Modelling of the geometry of weft-knitted fabrics Maarten Moesen, Stepan Lomov, Ignaas Verpoest Department MTM, Katholieke Universiteit Leuven TechTextil 2003 S.V.Lomov 1 Content • WiseTex textile modelling • Model of the weft-knit geometry • Examples and discussion • Applications to micro-mechanical modelling of composites • Conclusions TechTextil 2003 S.V.Lomov 2 “WiseTex ” software family Predictive models of composites mechanics Models of textile geometry and deformability FE packages Predictive models of textile permeability ANSYS I-DEAS TechTextil 2003 S.V.Lomov 3 WiseTex textiles Woven Braided TechTextil 2003 Laminates Knitted S.V.Lomov Non crimp 4 Content • WiseTex textile modelling • Model of the weft-knit geometry • Examples and discussion • Applications to micro-mechanical modelling of composites • Conclusions TechTextil 2003 S.V.Lomov 5 WeftKnit Features • Relaxed state of weft-knit fabric • Approximate geometrical model • Plain, rib, interlock, purl patterns • Maximum pattern size 25x25 • 3D imaging • Definition of yarn properties • Export as WiseTex family compatible file (*.fab) TechTextil 2003 S.V.Lomov 6 Coding of the pattern TechTextil 2003 S.V.Lomov • Knitting type Purl, rib, interlock • Stitch type Plain, float, tuck, no stitch(empty) • Knitting scheme Leicester notation Front/Back pattern 7 Easy to draw! Loop parameters • Average yarn diameter • Relative to yarn diameter: Stitch width A Stitch height B Loop width L Leg opening K TechTextil 2003 S.V.Lomov 8 Algorithm 1. Check correctness of knitting scheme 2. Calculate in-plane components of anchor points (Topology coding with hexagonal grid) 3. Calculate out-of-plane component of anchor points (Energy minimisation with constraints) 4. Create yarns by connecting anchor points (B-spline TechTextil 2003 S.V.Lomov interpolation) 9 Hexagonal grid (1) • Grid consisting of adjacent hexagons, suited for approximating the shape of most kinds of yarn loops (plain loops, floats, tucks). • Grid dimensions are determined by the geometric parameters. • Suited for plain/purl as well as for rib. • Only grid points are candidates for anchor points (Points at which interlacing yarns cross) TechTextil 2003 S.V.Lomov 10 Hexagonal grid (2) rib plain TechTextil 2003 different S.V.Lomov stitches 11 Out-of-plane geometry • ‘Energy’-minimisation with constraints – Target-function = a quadratic function measuring the curvature in the yarns between the anchor points. – Constraints = equations defining the out-of-plane structure of the weft knitted fabric. • E.g. Yarn A is right above yarn B in one anchor point, B is right above A in the next anchor point. z-coordinates of anchor points along the yarn TechTextil 2003 S.V.Lomov distance between centerlines at yarn crossing 12 Content • WiseTex textile modelling • Model of the weft-knit geometry • Examples and discussion • Applications to micro-mechanical modelling of composites • Conclusions TechTextil 2003 S.V.Lomov 13 Variability of structures TechTextil 2003 S.V.Lomov 14 Variability of loop parameters TechTextil 2003 S.V.Lomov 15 Limitations: Uncompressible yarns • Yarns are assumed uncompressible: Calculated knits are more loose than knits with compressible yarns. TechTextil 2003 S.V.Lomov 16 Limitations: Simplified energy function • Energy function is simplified: height differences are only qualitative. (Here: too large) TechTextil 2003 S.V.Lomov 17 Limitations: Loop shape • Continuous yarn shape is formed by interpolation between anchor points: loop parts may be more sharp or flat TechTextil 2003 S.V.Lomov 18 Limitations: Interpenetration of the yarns • Simplified model: yarns may cut each other: – interlacing zones – interlock fabric TechTextil 2003 S.V.Lomov 19 Content • WiseTex textile modelling • Model of the weft-knit geometry • Examples and discussion • Applications to micro-mechanical modelling of composites • Conclusions TechTextil 2003 S.V.Lomov 20 Glass plain knitted fabric pattern calculated parameters TechTextil 2003 unit cell of the fibres S.V.Lomov 21 Glass/epoxy composite 1 2 θ 7 6 5 4 3 2 1 0 Ex Ey 0 5.76 4.9 15 5.7 4.95 30 5.54 5.1 45 5.32 5.31 60 5.11 5.53 75 4.96 5.7 TechTextil 2003 90 4.9 5.76 Ex Ey Gxz Gxy 0 15 30 GPa Ez Gyz Gxz Gxy ν yz ν zy 4.77 1.95 2.44 2.12 0.281 0.289 4.77 1.98 2.41 2.12 0.282 0.293 4.77 2.05 2.3 2.11 0.285 0.305 4.77 2.17 2.17 2.1 0.289 0.322 4.77 2.3 2.06 2.11 0.293 0.339 4.77 2.4 1.98 2.11 0.296 0.353 4.77 2.45 1.95 S.V.Lomov 2.12 0.297 0.358 45 ν zx 0.358 0.353 0.34 0.322 0.305 0.293 0.289 Gyz 60 ν xz 0.297 0.295 0.293 0.289 0.285 0.282 0.281 teta, ° 75 90 ν xy 0.239 0.24 0.246 0.255 0.266 0.278 0.281 ν yx 0.28 0.277 0.267 0.255 0.246 0.24 22 0.239 Content • • • • WiseTex textile modelling Model of the weft-knit geometry Examples and discussion Applications to micro-mechanical modelling of composites • Conclusions TechTextil 2003 S.V.Lomov 23 Benefits • Diversity: – structures: purl, rib, interlock – stitches: plain, float, tuck, empty • Fast and memory-efficient • Robust • Easy to use • Integrated with WiseTex TechTextil 2003 S.V.Lomov 24 Limitations • The algorithm is designed to be fast and diverse vis-a-vis knit pattern, while delivering qualitatevly good results. • … due to simplicity of the model: – No yarn compression. – Max 8 anchor points per loop. – Simplified energy function TechTextil 2003 S.V.Lomov 25 WeftKnit demo http://www.mtm.kuleuven.ac.be/Research/C2/poly/index.htm TechTextil 2003 S.V.Lomov 26
© Copyright 2024