Solving Mathematical Problems Here all links to books and articles in proprietary digital libraries are “local” – each link will work on any campus with legitimate (level of) access to those libraries. The links to open-access items will work everywhere. For a more comfortable library visit, use Google Chrome and, while you are scrolling through the titles, always right-click on the selected item’s link to “Open link in new tab” – after you close the new tab, your cursor will be where you right-clicked. This section of the library was updated on 03 June 2015. For more information, right-click on: http://competitive-learning.org/Notes.pdf This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License (available at: http://creativecommons.org/licenses/by-nc-nd/3.0/). This work is free for personal and classroom use as is; you may not use this work for commercial purposes. Professor Joseph Vaisman Department of Computer Science and Engineering, NYU-Poly [email protected] Table of Contents Problems, Solutions, and Techniques Game Theory Towers of Hanoi Magic Squares Fifteen-Puzzle Fibonacci Numbers Pascal’s Triangle The Quest for PI The Science of Sticky Spheres Problems, Solutions, and Techniques ====== Chapter 5 How to solve problems http://dx.doi.org/10.1017/CBO9780511808258.006 How to Think Like a Mathematician: A Companion to Undergraduate Mathematics Kevin Houston Cambridge University Press, 2009, ISBN 9780511808258 http://dx.doi.org/10.1017/CBO9780511808258 How to Solve It: Modern Heuristics; Second, Revised and Extended Edition Zbigniew Michalewicz and David B. Fogel Springer, 2004, ISBN 978-3-662-07807-5 **** book on AI – relevant chapters ******** http://dx.doi.org/10.1007/978-3-662-07807-5 Mathematics as Problem Solving, Second Edition Alexander Soifer Springer, 2009, ISBN 978-0-387-74647-0 http://dx.doi.org/10.1007/978-0-387-74647-0 Problem-Solving Strategies Arthur Engel Springer, 1998, ISBN 978-0-387-22641-5 http://dx.doi.org/10.1007/b97682 Problem-Solving Through Problems Loren C. Larson Springer, 1983, ISBN 978-1-4612-5498-0 http://dx.doi.org/10.1007/978-1-4612-5498-0 The Beauty of Everyday Mathematics Norbert Hermann Springer, 2012, ISBN 978-3-642-22104-0 http://dx.doi.org/10.1007/978-3-642-22104-0 Problems and Proofs in Numbers and Algebra Richard S. Millman, Peter J. Shiue, and Eric Brendan Kahn Springer, 2015, ISBN 978-3-319-14427-6 http://dx.doi.org/10.1007/978-3-319-14427-6 Complex Numbers From A to … Z, Second Edition Titu Andreescu and Dorin Andrica Springer, 2014, ISBN 978-0-8176-8415-0 http://dx.doi.org/10.1007/978-0-8176-8415-0 Mathematical Problems and Proofs: Combinatorics, Number Theory, and Geometry Branislav Kisacanin Springer, 2002, ISBN 978-0-306-46963-3 http://dx.doi.org/10.1007/b115295 Inequalities: A Mathematical Olympiad Approach Radmila Bulajich Manfrino, Jose Antonio Gomez Ortega, and Rogelio Valdez Delgado Springer, 2009, ISBN 978-3-0346-0050-7 http://dx.doi.org/10.1007/978-3-0346-0050-7 Equations and Inequalities: Elementary Problems and Theorems in Algebra and Number Theory Jiri Herman, Radan Kucera, and Jaromir Simsa Springer, 2000, ISBN 978-1-4612-1270-6 http://dx.doi.org/10.1007/978-1-4612-1270-6 Topics in Algebra and Analysis: Preparing for the Mathematical Olympiad Radmila Bulajich Manfrino, Jose Antonio Gomez Ortega, and Rogelio Valdez Delgado Springer, 2015, ISBN 978-3-319-11946-5 http://dx.doi.org/10.1007/978-3-319-11946-5 Problem-Solving Methods in Combinatorics: An Approach to Olympiad Problems Pablo Soberon Springer, 2013, ISBN 978-3-0348-0597-1 http://dx.doi.org/10.1007/978-3-0348-0597-1 Problem-Solving and Selected Topics in Number Theory: In the Spirit of Mathematical Olympiads Michael Th. Rassias Springer, 2011, ISBN 978-1-4419-0495-9 http://dx.doi.org/10.1007/978-1-4419-0495-9 104 Number Theory Problems: From the Training of the USA IMO Team Titu Andreescu, Dorin Andrica, and Zuming Feng Springer, 2007, ISBN 978-0-8176-4561-8 http://dx.doi.org/10.1007/978-0-8176-4561-8 Mathematical Olympiad Treasures, Second Edition Titu Andreescu and Bogdan Enescu Springer, 2011, ISBN 978-0-8176-8253-8 http://dx.doi.org/10.1007/978-0-8176-8253-8 Mathematical Olympiad Challenges, Second Edition Titu Andreescu and Razvan Gelca Springer, 2009, ISBN 978-0-8176-4611-0 http://dx.doi.org.databases/10.1007/978-0-8176-4611-0 The IMO Compendium - A Collection of Problems Suggested for The International Mathematical Olympiads: 1959-2009, Second Edition Dusan Djukic, Vladimir Jankovic, Ivan Matic, and Nikola Petrovic Springer, 2011, ISBN 978-1-4419-9854-5 http://dx.doi.org/10.1007/978-1-4419-9854-5 Geometric Problems on Maxima and Minima Titu Andreescu, Oleg Mushkarov, and Luchezar Stayanov Springer, 2006, ISBN 978-0-8176-4473-3 http://dx.doi.org/10.1007/0-8176-4473-3 103 Trigonometry Problems: From the Training of the USA IMO Team Titu Andreescu and Zuming Feng Springer, 2005, ISBN 978-0-8176-4432-1 http://dx.doi.org/10.1007/b139082 An Introduction to Diophantine Equations: A Problem-Based Approach Titu Andreescu, Dorin Andrica, and Ion Cucurezeanu Springer, 2010, ISBN 978-0-8176-4549-6 http://dx.doi.org/10.1007/978-0-8176-4549-6 Putnam and Beyond Razvan Gelca and Titu Andreescu Springer, 2007, ISBN 978-0-387-68445-1 http://dx.doi.org/10.1007/978-0-387-68445-1 An Invitation to Mathematics: From Competition to Research Dierk Schleicher and Malte Lackmann (Editors) Springer, 2011, ISBN 978-3-642-19533-4 http://dx.doi.org/10.1007/978-3-642-19533-4 The Art of Mathematics – Coffee Time in Memphis Bela Bollobas Cambridge University Press, 2006, ISBN 9780511816574 http://dx.doi.org/10.1017/CBO9780511816574 Thinking in Problems: How Mathematicians Find Creative Solutions Alexander A. Roytvarf Springer, 2013, ISBN 978-0-8176-8406-8 http://dx.doi.org/10.1007/978-0-8176-8406-8 Problem Solving for Engineers and Scientists: A Creative Approach Raymond Friedman Springer, 1991, ISBN 978-1-4615-3906-3 http://dx.doi.org/10.1007/978-1-4615-3906-3 Arnold’s Problems Vladimir I. Arnold Springer, 2005, ISBN 978-3-540-28666-6 http://dx.doi.org/10.1007/b138219 Exercises in Analysis, Part I Leszek Gazinski and Nikolaos S. Papageorgiou Springer, 2014, ISBN 978-3-319-06176-4 http://dx.doi.org/10.1007/978-3-319-06176-4 People, Problems, and Proofs – Essays from Godel’s Lost Letter: 2010 Richard J. Lipton and Kenneth W. Regan Springer, 2013, ISBN 978-3-642-41422-0 http://dx.doi.org/10.1007/978-3-642-41422-0 Inside Interesting Integrals Paul J. Nahin Springer, 2015, ISBN 978-1-4939-1277-3 http://dx.doi.org/10.1007/978-1-4939-1277-3 Problems from the Discrete to the Continuous: Probability, Number Theory, Graph Theory, and Combinatorics Ross G. Pinsky Springer, 2014, ISBN 978-3-319-07965-3 http://dx.doi.org/10.1007/978-3-319-07965-3 Back to the Table of Contents ======================================= Game Theory ========================== Also see: Game Theory shelf in the Economics and Finance section. New Dilemmas for the Prisoner Brian Hayes American Scientist, Volume 101, Number 6 (November-December 2013) http://dx.doi.org/10.1511/2013.105.422 Insights into Game Theory: An Alternative Mathematical Experience Ein-Ya Gura and Michael B. Maschler Cambridge University Press, 2008, ISBN 9780511754326 http://dx.doi.org/10.1017/CBO9780511754326 Game Theory: An Introduction, Second Edition E.N. Barron Wiley, 2013, ISBN 9781118547168 http://dx.doi.org/10.1002/9781118547168 Back to the Table of Contents ======================================= Towers of Hanoi ======================== The Tower of Hanoi – Myths and Maths Andreas M. Hinz, Sandy Klavzar, Uros Milutinovic, and Ciril Petr Springer, 2013, ISBN 978-3-0348-0237-6 http://dx.doi.org/10.1007/978-3-0348-0237-6 About the remarkable similarity between the Icosian Game and the Tower of Hanoi Martin Gardner Scientific American, Volume 196, Number 5 (May 1957) Pages 150-157 http://www.nature.com/scientificamerican/journal/v196/n5/pdf/scien tificamerican0557-150.pdf The curious properties of Gray code and how it can be used to solve puzzles Martin Gardner Scientific American, Volume 227, Number 2 (September 1972) http://www.nature.com/scientificamerican/journal/v227/n2/pdf/scien tificamerican0872-106.pdf Yin and yang: recursion and iteration, the Tower of Hanoi and the Chinese rings A. K. Dewdney Scientific American, Volume 251, Number 5 (November 1984) http://www.nature.com/scientificamerican/journal/v251/n5/pdf/scien tificamerican1184-19.pdf Sierpinski’s Ubiquitous Gasket Ian Stewart Scientific American, Volume 281, Number 2 (August 1999) http://www.nature.com/scientificamerican/journal/v281/n2/pdf/scien tificamerican0899-90.pdf Chapter 1 “The Lion, the Llama, and the Lettuce” Another Fine Math You’ve Got Me Into… Ian Stewart http://books.google.com/books?id=u5GPE97ZhsC&printsec=frontcover&dq=intitle:another+intitle:fine+intitle:math &hl=en&ei=PJygTr2GLKna0QGKx7T6BA&sa=X&oi=book_result&ct=resu lt&resnum=1&ved=0CD0Q6AEwAA#v=onepage&q&f=false The Generalized Towers of Hanoi for Space-Deficient Computers and Forgetful Humans Timothy R. Walsh The Mathematical Intelligencer, Volume 20, Number 1 (March 1998) http://dx.doi.org/10.1007/BF03024398 Back to the Table of Contents ======================================= Magic Squares ========================= In general, a magic square is an arrangement of the integers from 1 to n*n, in cells of an n-by-n square, such that the numbers in each row, column, and diagonal give the same sum, the magic sum. You have access to a thorough explanation at the link below – disregard that it is intended for a very young audience. http://www.dr-mikes-math-games-for-kids.com/3x3-magicsquare.html Anything but square: from magic squares to Sudoku Hardeep Aiden http://plus.maths.org/content/anything-square-magic-squares-sudoku Magic Squares Pages 16-24 http://dx.doi.org/10.1007/978-1-4612-1088-7_2 Ramanujan’s Notebooks, Part I Bruce C. Berndt Springer, 1985, ISBN 978-1-4612-1088-7 http://dx.doi.org/10.1007/978-1-4612-1088-7 Magic Squares of Order Three T. S. K. V. Iyer Pages 76-78 http://dx.doi.org/10.1007/BF02834335 Basis Properties of Third Order Magic Squares Shailesh A Shirali Pages 79-89 http://dx.doi.org/10.1007/BF02834336 Resonance, Volume 11, Number 9 (September 2006) Magic “Squares” Indeed! Arthur T. Benjamin and Kan Yasuda American Mathematical Monthly, Volume 106, Number 2 (February 1999) Pages 152-156 http://dx.doi.org/10.2307/2589051 Constructing All Magic Squares of Order Three Guoce Xin http://arxiv.org/abs/math/0409468 Quadramagicology Dana Mackenzie Pages 50-53 New Scientist, Volume 180, Issue 2426-2428 (December 20, 2003) http://search.ebscohost.com/login.aspx?direct=true&db=n2h&AN=257 15053&site=ehost-live Magic Square Patterns D. B. Eperson The Mathematical Gazette, Volume 43, Number 346 (December 1959) Pages 273-275 http://www.jstor.org/stable/3610655 Magic Squares of Order 4 Dame Kathleen Ollerenshaw and Herman Bondi Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, Volume 306, Number 1495 (October 15, 1982) Pages 443-532 http://www.jstor.org/stable/37143 On ‘Most Perfect’ or ‘Complete’ 8 X 8 Pandiagonal Magic Squares Dame Kathleen Ollerenshaw Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Volume 407, Number 1833 (October 8, 1986) Pages 259-281 http://www.jstor.org/stable/2397989 On Karnaugh maps and magic squares Dieter Schuett and Sebastian Meine Pages 120-123 Informatik-Spektrum, Volume 28, Number 2 (April 2005) http://dx.doi.org/10.1007/s00287-005-0468-3 Latin Squares Bhaskar Bagchi Pages 895-902 Resonance, Volume 17, Number 9 (September 2012) http://dx.doi.org/10.1007/s12045-012-0098-4 Magic Graphs, Second Edition Alison M. Marr and W.D. Wallis Springer, 2013, ISBN 978-0-8176-8391-7 http://dx.doi.org/10.1007/978-0-8176-8391-7 Back to the Table of Contents ======================================= Fifteen-Puzzle ========================== How Safe Is Sam Lloyd’s Bet? The 15-Puzzle and Beyond Jyoti Ramakrishnan Pages 80-89 Resonance, Volume 5, Number 11 (November 2000) http://dx.doi.org/10.1007/BF02868496 Back to the Table of Contents ======================================= Fibonacci Numbers ===================== Fibonacci Numbers Ron Knott http://www.maths.surrey.ac.uk/hostedsites/R.Knott/Fibonacci/ Ron Knott’s web pages on Mathematics http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/ FIBONACCI – HIS RABBITS AND HIS NUMBERS and KEPLER Keith Tognetti http://www.austms.org.au/Modules/Fib/ Fibonacci Numbers Nicolai N. Vorobiev Springer, 2002, ISBN 978-3-0348-8107-4 http://dx.doi.org/10.1007/978-3-0348-8107-4 Fibonacci and Catalan Numbers: An Introduction Ralph P. Grimaldi Wiley, 2012, ISBN 9781118159743 http://dx.doi.org/10.1002/9781118159743 Catalan Numbers: with Applications Thomas Koshy Oxford University Press, 2009, ISBN 9780195334548 http://dx.doi.org/10.1093/acprof:oso/9780195334548.001.000 1 Fibonacci and Lucas Numbers with Applications Thomas Koshy Wiley, 2001, ISBN 9781118033067 http://dx.doi.org/10.1002/9781118033067 Pell and Pell-Lucas Numbers with Applications Thomas Koshy Springer, 2014, ISBN 978-1-4614-8489-9 http://dx.doi.org/10.1007/978-1-4614-8489-9 Applications of Fibonacci Numbers, Volume 9: Proceedings of the Tenth International Research Conference on Fibonacci Numbers and Their Applications Frederic T. Howard (Editor) Springer, 2004, ISBN 978-0-306-48517-6 http://dx.doi.org/10.1007/978-0-306-48517-6 Applications of Fibonacci Numbers, Volume 8: Proceedings of ‘The Eighth International Research Conference on Fibonacci Numbers and Their Applications’ Fredric T. Howard (Editor) Springer, 1999, ISBN 978-94-011-4271-7 http://dx.doi.org/10.1007/978-94-011-4271-7 Applications of Fibonacci Numbers, Volume 7: Proceedings of ‘The Seventh International Research Conference on Fibonacci Numbers and Their Applications’ G. E. Bergum, A. N. Philippou, and A. F. Horadam (Editors) Springer, 1998, ISBN 978-94-011-5020-0 http://dx.doi.org/10.1007/978-94-011-5020-0 Back to the Table of Contents ======================================= Pascal’s Triangle ======================== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Pascal’s Triangle Nathan Hoffman The Arithmetic Teacher, Volume 21, Number 3 (March 1974) http://www.jstor.org/stable/41188488 Pascal’s Triangle Karl J. Smith The Two-Year College Mathematics Journal, Volume 4, Number 1 (Winter 1973) http://www.jstor.org/stable/2698949 Differences and Pascal’s triangle Chris Houghton Mathematics in School, Volume 20, Number 4 (September 1991) http://www.jstor.org/stable/30214830 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Extended Pascal Triangles Richard C. Bollinger Mathematics Magazine, Volume 66, Number 2 (April 1993) http://www.jstor.org/stable/2691114 Pascal + Fermat -> Gauss Per Haggmark The Mathematical Gazette Volume 61, Number 418 (December 1977) http://www.jstor.org/stable/3617404 Pascal’s Triangle and the Tower of Hanoi Andreas M. Hinz The American Mathematical Monthly, Volume 99, Number 6 (June-July 1992) http://www.jstor.org/stable/2324061 Pascal’s Triangle, Difference Tables and Arithmetic Sequences of Order N Calvin Long The College Mathematics Journal, Volume 15, Number 4 (September 1984) http://www.jstor.org/stable/2686393 Pascal Triangles and Combinations Where Repetitions Are Allowed Kendell Hyde The College Mathematics Journal, Volume 19, Number 1 (January 1988) http://www.jstor.org/stable/2686707 Paths and Pascal Numbers John F. Lucas The Two-Year College Mathematics Journal, Volume 4, Number 1 (Winter 1973) http://www.jstor.org/stable/3027286 Recurrent Sequences and Pascal’s Triangle Thomas M. Green Mathematics Magazine, Volume 41, Number 1 (January 1968) http://www.jstor.org/stable/2687953 Relating Geometry and Algebra in the Pascal Triangle, Hexagon, Tetrahedron, and Cuboctahedron Part I: Binomial Coefficients, Extended Binomial Coefficients and Preparation for Further Work Peter Hilton and Jean Pedersen The College Mathematics Journal, Volume 30, Number 3 (May 1999) http://www.jstor.org/stable/2687595 Relating Geometry and Algebra in the Pascal Triangle, Hexagon, Tetrahedron, and Cuboctahedron Part II: Geometry and Algebra in Higher Dimensions: Identifying the Pascal Cuboctahedron Peter Hilton and Jean Pedersen The College Mathematics Journal, Volume 30, Number 4 (September 1999) http://www.jstor.org/stable/2687666 Restricted Occupancy Theory – A Generalization of Pascal’s Triangle J. E. Freund The American Mathematical Monthly, Volume 63, Number 1 (January 1956) http://www.jstor.org/stable/2308048 The Towers and Triangles of Professor Claus (or, Pascal Knows Hanoi) David G. Poole Mathematics Magazine, Volume 67, Number 5 (December 1994) http://www.jstor.org/stable/2690991 Zaphod Beeblebrox’s Brain and the Fifty-ninth Row of Pascal’s Triangle Andrew Granville The American Mathematical Monthly, Volume 99, Number 4 (April 1992) http://www.jstor.org/stable/2324898 Correction to: Zaphod Beeblebrox’s Brain and the Fifty-ninth Row of Pascal’s Triangle Andrew Granville The American Mathematical Monthly, Volume 104, Number 9 (November 1997) http://www.jstor.org/stable/2975291 Back to the Table of Contents ======================================= The Quest for Pi ======================== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Quest for Pi D.H. Bailey, J.M. Borwein, P.B. Borwein, and S. Plouffe Mathematical Intelligencer, Volume 19, Number 1 (Winter 1997) *** Item # 47 **************************************** http://www.davidhbailey.com/dhbpapers/index.html#Technica l-papers http://dx.doi.org/10.1007/BF03024340 Home Page of David H. Bailey http://www.davidhbailey.com/ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Pi: A Source Book, Third Edition Lennart Berggren, Jonathan Borwein, and Peter Borwein Springer, 2004, ISBN 978-1-4757-4217-6 http://dx.doi.org/10.1007/978-1-4757-4217-6 Pi – Unleashed Jorg Arndt and Christoph Haenel Springer, 2001, ISBN 978-3-642-56735-3 http://dx.doi.org/10.1007/978-3-642-56735-3 Back to the Table of Contents ======================================= The Science of Sticky Spheres ============= This shelf contains the original article, and will contain inks to the article’s bibliography, and links to additional items I consider relevant and useful. The Science of Sticky Spheres Brian Hayes American Scientist, Volume 100, Number 6 (November-December 2012) http://dx.doi.org/10.1511/2012.99.442 Computing Science column and book reviews http://www.americanscientist.org/issues/issue_byAuthor_list.a spx?authorID=6660&pageID=1 Website http://bit-player.org/ Back to the Table of Contents =======================================
© Copyright 2025