Complex Proximal Humerus Fractures in Young Adults

rt
op
ed
i
Complex Proximal Humerus
Fractures
in Young Adults
ya
O
Uğur GÖNÇ, MD
Ç
an
ka
Çankaya Hospital
Dept. Orthopedics and Traumatology
Ankara, TURKEY
AO Masters Course
Prague, 2013
ed
i
Objectives
op
• Importance of humeral head vascularity
O
• Treatment options
rt
• Importance of reduction
ya
• How to avoid complications ?
Ç
an
ka
• Fracture-dislocations
ed
i
PHF in Young Adults
op
• High energy trauma
O
• Fracture-dislocations
rt
• Displaced fractures
ka
Ç
an
injuries
ya
• Associated neuro-vascular
O
rt
Provides primary vascular supply
Branch of ant. humeral circumflex artery
Courses along bicipital groove
Terminal branch  arcuate artery
ya
–
–
–
–
Anterolateral
ascendan
branch
op
• Anterolateral ascendan artery
ed
i
Vacular Anatomy
ka
• Post. humeral circumflex artery
Ç
an
– Posterior GT
– Anastomosis with arcuate artery
Post. Hum.
Circ. Artery
Ant. Hum.
Circ. Artery
ed
i
Vacular Anatomy
Anastomosis
op
ka
ya
O
rt
Arcuate artery
Post. hum. circumflex artery
Arcuate
Metaphyseal artery
artery
Rotatory cuff arteries
Ç
an
•
•
•
•
Rotatory cuff arteries
Post. Hum.
Circ. Artery
Axillary
artery
Ant. Hum.
Circ. Artery
i
ed
op
rt
J Shoulder Elbow Surg, 13(4): 427-33, 2004
O
• Perfusion study
ya
•  8 mm medial calcar fragment
Ç
an
ka
• Intact medial hinge
i
ed
op
rt
O
ya
• 3-part and 4-part fractures
ka
• Vascular preservation
Ç
an
– Anterosuperior part
– Especially in young patients
• Anastomosis ?
op
rt
• 3 and 4-part fractures
ed
i
Complex PHF
Ç
an
ka
ya
O
• Fracture-dislocations
ed
i
Complex PHF
rt
op
• Hemiarthroplasty
Ç
an
ka
ya
O
• Open reduction-internal fixation
ed
i
Hemiarthroplasty
op
• Long term
rt
– Loosening
– Glenoid erosion
O
• Unpredictable poor functional results
Ç
an
ka
ya
– Not suitable for high demand patients
Every effort must be made for internal fixation in
young patients
ed
i
Internal Fixation
op
• Anatomical reduction
O
rt
• Stable fixation
Ç
an
ka
ya
• Preservation of vascularity
ed
i
Evaluation
• Associated injuries
op
• Displacement
O
• Humeral head viability
rt
– Misjudgement up to 60%
– 3-D BT is mandatory
ka
• Osteoporosis
ya
–  8 mm medial calcar fragment
– Intact medial hinge
Ç
an
– Comminution of tuberosity fragments
– Density of head
– Cortical thickness  4mm
Tingart MJ et al. The cortical thikness of the proximal
humerus diaphysis predicts bone mineral density of the
proximal humerus. JBJS Br. 85:611-7, 2009
ed
i
Reduction
op
• Mandatory for good functional results
rt
Gerber at al. The clinical relevence of post traumatic avascular necrosis of the
humeral head. J Shoulder Elbow Surg. 7:586-90, 1998
ya
O
Robinson CM et al. Proximal humeral fractures with a severe varus deformity treated
by fixation with a locking plate. JBJS Br. 92(5): 672-6, 2010
• Compromises the outcome of 20 hemiarthroplasty
Ç
an
ka
Boileau P et al. Tuberosity malpositon and migration: reasons for poor aoutcomes
after hemiarthroplasty for displaced fracctures of the proximal humerus. J Shoulder
Elbow Surg. 11:401-12, 2002
ed
i
Greater Tuberosity
op
• Anatomical importance
– Guide to anatomical reduction
rt
• Biological importance
ya
O
– Provides a stable platform
– Contributes to revascularization
ka
• Functional importance
Ç
an
– External rotators are key muscles for shoulder funtion
– Posteromedial malpositon  compromises daily activities
ed
i
Greater Tuberosity
op
• Traction sutures
O
• Correct place  lateral
rt
• Ext. rotation of the arm
Ç
an
ka
ya
bicipital groove
ed
i
Lesser Tuberosity
op
• Less comminution
rt
• Traction sutures
O
• Extension to bicipital groove
Ç
an
ka
ya
– Tenotomy or tenodesis of biceps tendon
Ç
an
ka
ya
O
rt
op
ed
i
Traction Sutures

30%
•  200

25%
op
• Valgus
rt
45%
O

Ç
an
ka
ya
• Varus
ed
i
Humeral Head
ed
i
Varus Displacement
op
• Varus impaction
O
rt
– Intact lateral periosteum
– Abduction and protraction
• Varus seperation
Ç
an
ka
ya
– Diaphysis  anteromedial
– Traction
– Varus  traction sutures from LT
manipulation
Residual varus should be less than 200
ed
i
Valgus Displacement
op
• Valgus impaction
O
rt
– Intact medial hinge
– Tuberosities attached to diaphysis
– Simple elevation
ya
• Valgus with lateral displacement
Ç
an
ka
– Head is very unstable
– Manipulation via instruments
ed
i
Humeral Diaphysis
op
• Internal rotation must be prevented
rt
• Rotatory malreduction
Ç
an
ka
ya
O
– Bicipital groove irritation  pain
– Disturbance of shoulder muscle balance
ed
i
Internal Fixation
op
• Plate fixation
rt
• Percutaneous pinning
ka
ya
O
• IM nailing
Ç
an
No prospective randomized clinical trails comparing
different treatment options
ed
i
Locked plate vs IM nail
op
Biomechanically superior to IM nail
ya
• Torsional stability
O
rt
• Varus bending
Ç
an
ka
Foruria AM et al. Clin Biomech. 25(4): 307-11, 2010
Edwards SL et al. JBJS Am. 88(10): 2258-64, 2006
ed
i
Approaches
• Deltopectoral approach
O
rt
op
– Most commonly used
– Difficulty in reduction of GT
– More soft tissue damage
 nonunion
 10-16% AVN
ya
• Anterolateral acromial approach
Ç
an
ka
– Described by Gardner at 2005
– Less invasive
– Isolation of axillary nerve
ed
i
Lateral Transdeltoid Approach
op
• Rotatory cuff surgery
• IM nail
Ç
an
ka
ya
• MİPO with two incision
O
rt
• GT fractures
Ç
an
ya
ka
op
rt
O
ed
i
Position
ed
i
Proximal Incision
op
• Ant. acromial
O
rt
corner
Ç
an
ka
ya
• 5 cm
op
ed
i
Proximal Incision
Ç
an
ka
ya
O
rt
• Anterior raphe
Ç
an
ka
ya
O
rt
op
ed
i
Subacromial Space
Ç
an
ya
ka
op
rt
O
ed
i
Axillary Nerve
Ç
an
ka
ya
O
rt
op
ed
i
Traction Sutures
Ç
an
ka
ya
O
rt
op
ed
i
Temporary Fixation
Ç
an
ka
ya
O
rt
op
ed
i
Tunel Preparation
Ç
an
ka
ya
O
rt
op
ed
i
Plate Insertion
ed
i
Plate Positioning
op
• Laterally
rt
– Posterior to bicipital groove
O
• 2-3 cm distal to humeral head
ya
– 1-2 cm distal to GT
ka
• Close contact with bone
Ç
an
– Underneath axillary nerve !
Ç
an
ka
ya
O
rt
op
ed
i
Distal Incision
Ç
an
ya
ka
op
rt
O
ed
i
Cortical Screw
Ç
an
ka
ya
O
rt
op
ed
i
Proximal Screws
At least five screws
Ç
an
ya
ka
op
rt
O
ed
i
Distal Screws
i
ed
op
rt
O
ya
ka
Ç
an
5-10 mm to articular surface
Ç
an
ya
ka
op
rt
O
ed
i
Ç
an
ya
ka
op
rt
O
ed
i
ed
i
Advantages
op
• Less soft tissue damage
rt
•  risk of ant. hum. circum. artery injury
O
• Easy to place the plate laterally
Ç
an
ka
ya
• Easy to reduce GT
ed
i
Disadvantages
op
• Axillary nerve injury
O
rt
• Difficulty in reducing articular head fragment
Ç
an
ka
ya
• Difficulty in supporting inferomedial metaphysis
ed
i
Axillary Nerve
op
• 6-7 cm distal to acromion
O
rt
• Anterior branch
Ç
an
ka
ya
• Loss of motor function is less
ed
i
Axillary Nerve
op
• Proximal incision no more than 6 cm
• Palpation !
O
rt
– Isalation if necessary
ya
• Plate insertion close to the bone
Ç
an
ka
• Use long 5-hole plate
Ç
an
ya
ka
op
rt
O
ed
i
Ç
an
ya
ka
op
rt
O
ed
i
Ç
an
ya
ka
op
rt
O
ed
i
• Functional scores
op
– Rehabilitation, reduction
– Young patients have better results
ed
i
Clinical Outcomes
O
– Better than hemiarthroplasty
rt
Parmaksızoğlu AS et al. Acta Orthop Traumatol Turc. 44(2): 97-104, 2010
ya
Wild JR et al. J Orthop Trauma, 26(4):212-5,2012
ka
• Major complications
Ç
an
– Avascular necrosis
– Malunion (varus, GT)
– Screw perforation



4-16%
12-15%
12-23%
Half of complications related to technical error
i
ed
op
rt
O
ka
ya
• 12 studies, 282 patients AO type C fractures
• Relatively higher complication rates
Ç
an
– Avascular necrosis
– Screw perforation
– Loss of fixation
 up to 33%
 up to 20%
 up to 16%
• Reoperation rate 6-44%
ed
i
AVN
op
• Develop up to 4 years
O
• Tolerated for many years
rt
• M.I. approaches  0-6%
ka
Ç
an
– Reduced GT
– Stable fixation
ya
• Capasity of revascularization ?
ed
i
Varus Malunion
ya
• Risk of implant failure
O
rt
Solberg et al. Surgical treatment of three
and four part proximal humeral fractures.
JBJS Am. 91(7): 1689-97, 2009
op
• Poor clinical outcome
Ç
an
ka
Agudelo J et al. Analysis of efficacy and
failure in proximal humerus fractures trested
with locking plates. J Orthop Trauma.
21(10): 676-81, 2007
ed
i
Medial Support


tension band
buttress
rt
– Varus
– Valgus
op
• Plate function
Ç
an
ka
ya
O
• Posteromedial comminution  varus collapse
ed
i
Augmentation
op
• Inferomedial screw
• Fibula strut allograft
O
rt
Gardner MJ et al. J Orthop Trauma. 21(3): 185-91, 2007
Lever JP. J Orthop Trauma. 22(1): 23-9, 2008
Lescheid J et al. J Trauma. 69(5): 1235-42,2010
ka
ya
Gardner MJ et al. J Orthop Trauma. 22(3): 195-200, 2008
Robinson CM et al. JBJS Br. 92(5): 672-8, 2010
Neviaser AS et al. Clin Orthop Rel Resarch. 469:3300-6, 2011
Ç
an
• Suturing of tuberosities to plate
– Counterbalances rotator cuff deforming forces
Ç
an
ka
ya
O
rt
op
ed
i
Augmentation
Robinson CM
ed
i
Screw Perforation
op
• Wrong surgical technique
O
rt
– Screw length
– Plate position
– Varus malreduction
ya
• After AVN or varus collapse
ka
– Loss of medial support
– Inadequate fixation of tuberosities
Ç
an
• Long plate  less stiffness
Micic ID et al. Analysis of early failure of the locking
compression plate in osteoporotic proximal humerus
fractures. J Orthop Scı. 14(5):596-601, 2009
ed
i
IM Nail
op
• Theoretical advantage over bending moment
rt
• 2 or 3-part fractures
O
• PHF with diaphysial extension
ka
Shoulder pain
Screw back-out 
Varus malunion 
Fracture at entry 
Ç
an
–
–
–
–
ya
• Higher complication rate  30% reoperation
10-24%
8-37%
18%
ka
ya
O
op
rt
Straight nails
Locking proximal screws
Tuberosity oriented screws
Oblique medial screws
Tension band sutures
Ç
an
•
•
•
•
•
ed
i
New Designs
op
rt
3 –part
Valgus impacted 4-part
Difficult technique
Good bone quality
O
•
•
•
•
ed
i
Percutaneous Pinnig
ya
– Cortical thickness  4mm
– No comminution at medial calcar or GT
Ç
an
ka
• Threaded pins
• Cannulated screws for tub.
op
ed
i
Percutaneous Pinnig
rt
• Pin migration
ya
ka
Ç
an
• Nerve injury
O
• Malunion
Ç
an
ka
ya
O
rt
op
ed
i
Complex Fracture-Dislocations
Anterior 3 or 4-part
Posterior 3 or 4-part
i
ed
rt
op
J Bone Joint Surg Br. 88: 502- 8, 2006
ya
O
• 58 patients
• 3 or 4-part fracture dislocations
• Type I
• Type II
Ç
an
ka
–  2cm capsular attachment
– Arterial back bleeding
– Significant capsular detachment
– No arterial bleeding
ed
i
Type I Fracture-dislocation
op
• Young males
• Hill-Sachs lesion
ka
ya
Fracture after dislocation
Caps. attahments around LT
All treated with ORIF
2 / 23 AVN
Ç
an
•
•
•
•
O
– Propogated to humerus neck
rt
– High energy trauma
Robinson CM
ed
i
Type II Fracture-dislocation
O
• Dislocation after fracture
rt
– Diffucult to see in X-rays
op
• Older females
• 4-part valgus impaction
ka
ya
– Anteroinferior capsular tear
– No Bankart lesion
• No Hill-Sachs lesion
Ç
an
– Head splitting
• 7 / 35 treated with ORIF
– 4 developed AVN
Robinson CM
i
ed
op
rt
O
ya
• 26 patients
• Middle aged males
• Reverse Hill-Sachs lesion
– Propogated to anatomical neck
ka
• Reverse Bankart lesion
Ç
an
– Intact posterior capsule
– Intact periosteal sleeve
• All treated with ORIF
• 1 / 27 AVN
ed
i
Subtypes of Post. Fx-disloc.
op
• Type I
• Type II
ka
• Type III
ya
– Anatomical neck and LT
O
rt
– 2-part anatomical neck
Ç
an
– Anatomical neck and both tub.
– Composite “shield” fragment
Robinson CM
i
ed
op
rt
O
ya
• 39 patients  40 years
ka
– 18 anterior, 21 posterior dislocations
Ç
an
• 3 nonunion
• 8 AVN
• Anatomical neck fracture has worse prognosis
op
rt
• Head splitting fractures
• Impression fractures  40%
• 4-part fractures
ed
i
Hemiarthroplasty in
Young Patients
ya
O
– Loss of medial hinge
– Type II anterior fracture dislocations
• Prognostic factors
Ç
an
ka
– Reduction of GT
– Height
– Retroversion
• Trend  reverse prosthesis
ed
i
PHF in Young Patients
rt
–  8 mm medial calcar fragment
– Intact medial hinge
op
• Evaluation of humeral head viability
ya
• Anatomical reduction
O
• Chance of revascularization
ka
– Greater tuberosity
– Varus displacement
Ç
an
• Stable fixation
op
• Locked plates are primary option
ed
i
PHF in Young Patients
O
• Medial calcar support
rt
• Minimally invasive techniques
ya
– Inferomedial oblique screw
– Strut allografts
ka
• Fracture-dislocations
Ç
an
– Intact capsular attachments  Internal fixation
– Case based decision