Name LESSON 7-5 Date Class Challenge Exponential Heating and Cooling Newton’s Law of Cooling states that the rate of heat loss of an object is proportional to the difference in temperatures between the object and its surrounding ambient temperature. T t TA This phenomenon is modeled with a differential equation t TA T and that equation may be solved to give _________ T t ⫽ T A ⫹ [ T 0 ⫺ T A] b t where T t is the varying temperature of the object at a given time, t, T A is the surrounding ambient temperature, T 0 is the initial temperature of the object, and b is a constant that depends on the material the object is composed of and how fast it heats or cools. Suppose you decided to make a cup of hot chocolate heated to 180°F in the kitchen that is at 72°F. 1. Solve the above equation for the constant b. 2. If the cup of hot chocolate cooled to 150°F in 15 minutes, find the value of the constant b in the above equation. Express your answer to five decimal places. 3. Solve the above equation for t. 4. Suppose you like your hot chocolate at the tepid temperature of 120°F. How long, to the nearest minute, will you have to wait until it cools to this temperature? T 0 T A b t bt T0 TA T t TA t log b log _________ T0 TA T t TA log _________ T0 TA ______________ log b t 10 log TT t TT A _________ 0 A ______________ t b b ; 0.97854 First 3 steps same as #1; t TA T __________ T0 TA log ____________ t log b About 37 min To go along with your hot chocolate, you take a frozen cherry pie from the freezer and place it in the oven preheated to 350°F. Assume the freezer is at 32°F. 5. If the cherry pie comes to a temperature of 120°F in 20 minutes, find the value of the constant b in the above equation. Express your answer to 5 decimal places. b ; 0.98362 6. How long will it take for the pie to reach its final temperature of 220°F? About 55 min 7. The pie is taken out of the oven and set on a table in a room at 80°F. In 10 minutes it has cooled to 185°F. However, the pie must cool to 125°F before it is ready to eat. How much longer will you have to wait? About 30 min Copyright © by Holt, Rinehart and Winston. All rights reserved. a207c07-5_ch.indd 8 40 Holt Algebra 2 12/29/05 8:01:55 PM Process Black ,%33/. Çx ,iÌi>V %XPONENTIALAND,OGARITHMIC%QUATIONSAND)NEQUALITIES CONTINUED >i}i %XPONENTIAL(EATINGAND#OOLING --" Çx .EWTONS,AWOF#OOLINGSTATESTHATTHERATEOFHEATLOSS OFANOBJECTISPROPORTIONALTOTHEDIFFERENCEINTEMPERATURES BETWEENTHEOBJECTANDITSSURROUNDINGAMBIENTTEMPERATURE T T E 4HISPHENOMENONISMODELEDWITHADIFFERENTIALEQUATION 4 T 4 ! 4 4 ! B 4 TTE4! T ANDTHATEQUATIONMAYBESOLVEDTOGIVE ????????? !LOGARITHMICEQUATIONCONTAINSALOGARITHMICEXPRESSIONTHATHASAVARIABLE LOGXISALOGARITHMICEQUATION XSINCE 4STD4!QÊ44!RB T #OMBINEANDUSEPROPERTIESOFLOGARITHMSTOSOLVELOGARITHMICEQUATIONS WHERE4STDISTHEVARYINGTEMPERATUREOFTHEOBJECTATA GIVENTIMET4!ISTHESURROUNDINGAMBIENTTEMPERATURE 4ISTHEINITIALTEMPERATUREOFTHEOBJECTANDBISA CONSTANTTHATDEPENDSONTHEMATERIALTHEOBJECTIS COMPOSEDOFANDHOWFASTITHEATSORCOOLS 3OLVELOGXLOG 3TEP 5SETHE1UOTIENT0ROPERTYOF,OGARITHMS LOGXLOG LOG???? X 3TEP 3IMPLIFY LOG???? X LOGX LOGXLOGYLOG?? XY 3UPPOSEYOUDECIDEDTOMAKEACUPOFHOTCHOCOLATE HEATEDTO &INTHEKITCHENTHATISAT & 3OLVETHEABOVEEQUATIONFORTHECONSTANTB 3TEP 5SETHEDEFINITIONOFTHELOGARITHM X IFB ATHENLOGBAX X 3TEP 3OLVEFORX$IVIDEBOTHSIDESBY LOGLOGSXD LOGXLOG LOGX LOGSXD LOGX?? LOGSXD X LOG ???? X LOGX X X X X X X #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED T E X X?? (OLT!LGEBRA 7HILE*OHNAND#ODYPLAYTHEIRFAVORITEVIDEOGAME *OHNDRINKSCUPSOFCOFFEEANDACOLAAND#ODY DRINKSCUPSOFBREWEDTEAANDACUPOFICEDTEA *OHNRECALLSREADINGTHATUPTOMGOFCAFFEINEIS CONSIDEREDAMODERATELEVELOFCONSUMPTIONPERDAY 4HERATEATWHICHCAFFEINEISELIMINATEDFROMTHE BLOODSTREAMISABOUTPERHOUR *OHNWANTSTOKNOWHOWLONGITWILLTAKEFORTHE CAFFEINEINHISBLOODSTREAMTODROPTOAMODERATE LEVEL #AFFEINE#ONTENTOF3OME "EVERAGES "EVERAGE #AFFEINE MGPER SERVING "REWEDCOFFEE "REWEDTEA )CEDTEA #OLA LÕÌÊÎäÊ YANDYTET #HOOSETHELETTERFORTHEBESTANSWER #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED Copyright © by Holt, Rinehart and Winston. All rights reserved. )NSOLVINGEQUATIONSWITHLOGARITHMSANDEXPONENTSFIRSTUSETHEPROPERTIES OFLOGARITHMSANDEXPONENTIALFUNCTIONSTOSIMPLIFYEQUATIONS(EREARETWO ADDITIONALPROPERTIESTHATAREUSEFULFORSOLVINGEQUATIONS s )FXYTHENBXBY s )FXYTHENLOGBXLOGBY ÊÓÊ{Ê B 2EWRITETHEEQUATIONSOBOTHSIDESHAVE THESAMEBASE7HATISTHEVALUEOFX C 3HOWHOWYOUCANCHECKYOURSOLUTION ÊÓÊXÊÊÊÓÊ{ÊÆÊXÊÊ{ ÊiÌÌ}ÊXÊÊ{]ÊÊÓÊ{ÊÊ£È A 2EWRITETHEEQUATIONUSINGTHEDEFINITIONOFLOGARITHM B 7HATISTHESOLUTIONOFTHEEQUATION C 7HATISTHEVALUEOFLOG X X Ê£äÊÊÓÊÊX XÊÊ£ää Ê}Ê£äÊ£ääÊÊÊ}Ê£äÊ£äÊÊÓÊÊÓ 5SETHEEQUATION s FOR%XERCISE A 2EWRITETHEEQUATIONSOTHATTHEEXPONENTSON BOTHSIDESHAVETHESAMEBASE Y X Y B 3IMPLIFYUNTILITISINTHEFORM C 3OLVEFORX Ó ÊÎÊxÊÊÊÎÊXÊsÊÊÊTÊÎÊÓÊEÊ ÊÊÊÎÊxÊÊÊÎÊXÊsÊÊÎÊ{Ê ÊÎÊxÊÊÊÎÊXÊÊ{Ê xÊÊXÊÊ{ÆÊXÊÊ£° 5SETHEEQUATIONXLOGTXE LOGXFOR%XERCISE A $ESCRIBEEACHSTEPINTHETABLETOSOLVETHEEQUATION XLOGXLOGX X ( HOURS * HOURS ,i>`}Ê-ÌÀ>Ìi}Þ 5SE2ELATIONSHIPS " HOURS # HOURS $ HOURS ÌÊ}iLÀ>ÊÓ 5SETHEEQUATIONLOGXFOR%XERCISE )F*OHNDRANKCUPSOFCOFFEEANDA COLAABOUTHOWLONGWOULDITTAKEFOR THELEVELOFCAFFEINEINHISSYSTEMTODROP TOAMODERATELEVEL & HOUR ' HOURS !BOUTHOWLONGWOULDITTAKEFORTHE LEVELOFCAFFEINEIN#ODYSSYSTEMTO DROPBYAFACTOROF ! HOUR #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED H C 3KETCHTHERESULTINGGRAPH AK4up.indd 76 LÕÌÊxxÊ X (ECANGRAPHTHEEQUATIONTETANDFINDTHEVALUEOFT WHERE#TTEIS B 7HATEQUATIONSDID#ODYENTERINTO HISCALCULATOR E 4HEPIEISTAKENOUTOFTHEOVENANDSETONATABLE INAROOMAT &)NMINUTESITHASCOOLEDTO &(OWEVERTHEPIEMUSTCOOLTO & BEFOREITISREADYTOEAT(OWMUCHLONGERWILL YOUHAVETOWAIT A %XPRESSASAPOWEROF A #ODYTHINKSTHATITWILLTAKEATLEASTHOURSFORTHELEVELOFCAFFEINEIN *OHNSSYSTEMTODROPTOTHESAMELEVELOFCAFFEINETHAT#ODYCONSUMED %XPLAINHOWHECANUSEHISGRAPHINGCALCULATORTOPROVETHAT T 5SETHEEQUATION FOR%XERCISE #TTE#TET C (OWLONGTOTHENEARESTTENTHOFANHOURWILLIT TAKEFORTHECAFFEINEIN*OHNSSYSTEMTOREACH AMODERATELEVEL BÊÊä°Çnx{ ÀÃÌÊÎÊÃÌi«ÃÊÃ>iÊ>Ã森 4ÊÊÊTTEÊÊÊ4Ê! Ê ÊÚÚÚÚÚÚÚÚÚÚ Ê Ê4ÊÊÊÊ4Ê! ÚÚÚÚÚÚÚÚÚÚÚÚ }ÊÊÊ Ê ÊÊT }ÊB LÕÌÊÎÇÊ BÊÊä°nÎÈÓ Çx MG B 7RITEANEQUATIONSHOWINGTHEAMOUNTOFCAFFEINE INTHEBLOODSTREAMASAFUNCTIONOFTIME E B (OWLONGWILLITTAKEFORTHEPIETOREACHITSFINAL TEMPERATUREOF & --" A (OWMUCHCAFFEINEDID*OHNCONSUME E )FTHECHERRYPIECOMESTOATEMPERATUREOF &IN MINUTESFINDTHEVALUEOFTHECONSTANTBINTHE ABOVEEQUATION%XPRESSYOURANSWERTODECIMAL PLACES *ÀLiÊ-Û} %XPONENTIALAND,OGARITHMIC%QUATIONSAND)NEQUALITIES Çx T 4OGOALONGWITHYOURHOTCHOCOLATEYOUTAKEAFROZENCHERRYPIEFROMTHE FREEZERANDPLACEITINTHEOVENPREHEATEDTO &!SSUMETHEFREEZERIS AT & 3OLVEANDCHECK LOGX T 4 TTE 4! LOG ????????? 4 4! ?????????????? T 3UPPOSEYOULIKEYOURHOTCHOCOLATEATTHETEPID TEMPERATUREOF &(OWLONGTOTHENEAREST MINUTEWILLYOUHAVETOWAITUNTILITCOOLSTOTHIS TEMPERATURE X ?? X T 3OLVETHEABOVEEQUATIONFORT ,%33/. T )FTHECUPOFHOTCHOCOLATECOOLEDTO &IN MINUTESFINDTHEVALUEOFTHECONSTANTBIN THEABOVEEQUATION%XPRESSYOURANSWERTO FIVEDECIMALPLACES 2EMEMBER5SEASTHEBASE WHENTHEBASEISNOTGIVEN LOGX E E B 44! 4TTE4! ????????? LOG TLOGB 44! TTE 4! 4 LOG ????????? 44! ?????????????? LOGB T (OLT!LGEBRA SXLOGXLOGXD 5SEOFTHE0OWER0ROPERTY XLOGXLOGX >VÌÀÊivÌÊÃ`i `Û`iÊLÌ ÊÃ`iÃÊLÞÊÓ S D ÕÃiÊvÊÌ iÊ+ÕÌiÌÊ*À«iÀÌÞ X XLOG ???? X B 3IMPLIFYANDSOLVETHERESULTINGEQUATION #OPYRIGHT©BY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED 76 ÓXÊÊ£ÊÊxÆÊXÊÊÓ ÌÊ}iLÀ>ÊÓ Holt Algebra 2 1/4/06 3:44:25 PM
© Copyright 2024