Haar Wavelet and Simulation of Stochastic Processes

Columbia International Publishing
Contemporary Mathematics and Statistics
(2015) Vol. 3 No. 1 pp. 1-7
doi:10.7726/cms.2015.1001
Research Article
Haar Wavelet and Simulation of Stochastic Processes
Ievgen Turchyn1*
Received June 29 2013; Published online April 25 2015
© The author 2015. Published with open access at www.uscip.us
Abstract
A wavelet-based method for simulation of Gaussian processes with given accuracy and reliability in
𝐿𝑝 ([0, 𝑇]) is proposed.
Keywords: Gaussian processes; Simulation; Wavelets
1. Introduction
Applications of wavelets to stochastic processes have been extensively developed recently. In
particular, wavelet-based simulation and series expansions of stochastic processes have been
studied by Wornell (1993), Meyer et al. (1999), Whitcher (2001), Seleznjev and Staroverov (2002),
Ayache and Taqqu (2003), Pipiras (2004, 2005). Wavelet-based expansions of stochastic processes
in series with uncorrelated terms have been researched by Walter and Zhang (1994), Didier and
Pipiras (2008), Kozachenko et al. (2011).
We will prove a result about simulation of a Gaussian process with given accuracy and reliability
using a wavelet-based model. Simulation with given accuracy and reliability (see Kozachenko and
Pashko (1999)) is a special kind of simulation of stochastic processes. To simulate a random
process 𝑋(𝑑) with given accuracy πœ€ and reliability 1 βˆ’ 𝛿 means to build such a model 𝑋̂(𝑑) for the
process 𝑋(𝑑) that
P{βˆ₯ 𝑋(𝑑) βˆ’ 𝑋̂(𝑑) βˆ₯> πœ€} ≀ 𝛿
(so simulation with given accuracy and reliability is a simulation with a certain prescribed rate of
convergence). This kind of simulation has substantial advantages over more traditional methods of
simulation of stochastic processes. For instance, traditional methods of simulation may produce
models which paths are quite different from paths of the process but simulation with given
__________________________________________________________________________________________________________________
*Corresponding e-mail: [email protected]
1 Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk, Ukraine
1
Ievgen Turchyn / Contemporary Mathematics and Statistics
(2015) Vol. 3 No. 1 pp. 1-7
accuracy and reliability will result in a model which paths are with high probability close to paths of
the process.
Our model of a process is obtained by a truncation of a wavelet-based expansion of a stochastic
process. We prove a theorem about simulation of a Gaussian process with given accuracy and
reliability in 𝐿𝑝 ([0, 𝑇]) using this wavelet-based model and the Haar wavelet. Analogous results
about simulation of Gaussian and sub-Gaussian processes with given accuracy and reliability by
means of a similar model have been obtained before in Kozachenko and Turchyn (2008) and
Turchyn (2011). Our result is valid for a wide class of Gaussian processes, this class includes certain
processes to which earlier theorems about simulation with given accuracy and reliability using
similar wavelet-based models are not applicable.
2. Preliminaries
Let πœ‘ ∈ 𝐿2 (ℝ) be such a function that the following assumptions hold:
i) βˆ‘π‘˜βˆˆβ„€ |πœ‘Μ‚(𝑦 + 2πœ‹π‘˜)|2 = 1 almost everywhere, where πœ‘Μ‚(𝑦) is the Fourier transform of πœ‘,
πœ‘Μ‚(𝑦) = ∫ exp{βˆ’π‘–π‘¦π‘₯}πœ‘(π‘₯)𝑑π‘₯;
ℝ
ii) There exists a function π‘š0 ∈ 𝐿2 ([0,2πœ‹]) such that π‘š0 (π‘₯) has period 2πœ‹ and almost
everywhere
πœ‘Μ‚(𝑦) = π‘š0 (𝑦⁄2)πœ‘Μ‚(𝑦⁄2);
iii) πœ‘Μ‚(0) β‰  0 and the function πœ‘Μ‚(𝑦) is continuous at 0.
The function πœ‘(π‘₯) is called 𝑓-wavelet. Let πœ“(π‘₯) be the inverse Fourier transform of the function
πœ“Μ‚(𝑦) = π‘š0 (𝑦⁄2 + πœ‹)exp{βˆ’π‘–π‘¦β„2}πœ‘Μ‚(𝑦⁄2).
The function πœ“(π‘₯) is called π‘š-wavelet.
Let
πœ‘π‘—π‘˜ (π‘₯) = 2𝑗/2 πœ‘(2𝑗 π‘₯ βˆ’ π‘˜), πœ“π‘—π‘˜ (π‘₯) = 2𝑗/2 πœ“(2𝑗 π‘₯ βˆ’ π‘˜), π‘˜ ∈ β„€, 𝑗 = 0,1,2, …
It is known that the family of functions {πœ‘0π‘˜ , πœ“π‘—π‘˜ , 𝑗 = 0,1, … ; π‘˜ ∈ β„€} is an orthonormal basis in 𝐿2 (ℝ)
(see, for example, Walter and Shen (2000)).
Any function 𝑓 ∈ 𝐿2 (ℝ) can be represented as
𝑓(π‘₯) = βˆ‘π‘˜βˆˆβ„€ 𝛼0π‘˜ πœ‘0π‘˜ (π‘₯) + βˆ‘βˆž
𝑗=0 βˆ‘π‘˜βˆˆβ„€ π›½π‘—π‘˜ πœ“π‘—π‘˜ (π‘₯),
(2.1)
where 𝛼0π‘˜ = βˆ«β„ 𝑓(π‘₯)πœ‘0π‘˜ (π‘₯)𝑑π‘₯, π›½π‘—π‘˜ = βˆ«β„ 𝑓(π‘₯)πœ“π‘—π‘˜ (π‘₯)𝑑π‘₯,
2
βˆ‘π‘˜βˆˆβ„€ |𝛼0π‘˜ |2 + βˆ‘βˆž
𝑗=0 βˆ‘π‘˜βˆˆβ„€ |π›½π‘—π‘˜ | < ∞.
That is, series (2.1) converges in the norm of the space 𝐿2 (ℝ). Representation (2.1) is called wavelet
representation.
We need the following result.
2
Ievgen Turchyn / Contemporary Mathematics and Statistics
(2015) Vol. 3 No. 1 pp. 1-7
Theorem 2.1 Let 𝑋 = {𝑋(𝑑), 𝑑 ∈ ℝ} be a centered random process such that for all 𝑑 ∈ ℝ 𝐄|𝑋(𝑑)|2
is finite. Let 𝑅(𝑑, 𝑠) = 𝐄𝑋(𝑑)𝑋(𝑠) and there exists such a Borel function 𝑒(𝑑, 𝑦), 𝑑 ∈ ℝ, 𝑦 ∈ ℝ that
βˆ«β„ |𝑒(𝑑, 𝑦)|2 𝑑𝑦 < ∞ for all 𝑑 ∈ ℝ and
𝑅(𝑑, 𝑠) = βˆ«β„ 𝑒(𝑑, 𝑦)𝑒(𝑠, 𝑦)𝑑𝑦.
Let {πœ‘0π‘˜ (π‘₯), πœ“π‘—π‘˜ (π‘₯), π‘˜ ∈ β„€, 𝑗 = 0,1,2, … } be a wavelet system. Then the process 𝑋(𝑑) can be presented
as the following series which converges for all 𝑑 ∈ ℝ in mean square:
𝑋(𝑑) = βˆ‘π‘˜βˆˆβ„€ πœ‰0π‘˜ 𝛼0π‘˜ (𝑑) + βˆ‘βˆž
𝑗=0 βˆ‘π‘˜βˆˆβ„€ πœ‚π‘—π‘˜ π›½π‘—π‘˜ (𝑑),
(2.2)
where
𝛼0π‘˜ (𝑑) = βˆ«β„ 𝑒(𝑑, 𝑦) Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…
πœ‘0π‘˜ (𝑦)𝑑𝑦,
(2.3)
Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…
π›½π‘—π‘˜ (𝑑) = βˆ«β„ 𝑒(𝑑, 𝑦)πœ“
π‘—π‘˜ (𝑦)𝑑𝑦,
(2.4)
πœ‰0π‘˜ , πœ‚π‘—π‘˜ are centered random variables such that
π„πœ‰0π‘˜ πœ‰0𝑙 = π›Ώπ‘˜π‘™ , π„πœ‚π‘šπ‘˜ πœ‚π‘›π‘™ = π›Ώπ‘šπ‘› π›Ώπ‘˜π‘™ , π„πœ‰0π‘˜ πœ‚π‘›π‘™ = 0 .
Theorem 2.1 is a corollary from Theorem 1.1 in Kozachenko et al. (2011) which is obtained by
taking {πœ‘0π‘˜ , πœ“π‘—π‘˜ , 𝑗 = 0,1, … ; π‘˜ ∈ β„€} as an orthonormal basis.
We will use the term β€œW-expansion of the process X(t)” for expansion (2.2).
3. Simulation
Lemma 3.1 Suppose that a random process 𝑋 = {𝑋(𝑑), 𝑑 ∈ ℝ} satisfies the conditions of Theorem 2.1,
the function 𝑒(𝑑, 𝑦) defined in Theorem 2.1 is differentiable with respect to y and satisfies the
following conditions:
𝐴(𝑑)
|𝑒𝑦′ (𝑑, 𝑦)| ≀ 1+|𝑦|𝛽 ,
(3.1)
where 𝛽 ∈ (1; 3/2),
𝐡(𝑑)
|𝑒(𝑑, 𝑦)| ≀ 1+|𝑦| .
(3.2)
Let πœ‘(𝑑) and πœ“(𝑑) be the Haar 𝑓 -wavelet and π‘š -wavelet correspondingly. Then the following
inequalities hold for the coefficients 𝛼0π‘˜ (𝑑) π‘Žπ‘›π‘‘ π›½π‘—π‘˜ (𝑑) in W-expansion (2.2) of the process X(t) with
respect to the Haar wavelet:
𝐡(𝑑)
|𝛼0π‘˜ (𝑑)| ≀ 1+min{|π‘˜|,|π‘˜+1|} ,
(3.3)
|π›½π‘—π‘˜ (𝑑)| ≀ 4π‘˜ 𝛽 2𝑗(3/2βˆ’π›½) , π‘˜ > 0 ,
(3.4)
𝐴(𝑑)
𝐴(𝑑)
|π›½π‘—π‘˜ (𝑑)| ≀ 4|π‘˜+1/2|𝛽 2𝑗(3/2βˆ’π›½) , π‘˜ < 0 ,
𝐴(𝑑)
|𝛽𝑗0 (𝑑)| ≀ 4 βˆ™23𝑗/2 .
(3.5)
(3.6)
3
Ievgen Turchyn / Contemporary Mathematics and Statistics
(2015) Vol. 3 No. 1 pp. 1-7
Proof. Let us prove inequality (3.4). We have for π‘˜ > 0:
|π›½π‘—π‘˜ (𝑑)| = |∫ 𝑒(𝑑, π‘₯) 2
𝑗 ⁄2
𝑗
πœ“(2 π‘₯ βˆ’ π‘˜)𝑑π‘₯| = 2
𝑗 ⁄2
(π‘˜+1⁄2)⁄2𝑗
≀2
𝑗 ⁄2
(π‘˜+1⁄2)⁄2𝑗
∫
π‘˜ ⁄ 2𝑗
|𝑒(𝑑, π‘₯) βˆ’ 𝑒 (𝑑, π‘₯ +
𝑒(𝑑, π‘₯) 𝑑π‘₯ βˆ’ ∫
|∫
π‘˜β„2𝑗
ℝ
1
2𝑗+1
(π‘˜+1)⁄2𝑗
(π‘˜+1⁄2)⁄2𝑗
𝑒(𝑑, π‘₯) 𝑑π‘₯|
)| 𝑑π‘₯ ≀ sup |𝑒π‘₯β€² (𝑑, π‘₯)|/23𝑗⁄2+2 ,
π‘₯∈𝐼
where 𝐼 = [π‘˜/2𝑗 ; (π‘˜ + 1/2)/2𝑗 ] . But it follows from (3.1) that
2𝑗𝛽
supπ‘₯ ∈ 𝐼 |𝑒π‘₯β€² (𝑑, π‘₯)| ≀ 𝐴(𝑑) π‘˜ 𝛽
and now we immediately obtain inequality (3.4).
Inequalities (3.3), (3.5) and (3.6) can be proved in a similar way.
Definition 3.1 Let a random process 𝑋 = {𝑋(𝑑), 𝑑 ∈ ℝ} satisfy the conditions of Theorem 2.1. We call
the following process a model of 𝑋(𝑑):
𝑀𝑗 βˆ’1
𝑁0 βˆ’1
𝑋̂(𝑑) = βˆ‘π‘˜=βˆ’(𝑁
πœ‰ 𝛼 (𝑑) + βˆ‘π‘βˆ’1
𝑗=0 βˆ‘π‘˜=βˆ’(𝑀
0 βˆ’1) 0π‘˜ 0π‘˜
𝑗 βˆ’1)
πœ‚π‘—π‘˜ π›½π‘—π‘˜ (𝑑),
(3.7)
where πœ‰0π‘˜ , πœ‚π‘—π‘˜ are random variables from expansion (2.2), 𝛼0π‘˜ (𝑑) and π›½π‘—π‘˜ (𝑑) are calculated using
formulae (2.3) and (2.4), 𝑁0 > 1, 𝑁 > 1, 𝑀𝑗 > 1.
Definition 3.2 Suppose that 0 < 𝛿 < 1, πœ€ > 0. We say that the model 𝑋̂(𝑑) defined by (3.7)
approximates a process 𝑋(𝑑) with given reliability 1 βˆ’ 𝛿 and accuracy πœ€ in 𝐿𝑝 ([0, 𝑇]) if
1/𝑝
T
P{(∫0 |𝑋(𝑑) βˆ’ 𝑋̂(𝑑)|𝑝 𝑑𝑑)
> πœ€} ≀ 𝛿.
We will need the following fact which is a modification of Theorem 5.1 from Kozachenko and
Turchyn (2008).
Theorem 3.1 Suppose that a Gaussian random process 𝑋 = {𝑋(𝑑), 𝑑 ∈ ℝ} satisfies the conditions of
Theorem 2.1, 𝑋̂(𝑑) is its model defined by (3.7), 0 < 𝛿 < √2𝑒 βˆ’π‘/2 , 𝑝 β‰₯ 1. If
πœ€2
sup 𝐄|𝑋(𝑑) βˆ’ 𝑋̂(𝑑)|2 ≀ 2𝑇 2/𝑝 ln(
π‘‘βˆˆ[0,𝑇]
√2/𝛿)
,
then the model 𝑋̂(𝑑) approximates the process 𝑋(𝑑) with reliability 1 βˆ’ 𝛿 and accuracy πœ€ in 𝐿𝑝 ([0, 𝑇]).
Now we can formulate and prove the main result of the paper.
Theorem 3.2 Suppose that a centered Gaussian stochastic process 𝑋 = {𝑋(𝑑), 𝑑 ∈ ℝ} satisfies the
conditions of Lemma 3.1, 𝐴(𝑑), 𝐡(𝑑), 𝛽 are defined in Lemma 3.1, 𝑇 > 0,
4
Ievgen Turchyn / Contemporary Mathematics and Statistics
(2015) Vol. 3 No. 1 pp. 1-7
𝐴̃(𝑇) = sup 𝐴(𝑑) < ∞,
π‘‘βˆˆ[0,𝑇]
𝐡̃(𝑇) = sup 𝐡(𝑑) < ∞,
π‘‘βˆˆ[0,𝑇]
the function 𝑒(𝑑, 𝑦) defined in Theorem 2.1 is continuous with respect to t, 𝑒(𝑑,β‹…) ∈ 𝐿1 (ℝ) ∩ 𝐿2 (ℝ) and
inverse Fourier transform 𝑒̃(𝑑, 𝑦) of the function 𝑒(𝑑, 𝑦) with respect to 𝑦 is a real function. Let πœ‘(𝑑)
and πœ“(𝑑) be the Haar 𝑓-wavelet and π‘š-wavelet respectively. Let 𝑝 > 1, πœ€ > 0, 𝛿 ∈ (0; √2𝑒 βˆ’π‘/2 ). If
𝑁0 > 4 +
6
(𝐡̃(𝑇))2 ,
πœ€1
(3.8)
3(𝐴̃(𝑇))2
)1/(2π›½βˆ’1)
8(2π›½βˆ’1)πœ€1 (1βˆ’π‘ž)
3
2
𝑀𝑗 > + (
𝑁 > max{
ln(𝐿(1βˆ’π‘ž))
lnπ‘ž
7
(𝑗 = 0,1, . . . , 𝑁 βˆ’ 1 ),
πœ€
1
, βˆ’log 8 (3 (𝐴̃(𝑇))
2 )} ,
(3.9)
(3.10)
where
πœ€1 =
πœ€2
2𝑇 2/𝑝 ln(√2/𝛿)
,
π‘ž = 4π›½βˆ’3/2 ,
2 2𝛽
Μƒ
𝐿 = 8πœ€1 /(3(𝐴(𝑇)) (2 + 22π›½βˆ’1 /(2𝛽 βˆ’ 1) + 2𝛽/(2𝛽 βˆ’ 1))),
then the model 𝑋̂(𝑑) defined by (3.7) approximates the process 𝑋(𝑑) with given reliability 1 βˆ’ 𝛿 and
accuracy πœ€ in 𝐿𝑝 ([0, 𝑇]) .
Proof. It follows from (3.8)–(3.10) that the following inequalities hold:
sup βˆ‘π‘˜:|π‘˜|β‰₯𝑁0 |𝛼0π‘˜ (𝑑)|2 ≀
πœ€1
,
3
(3.11)
2
sup βˆ‘π‘βˆ’1
𝑗=0 βˆ‘π‘˜:|π‘˜|β‰₯𝑀𝑗 |Ξ²π‘—π‘˜ (𝑑)| ≀
πœ€1
,
3
(3.12)
2
sup βˆ‘βˆž
𝑗=𝑁 βˆ‘π‘˜βˆˆβ„€ |Ξ²π‘—π‘˜ (𝑑)| ≀
πœ€1
.
3
(3.13)
𝑑 ∈[0,𝑇]
𝑑 ∈[0,𝑇]
𝑑 ∈[0,𝑇]
We will prove inequality (3.13) (inequalities (3.11) and (3.12) can be proved similarly). Let us take
an arbitrary fixed 𝑑 ∈ [0, 𝑇]. Using estimates (3.4)–(3.6) it is easy to obtain the inequalities
(𝐴(𝑑))2
(𝐴(𝑑))2
1
1
∞
∞
βˆ’1
2
βˆ‘βˆž
𝑗=𝑁 βˆ‘π‘˜βˆˆβ„€ |Ξ²π‘—π‘˜ (𝑑)| ≀ βˆ‘π‘—=𝑁(16βˆ™22𝑗(3/2βˆ’π›½) βˆ‘π‘˜=1 π‘˜ 2𝛽 + 16βˆ™22𝑗(3/2βˆ’π›½) βˆ‘π‘˜=βˆ’βˆž |π‘˜+1/2|2𝛽 +
≀
(𝐴̃(𝑇))2
(𝑆1 𝐢𝛽
16
(𝐴(𝑑))2
)
16βˆ™23𝑗
1
+ 𝑆2 𝐢𝛽 + 7βˆ™8π‘βˆ’1 ) = 𝐺,
where
1
1
𝑆1 = βˆ‘βˆž
π‘˜=1 π‘˜ 2𝛽 ≀ 2π›½βˆ’1 + 1,
1
22π›½βˆ’1
2𝛽
𝑆2 = βˆ‘βˆ’1
+ 2π›½βˆ’1 ,
π‘˜=βˆ’βˆž |π‘˜+1/2|2𝛽 ≀ 2
5
Ievgen Turchyn / Contemporary Mathematics and Statistics
(2015) Vol. 3 No. 1 pp. 1-7
1
𝐢𝛽 = βˆ‘βˆž
𝑗=𝑁 4 𝑗(3/2βˆ’π›½) .
It follows from (3.10) that 𝐺 ≀ πœ€1 ⁄3 and therefore (3.13) is true.
Finally, we deduce from (3.11)–(3.13) that
sup 𝐄|𝑋(𝑑) βˆ’ 𝑋̂(𝑑)|2
π‘‘βˆˆ[0,𝑇]
∞
2
2
= sup (βˆ‘π‘˜:|π‘˜|β‰₯𝑁0 |𝛼0π‘˜ (𝑑)|2 + βˆ‘π‘βˆ’1
𝑗=0 βˆ‘π‘˜:|π‘˜|β‰₯𝑀𝑗 |π›½π‘—π‘˜ (𝑑)| + βˆ‘π‘—=𝑁 βˆ‘π‘˜βˆˆβ„€ |π›½π‘—π‘˜ (𝑑)| ) ≀ πœ€1
π‘‘βˆˆ[0,𝑇]
and applying Theorem 3.1 we obtain the assertion of the theorem.
4. Conclusions
There has been proved a theorem about simulation of a Gaussian stochastic process with given
accuracy and reliability using a new wavelet-based model. This result holds for a wide class of
Gaussian processes.
References
Ayache, A., & Taqqu, M. S. (2003). Rate optimality of wavelet series approximations of fractional Brownian
motion. J. Fourier Anal. Appl. 9, no. 5, 451–471.
http://dx.doi.org/10.1007/s00041-003-0022-0
Didier, G., & Pipiras, V. (2008). Gaussian stationary processes: Adaptive wavelet decompositions, discrete
approximations, and their convergence. J. Fourier Anal. Appl. 14, 203–234.
http://dx.doi.org/10.1007/s00041-008-9012-6
Kozachenko, Yu. V., & Pashko, A. O. (1999). Simulation of Random Processes. Kyiv, Kyivskiy universytet (in
Ukrainian).
Kozachenko, Yu.V., Rozora, I.V., & Turchyn, Ye.V. (2011). Properties of some random series. Comm. in Stat.
Theory and Methods 40, 3672–3683.
http://dx.doi.org/10.1080/03610926.2011.581188
Kozachenko, Y. V., & Turchyn, Y. V. (2008). On Karhunen–Loeve-like expansion for a class of random
processes. Int. J. Stat. Manag. Syst. 3, 43–55.
Meyer, Y., Sellan, F., & Taqqu, M. S. (1999). Wavelets, generalized white noise and fractional integration: The
synthesis of fractional Brownian motion. J. Fourier Anal. Appl. 5, no. 5, 465–494.
http://dx.doi.org/10.1007/BF01261639
Pipiras, V. (2004). Wavelet-type expansion of the Rosenblatt process. J. Fourier Anal. Appl. 10, no. 6, 599–634.
http://dx.doi.org/10.1007/s00041-004-3004-y
Pipiras, V. (2005). Wavelet-based simulation of fractional Brownian motion revisited. Appl. Comput. Harmon.
Anal. 19, no. 1, 49–60.
http://dx.doi.org/10.1016/j.acha.2005.01.002
Seleznjev, O., & Staroverov, V. (2002). Wavelet approximation and simulation of Gaussian processes. Theory
Probab. Math. Statist. 66, 121–131.
Turchyn, Y. V. (2011). Simulation of sub-Gaussian processes using wavelets. Monte Carlo Methods Appl. 17,
215–231.
http://dx.doi.org/10.1515/mcma.2011.010
6
Ievgen Turchyn / Contemporary Mathematics and Statistics
(2015) Vol. 3 No. 1 pp. 1-7
Walter, G., & Shen, X. (2000). Wavelets and Other Orthogonal Systems. Chapman and Hall, CRC, London.
Walter, G., & Zhang, J. (1994). A wavelet-based KL-like expansion for wide-sense stationary random
processes. IEEE Trans. Signal Process. 42, 1737–1745.
http://dx.doi.org/10.1109/78.298281
Whitcher, B. (2001). Simulating Gaussian stationary processes with unbounded spectra. J. Comput. Graph.
Statist. 10, no. 1, 112–134.
http://dx.doi.org/10.1198/10618600152418674
Wornell, G.W. (1993). Wavelet-based representations for the 1/f family of fractal processes. Proc. IEEE 81, no.
10, 1428–1450.
http://dx.doi.org/10.1109/5.241506
7