Current 9 (12) CNY75(G) Series 20 t on / t off – Turn on / Turn off Time ( s ) CNY75B(G) Non Saturated Operation VS=5V RL=100 15 W 10 ton 5 toff 0 CNY75C(G) Non Saturated Operation VS=5V RL=100 15 W ton 10 toff 5 0 0 95 11047 20 m t on / t off – Turn on / Turn off Time ( m s ) Vishay Semiconductors 2 4 8 6 10 IC – Collector Current ( mA ) 0 95 11049 Figure 26. Turn on / off Time vs. Collector Current 2 4 6 8 10 IC – Collector Current ( mA ) Figure 27. Turn on / off Time vs. Collector Current Type Date Code (YM) XXXXXX 918 A TK 63 0884 V D E Production Location Safety Logo 15090 Coupling System Indicator Company Logo Figure 28. Marking example 10 (12) Rev. A4, 11–Jan–99 CNY75(G) Series Vishay Semiconductors Dimensions of CNY75G in mm weight: creepage distance: air path: y y ca. 0.50 g 8 mm 8 mm after mounting on PC board 14771 Dimensions of CNY75 in mm weight: creepage distance: air path: y y 0.50 g 6 mm 6 mm after mounting on PC board 14770 Rev. A4, 11–Jan–99 11 (12) CNY75(G) Series Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 12 (12) Rev. A4, 11–Jan–99
© Copyright 2024