5/5/2015 Sections 6-1 and 6-2 Review and Preview and The Standard Normal Distribution NORMAL DISTRIBUTIONS Ifacontinuousrandomvariable hasadistributionwithagraph thatissymmetricandbell‐ shapedandcanbedescribedby theequation 2 wesaythatithasanormal distribution. REMARK WewillNOT needtousetheformulaonthe previousslideinourwork.However,itdoes showusoneimportantfactaboutnormal distributions: Anyparticularnormaldistributionis determinedbytwoparameters: themean,μ,and thestandarddeviation,σ. 1 5/5/2015 HEIGHTS OF WOMEN AND MEN Women: µ = 63.8 = 2.5 Men: µ = 69.4 = 2.8 63.8 69.4 Height (inches) UNIFORM DISTRIBUTIONS Acontinuousrandomvariablehasauniform distribution ifitsvaluesarespreadevenly overtherangeofpossibilities.Thegraphofa uniformdistributionresultsinarectangular shape. EXAMPLE Supposethatafriendofyoursisalwayslate. Lettherandomvariable representthetime fromwhenyouaresupposetomeetyourfriend untilhearrives.Yourfriendcouldbeontime ( 0)orupto10minuteslate( 10)with allpossiblevaluesequallylikely. Thisisanexampleofauniformdistribution anditsgraphisonthenextslide. 2 5/5/2015 0.1 1 0 0.0 10.0 Numberofminuteslate DENSITY CURVES Adensitycurve (orprobabilitydensity function)isagraphofacontinuous probabilitydistribution.Itmust satisfythe followingproperties: 1. Thetotalareaunderthecurve mustequal1. 2. Everypointonthecurvemust haveaverticalheightthatis0or greater.(Thatis,thecurvecannot fallbelowthe ‐axis.) IMPORTANT CONCEPT Becausethetotalareaunder thedensitycurveisequalto1, thereisacorrespondence betweenarea andprobability. 3 5/5/2015 EXAMPLE Supposethatafriendofyoursisalwayslate. Lettherandomvariable representthetime fromwhenyouaresupposetomeetyour frienduntilhearrives.Yourfriendcouldbeon time( 0)orupto10minuteslate( 10) withallpossiblevaluesequallylikely.Findthe probabilitythatyourfriendwillbemorethan 7minuteslate. THE STANDARD NORMAL DISTRIBUTION Thestandardnormaldistribution isanormal probabilitydistributionthathasamean 0 andastandarddeviation 1,andthetotal areaunderthecurveisequalto1. COMPUTING PROBABILITIES FOR THE STANDARD NORMAL DISTRIBUTION Wewillbecomputingprobabilitiesforthe standardnormaldistributionusing: 1. TableA‐2locatedinsidethebackcoverof thetext,theFormulasandTables insert card,andAppendixA(pp.584‐585). 2. TheTI‐83/84calculator. 4 5/5/2015 COMMENTS ON TABLE A-2 1. TableA‐2isdesignedonlyforthe standard normaldistribution 2. TableA‐2isontwopageswithonepage fornegative z scoresandtheotherpage forpositive z scores. 3. Eachvalueinthebodyofthetableisa cumulativeareafromtheleft uptoa verticalboundaryforaspecificz score. COMMENTS (CONCLUDED) 4. Whenworkingwithagraph,avoidconfusion betweenz scoresandareas. z score: Distance alongthehorizontal scaleofthestandardnormaldistribution; refertotheleftmostcolumnandtoprow ofTableA‐2. Area: Region underthecurve;referto thevaluesinthebodyoftheTableA‐2. 5. Thepartofthezscoredenotinghundredths isfoundacrossthetoprowofTableA‐2. NOTATION denotestheprobabilitythat thez scoreisbetween and . denotestheprobabilitythat thez scoreisgreaterthan . denotestheprobabilitythat thez scoreislessthan . 5 5/5/2015 COMPUTING PROBABILITIES USING TABLE A-2 1. Drawabell‐shapedcurvecorresponding totheareayouaretryingtofind.Label thez score(s). 2. Lookupthez socre(s)inTableA‐2. 3. Performanynecessarysubtractions. FINDING THE AREA BETWEEN TWO z SCORES Tofind ,theareabetween and : 1. Findthecumulativearealessthan ;that is,find . 2. Findthecumulativearealessthan ;that . is,find 3. Theareabetween and is . FINDING PROBABILITIES (AREAS) USING THE TI-83/84 Tofindtheareabetweentwoz scores,press 2ndVARS (forDIST)andselect2:normalcdf(. Thenenterthetwoz scoresseparatedbya comma. Tofindtheareabetween−1.33and0.95,your calculatordisplayshouldlooklike: normalcdf(−1.33,0.95) 6 5/5/2015 FINDING PROBABILITIES (AREAS) USING THE TI-84 NEW OS Tofindtheareabetweentwoz scores,press 2ndVARS (forDIST)andselect2:normalcdf(.Then enterthetwoz scoresseparatedbyacomma. Tofindthearea between−1.33and 0.95,yourcalculator displayshouldlook like: NOTES ON USING TI-83/84 TO COMPUTE PROBABILITIES • TocomputeP(z <a),use normalcdf(−1E99,a) • TocomputeP(z >a),use normalcdf(a,1E99) PROCDURE FOR FINDING A z SCORE FROM A KNOWN AREA USING TABLE A-2 1. Drawabell‐shapedcurveandidentifythe regionthatcorrespondstothegiven probability.Ifthatregionisnota cumulativeregionfromtheleft,work insteadwithaknownregionthatis cumulativefromtheleft. 2. Usingthecumulativeareafromtheleft locatetheclosestprobabilityinthebody ofTableA‐2andidentifythe correspondingz score. 7 5/5/2015 FINDING A z SCORE CORRESPONDING TO A KNOWN AREA USING THE TI-83/84 Tofindthez scorecorrespondingtoaknown area,press2ndVARS (forDIST)andselect 3:invNorm(.Thenenterthetotalareatothe leftofthevalue. Tofindthez scorecorrespondingto0.6554,a cumulativeareatotheleft,yourcalculator displayshouldlooklike: invNorm(.6554) FINDING A z SCORE FROM AN AREA ON TI-84 NEW OS Tofindthez scorecorrespondingtoaknownarea, press2ndVARS (forDIST)andselect3:invNorm(. Thenenterthetotalareatotheleftofthevalue. Tofindthez score correspondingto 0.6554,acumulative areatotheleft,your calculatordisplay shouldlooklike: CRITICAL VALUES Foranormaldistribution,acriticalvalue isa z scoreontheborderlineseparatingthez scoresthatarelikelytooccurfromthosethat areunlikelytooccur. NOTATION:Theexpression denotesthe z scorewithanareaof toitsright.( isthe Greeklower‐caseletteralpha.) 8
© Copyright 2024