Algebraic numbers What is the smallest integer ! > 1? ISLANDS ON ALGEBRAIC SURFACES Curtis T McMullen Harvard University Lehmer’s number M(!) = product of conjugates with |!i| > 1 λ = 1.1762808182599175065 . . . p(x) = 1 + x − x3 − x4 − x5 − x6 − x7 + x9 + x10 Answer: Lehmer’s Number? 1 0.5 ! -1 -0.5 0.5 1 -0.5 -1 ! = 1.1762808182599175... P(x) = x10+x9"x7"x6"x5"x4"x3+x+1 The (-2,3,7) pretzel knot The (-2,3,7) pretzel knot The (3,4,7) triangle group Coxeter element Coxeter Groups e1 e2 e3 e4 e10 e5 e6 e7 e8 e9 <ei,ei> = 2 <ei,ek> = 0 or -1 W O(n,Z) : generated by reflections si in ei Coxeter element w = s1 s2 s3 s4 ... s10 The 38 minimal hyperbolic Coxeter diagrams Coxeter system Lehmer’s polynomial = det(xI-w) for E10 Theorem. The spectral radius of any w in any Coxeter group satisfies r(w) = 1 or r(w) ! !Lehmer > 1. The 38 minimal Coxeter systems λ(W, S) det(xI − w) Ah4 2.36921 (2.26844) 1 − x − 3x2 − x3 + x4 Ah5 2.08102 (1 + x)(1 − x − 2x2 − x3 + x4 ) Ah6 1.98779 (1.96355) 1 − 2x2 − 3x3 − 2x4 + x6 Ah7 1.88320 (1 + x)(1 + x + x2 )(1 − 2x + x2 − 2x3 + x4 ) Ah8 1.83488 (1.82515) 1 − x2 − 2x3 − 3x4 − 2x5 − x6 + x8 Bh5 1.72208 (1 + x)(1 − x − x2 − x3 + x4 ) Bh6 1.58235 1 − x2 − 2x3 − x4 + x6 Bh7 1.50614 (1 + x)(1 − x − x3 − x5 + x6 ) Bh8 1.45799 1 − x2 − x3 − x5 − x6 + x8 Bh9 1.42501 (1 + x)(1 − x − x3 + x4 − x5 − x7 + x8 ) Dh6 1.72208 (1 + x)2 (1 − x − x2 − x3 + x4 ) Dh7 1.58235 (1 + x)(1 − x2 − 2x3 − x4 + x6 ) Dh8 1.50614 (1 + x)2 (1 − x − x3 − x5 + x6 ) Dh9 1.45799 (1 + x)(1 − x2 − x3 − x5 − x6 + x8 ) Dh10 1.42501 (1 + x)2 (1 − x − x3 + x4 − x5 − x7 + x8 ) Eh8 1.40127 (1 + x + x2 )(1 − x2 − x3 − x4 + x6 ) Eh9 1.28064 (1 + x)(1 − x3 − x4 − x5 + x8 ) Eh10 1.17628 1 + x − x3 − x4 − x5 − x6 − x7 + x9 + x10 Coxeter system λ(W, S) det(xI − w) K343 2.08102 (1 + x)(1 − x − 2x2 − x3 + x4 ) K3433 1.88320 (1 + x)2 (1 − 2x + x2 − 2x3 + x4 ) K44 K53 K533 5 5 x)2 (1 2.61803 (1 + 2.15372 (1 + x)2 (2 − 3x − − 3x + 1.91650 √ (1 + x)(2 − x − x2 2x3 x4 √ 5x + 2x2 ) 5x − x3 − 5x3 + 2x4 ) x6 1.58235 1− L34333 1.40127 1 − x2 − x3 − x4 + x6 1.84960 2+x− L4343 1.88320 (1 + x)(1 − 2x + x2 − 2x3 + x4 ) L443 2.08102 1 − x − 2x2 − x3 + x4 1.36000 (1 + x)(2 − x − 1.91650 √ √ 2 − x − 5x − x3 − 5x3 + 2x4 2.15372 (1 + x)(2 − 3x − 1.72208 1 − x − x2 − x3 + x4 1.63557 (1 + x)(1 + x + x2 − 4x cos2 π/7) 3.09066 (2.89005) (1 + x)(1 − 2x − 5 L353 L5333 L534 L54 L633 L73 Q3 5 5 5 6 7 − + √ L33433 − Dynamics x2 ) √ √ √ 5x − 2 5x2 + x3 − 5x3 + 2x4 x2 √ 5x + 2x2 − x3 − √ √ √ 3 5x + 2x4 ) 5x + 2x2 ) 2x + x2 ) √ − 2 2x2 − x3 + x4 Q4 2.57747 1−x− Q5 2.43750 (2.3963) (1 + x)(1 − 2x + x2 − X5 2.61803 (1 + x)3 (1 − 3x + x2 ) X6 2.61803 (1 + x)4 (1 − 3x + x2 ) √ 2x2 − 2x3 + x4 ) f : X #X holomorphic diffeomorphism of a compact complex manifold What is the simplest interesting dynamical system? Bowties Complex Surfaces Theorem (Cantat) A surface X admits an automorphism f : X #X with positive entropy only if X is birational to: • • • the projective plane P2 a complex torus C2/$, or a K3 surface. Elliptic islands Stochastic Sea A=2 A=2.5 (1+x2)(1+y2)(1+z2)+Axyz = 2 Tame blowup Ergodicity A=8 Complex Orbit A family of K3 surfaces Islands Theorem Synthesis There exists a K3-surface automorphism f : X#X with a complex invariant island -- a Siegel disk. Analysis Hodge theory: study f* on H2(X) = H2,0 Lefschetz: Tr(f*)= -1 Atiyah-Bott: f* determines rotation DfP on TPX f has a unique fixed point P Transcendence: DfP not resonant Siegel: f H1,1 H0,2 linear rotation near P Number theory: P(t) = det(tI-f*|H2(X)) Gross-M: P(t) Torelli: f* f* acting on II3,19 = H2(X,Z) [X and f:X#X] Key ingredient: Degree 22 Salem number of trace -1 P(t) = 1+t-t3-2t4-3t5-3t6-2t7+2t9+4t10+5t11 +4t12+2t13-2t15-3t16-3t17-2t18-t19+t21+t22 X is not projective! Rational Surfaces Realization Theorem X = blowup of P2 at n points H2(X,Z) Z1,n KX The Coxeter element of Wn can always be realized by an automorphism Fn : Xn#Xn of P2 blown up at n special points. [En lattice] Example: F3(x,y) = (y,y/x) Theorem (Nagata) Every automorphism of X lies in the Weyl group Wn O(Z1,n). (x,y)#(y,y/x)#(y/x,1/x)#(1/x,1/y)#(1/y,x/y)#(x/y,x)#(x,y) 3 3 ! P2 KX = (-3,1,1,...,1) 1 2 1 2 4 Lehmer’s automorphism 10 points on a cuspidal cubic {a,b} {0.499497, -0.0837358} F10 : X10#X10 First case where h(Fn) > 0 Theorem. The map F10 has minimal positive entropy among all surface automorphisms, namely h(F10) = log(!Lehmer). (x,y)# (y,y/x) + (a,b) X3 12 points on 3 lines {a,b} {-2.26123, 1.79288} Synthesis X = blowup of n points on a cuspidal cubic C in P2 [En lattice] ! Pic0(Xn) # Pic0(C) Coxeter element w ! ! C Eigenvalue ! of w positions of n points on C {a,b} {-0.926076, 0.61173} 11 points on a conic + line Speed of convergence Island on a rational surface {a,b} {0.0444317 - 0.442239 I, -0.0444317 - 0.442239 I}
© Copyright 2024