rt op ed i Complex Proximal Humerus Fractures in Young Adults ya O Uğur GÖNÇ, MD Ç an ka Çankaya Hospital Dept. Orthopedics and Traumatology Ankara, TURKEY AO Masters Course Prague, 2013 ed i Objectives op • Importance of humeral head vascularity O • Treatment options rt • Importance of reduction ya • How to avoid complications ? Ç an ka • Fracture-dislocations ed i PHF in Young Adults op • High energy trauma O • Fracture-dislocations rt • Displaced fractures ka Ç an injuries ya • Associated neuro-vascular O rt Provides primary vascular supply Branch of ant. humeral circumflex artery Courses along bicipital groove Terminal branch arcuate artery ya – – – – Anterolateral ascendan branch op • Anterolateral ascendan artery ed i Vacular Anatomy ka • Post. humeral circumflex artery Ç an – Posterior GT – Anastomosis with arcuate artery Post. Hum. Circ. Artery Ant. Hum. Circ. Artery ed i Vacular Anatomy Anastomosis op ka ya O rt Arcuate artery Post. hum. circumflex artery Arcuate Metaphyseal artery artery Rotatory cuff arteries Ç an • • • • Rotatory cuff arteries Post. Hum. Circ. Artery Axillary artery Ant. Hum. Circ. Artery i ed op rt J Shoulder Elbow Surg, 13(4): 427-33, 2004 O • Perfusion study ya • 8 mm medial calcar fragment Ç an ka • Intact medial hinge i ed op rt O ya • 3-part and 4-part fractures ka • Vascular preservation Ç an – Anterosuperior part – Especially in young patients • Anastomosis ? op rt • 3 and 4-part fractures ed i Complex PHF Ç an ka ya O • Fracture-dislocations ed i Complex PHF rt op • Hemiarthroplasty Ç an ka ya O • Open reduction-internal fixation ed i Hemiarthroplasty op • Long term rt – Loosening – Glenoid erosion O • Unpredictable poor functional results Ç an ka ya – Not suitable for high demand patients Every effort must be made for internal fixation in young patients ed i Internal Fixation op • Anatomical reduction O rt • Stable fixation Ç an ka ya • Preservation of vascularity ed i Evaluation • Associated injuries op • Displacement O • Humeral head viability rt – Misjudgement up to 60% – 3-D BT is mandatory ka • Osteoporosis ya – 8 mm medial calcar fragment – Intact medial hinge Ç an – Comminution of tuberosity fragments – Density of head – Cortical thickness 4mm Tingart MJ et al. The cortical thikness of the proximal humerus diaphysis predicts bone mineral density of the proximal humerus. JBJS Br. 85:611-7, 2009 ed i Reduction op • Mandatory for good functional results rt Gerber at al. The clinical relevence of post traumatic avascular necrosis of the humeral head. J Shoulder Elbow Surg. 7:586-90, 1998 ya O Robinson CM et al. Proximal humeral fractures with a severe varus deformity treated by fixation with a locking plate. JBJS Br. 92(5): 672-6, 2010 • Compromises the outcome of 20 hemiarthroplasty Ç an ka Boileau P et al. Tuberosity malpositon and migration: reasons for poor aoutcomes after hemiarthroplasty for displaced fracctures of the proximal humerus. J Shoulder Elbow Surg. 11:401-12, 2002 ed i Greater Tuberosity op • Anatomical importance – Guide to anatomical reduction rt • Biological importance ya O – Provides a stable platform – Contributes to revascularization ka • Functional importance Ç an – External rotators are key muscles for shoulder funtion – Posteromedial malpositon compromises daily activities ed i Greater Tuberosity op • Traction sutures O • Correct place lateral rt • Ext. rotation of the arm Ç an ka ya bicipital groove ed i Lesser Tuberosity op • Less comminution rt • Traction sutures O • Extension to bicipital groove Ç an ka ya – Tenotomy or tenodesis of biceps tendon Ç an ka ya O rt op ed i Traction Sutures 30% • 200 25% op • Valgus rt 45% O Ç an ka ya • Varus ed i Humeral Head ed i Varus Displacement op • Varus impaction O rt – Intact lateral periosteum – Abduction and protraction • Varus seperation Ç an ka ya – Diaphysis anteromedial – Traction – Varus traction sutures from LT manipulation Residual varus should be less than 200 ed i Valgus Displacement op • Valgus impaction O rt – Intact medial hinge – Tuberosities attached to diaphysis – Simple elevation ya • Valgus with lateral displacement Ç an ka – Head is very unstable – Manipulation via instruments ed i Humeral Diaphysis op • Internal rotation must be prevented rt • Rotatory malreduction Ç an ka ya O – Bicipital groove irritation pain – Disturbance of shoulder muscle balance ed i Internal Fixation op • Plate fixation rt • Percutaneous pinning ka ya O • IM nailing Ç an No prospective randomized clinical trails comparing different treatment options ed i Locked plate vs IM nail op Biomechanically superior to IM nail ya • Torsional stability O rt • Varus bending Ç an ka Foruria AM et al. Clin Biomech. 25(4): 307-11, 2010 Edwards SL et al. JBJS Am. 88(10): 2258-64, 2006 ed i Approaches • Deltopectoral approach O rt op – Most commonly used – Difficulty in reduction of GT – More soft tissue damage nonunion 10-16% AVN ya • Anterolateral acromial approach Ç an ka – Described by Gardner at 2005 – Less invasive – Isolation of axillary nerve ed i Lateral Transdeltoid Approach op • Rotatory cuff surgery • IM nail Ç an ka ya • MİPO with two incision O rt • GT fractures Ç an ya ka op rt O ed i Position ed i Proximal Incision op • Ant. acromial O rt corner Ç an ka ya • 5 cm op ed i Proximal Incision Ç an ka ya O rt • Anterior raphe Ç an ka ya O rt op ed i Subacromial Space Ç an ya ka op rt O ed i Axillary Nerve Ç an ka ya O rt op ed i Traction Sutures Ç an ka ya O rt op ed i Temporary Fixation Ç an ka ya O rt op ed i Tunel Preparation Ç an ka ya O rt op ed i Plate Insertion ed i Plate Positioning op • Laterally rt – Posterior to bicipital groove O • 2-3 cm distal to humeral head ya – 1-2 cm distal to GT ka • Close contact with bone Ç an – Underneath axillary nerve ! Ç an ka ya O rt op ed i Distal Incision Ç an ya ka op rt O ed i Cortical Screw Ç an ka ya O rt op ed i Proximal Screws At least five screws Ç an ya ka op rt O ed i Distal Screws i ed op rt O ya ka Ç an 5-10 mm to articular surface Ç an ya ka op rt O ed i Ç an ya ka op rt O ed i ed i Advantages op • Less soft tissue damage rt • risk of ant. hum. circum. artery injury O • Easy to place the plate laterally Ç an ka ya • Easy to reduce GT ed i Disadvantages op • Axillary nerve injury O rt • Difficulty in reducing articular head fragment Ç an ka ya • Difficulty in supporting inferomedial metaphysis ed i Axillary Nerve op • 6-7 cm distal to acromion O rt • Anterior branch Ç an ka ya • Loss of motor function is less ed i Axillary Nerve op • Proximal incision no more than 6 cm • Palpation ! O rt – Isalation if necessary ya • Plate insertion close to the bone Ç an ka • Use long 5-hole plate Ç an ya ka op rt O ed i Ç an ya ka op rt O ed i Ç an ya ka op rt O ed i • Functional scores op – Rehabilitation, reduction – Young patients have better results ed i Clinical Outcomes O – Better than hemiarthroplasty rt Parmaksızoğlu AS et al. Acta Orthop Traumatol Turc. 44(2): 97-104, 2010 ya Wild JR et al. J Orthop Trauma, 26(4):212-5,2012 ka • Major complications Ç an – Avascular necrosis – Malunion (varus, GT) – Screw perforation 4-16% 12-15% 12-23% Half of complications related to technical error i ed op rt O ka ya • 12 studies, 282 patients AO type C fractures • Relatively higher complication rates Ç an – Avascular necrosis – Screw perforation – Loss of fixation up to 33% up to 20% up to 16% • Reoperation rate 6-44% ed i AVN op • Develop up to 4 years O • Tolerated for many years rt • M.I. approaches 0-6% ka Ç an – Reduced GT – Stable fixation ya • Capasity of revascularization ? ed i Varus Malunion ya • Risk of implant failure O rt Solberg et al. Surgical treatment of three and four part proximal humeral fractures. JBJS Am. 91(7): 1689-97, 2009 op • Poor clinical outcome Ç an ka Agudelo J et al. Analysis of efficacy and failure in proximal humerus fractures trested with locking plates. J Orthop Trauma. 21(10): 676-81, 2007 ed i Medial Support tension band buttress rt – Varus – Valgus op • Plate function Ç an ka ya O • Posteromedial comminution varus collapse ed i Augmentation op • Inferomedial screw • Fibula strut allograft O rt Gardner MJ et al. J Orthop Trauma. 21(3): 185-91, 2007 Lever JP. J Orthop Trauma. 22(1): 23-9, 2008 Lescheid J et al. J Trauma. 69(5): 1235-42,2010 ka ya Gardner MJ et al. J Orthop Trauma. 22(3): 195-200, 2008 Robinson CM et al. JBJS Br. 92(5): 672-8, 2010 Neviaser AS et al. Clin Orthop Rel Resarch. 469:3300-6, 2011 Ç an • Suturing of tuberosities to plate – Counterbalances rotator cuff deforming forces Ç an ka ya O rt op ed i Augmentation Robinson CM ed i Screw Perforation op • Wrong surgical technique O rt – Screw length – Plate position – Varus malreduction ya • After AVN or varus collapse ka – Loss of medial support – Inadequate fixation of tuberosities Ç an • Long plate less stiffness Micic ID et al. Analysis of early failure of the locking compression plate in osteoporotic proximal humerus fractures. J Orthop Scı. 14(5):596-601, 2009 ed i IM Nail op • Theoretical advantage over bending moment rt • 2 or 3-part fractures O • PHF with diaphysial extension ka Shoulder pain Screw back-out Varus malunion Fracture at entry Ç an – – – – ya • Higher complication rate 30% reoperation 10-24% 8-37% 18% ka ya O op rt Straight nails Locking proximal screws Tuberosity oriented screws Oblique medial screws Tension band sutures Ç an • • • • • ed i New Designs op rt 3 –part Valgus impacted 4-part Difficult technique Good bone quality O • • • • ed i Percutaneous Pinnig ya – Cortical thickness 4mm – No comminution at medial calcar or GT Ç an ka • Threaded pins • Cannulated screws for tub. op ed i Percutaneous Pinnig rt • Pin migration ya ka Ç an • Nerve injury O • Malunion Ç an ka ya O rt op ed i Complex Fracture-Dislocations Anterior 3 or 4-part Posterior 3 or 4-part i ed rt op J Bone Joint Surg Br. 88: 502- 8, 2006 ya O • 58 patients • 3 or 4-part fracture dislocations • Type I • Type II Ç an ka – 2cm capsular attachment – Arterial back bleeding – Significant capsular detachment – No arterial bleeding ed i Type I Fracture-dislocation op • Young males • Hill-Sachs lesion ka ya Fracture after dislocation Caps. attahments around LT All treated with ORIF 2 / 23 AVN Ç an • • • • O – Propogated to humerus neck rt – High energy trauma Robinson CM ed i Type II Fracture-dislocation O • Dislocation after fracture rt – Diffucult to see in X-rays op • Older females • 4-part valgus impaction ka ya – Anteroinferior capsular tear – No Bankart lesion • No Hill-Sachs lesion Ç an – Head splitting • 7 / 35 treated with ORIF – 4 developed AVN Robinson CM i ed op rt O ya • 26 patients • Middle aged males • Reverse Hill-Sachs lesion – Propogated to anatomical neck ka • Reverse Bankart lesion Ç an – Intact posterior capsule – Intact periosteal sleeve • All treated with ORIF • 1 / 27 AVN ed i Subtypes of Post. Fx-disloc. op • Type I • Type II ka • Type III ya – Anatomical neck and LT O rt – 2-part anatomical neck Ç an – Anatomical neck and both tub. – Composite “shield” fragment Robinson CM i ed op rt O ya • 39 patients 40 years ka – 18 anterior, 21 posterior dislocations Ç an • 3 nonunion • 8 AVN • Anatomical neck fracture has worse prognosis op rt • Head splitting fractures • Impression fractures 40% • 4-part fractures ed i Hemiarthroplasty in Young Patients ya O – Loss of medial hinge – Type II anterior fracture dislocations • Prognostic factors Ç an ka – Reduction of GT – Height – Retroversion • Trend reverse prosthesis ed i PHF in Young Patients rt – 8 mm medial calcar fragment – Intact medial hinge op • Evaluation of humeral head viability ya • Anatomical reduction O • Chance of revascularization ka – Greater tuberosity – Varus displacement Ç an • Stable fixation op • Locked plates are primary option ed i PHF in Young Patients O • Medial calcar support rt • Minimally invasive techniques ya – Inferomedial oblique screw – Strut allografts ka • Fracture-dislocations Ç an – Intact capsular attachments Internal fixation – Case based decision
© Copyright 2024