Organometallic Chemistry Dr. Marc Walter Raum 149, Tel.: -5312, e-mail: [email protected] http://www.tu-braunschweig.de/iaac/ 10th Ferrocene Colloquium Braunschweig 2012 Recent Nobel Prizes in the area of homogeneous catalysis 2001: Noyori, Sharpless, Knowles 2005: Schrock, Grubbs, Chauvin 2010: Heck, Negishi, Suzuki I. What is “Organometallic Chemistry” ? A: Complexes with Metal-Carbon--Bonds B: Complexes with Metal-Carbon- -Bonds II. Literature - Books Elschenbroich, "Organometallchemie", Teubner 2003 Elschenbroich/Salzer, "Organometallics", VCH 1992 Shriver, Atkins, "Inorganic Chemistry", Oxford UP, 1999 Shriver, Atkins, Langford, "Anorganische Chemie", Wiley-VCH 1997 Huheey/Keiter/Keiter, "Anorganische Chemie", de Gruyter 1995 Cotton/Wilkinson/Murillo/Bochmann, "Advanced Inorganic Chemistry", Wiley 1999 Riedel (Ed.), "Moderne Anorganische Chemie", de Guyter1999 Carey/Sundberg, "Organische Chemie", VCH, 1995 Hegedus, "Organische Synthese mit Übergangsmetallen", VCH 1995 Togni/Halterman (Eds.), "Metallocenes", Wiley-VCH 1998 Cornils/Herrmann (Eds.), "Applied Homogeneous Catalysis with Organometallic Compounds", WileyVCH 2000 Beller/Bolm, "Transition Metals for Organic Synthesis", Wiley-VCH 1998 Wilkinson/Stone/Abel (Eds.), "Comprehensive Organometallic Chemistry II", Pergamon Press 1995 Brauer/Herrmann (Eds.), “Synthetic Methods of Organometallic and Inorganic Chemistry (8 Volumes, Thieme, Stuttgart, 1996) Other Resources Monographic-Series “Advances in Organometallic Chemistry” Monographic-Series “Topics in Organometallic Chemistry” Journals “Organometallics" Journals “Journal of Organometallic Chemistry" R. Tereki, "The Organometallic Hypertextbook" (http://www.ilpi.com/organomet/index.html) III. History L. C. Cadet (1760): During experimental work with invisible ink cobalt salts containing arsenides (CoAs2-3, CoSAs) formation of "Dikakodyl" As2Me4 and Dikakodyloxide Me2As-O-AsMe2 W. C. Zeise (1827): 1st organometallic transition metal complex contested by J. Liebig: Liebigs Ann. Chem. 1837, 23, 1 William Christopher Zeise (1789 – 1847) Molecular structure of K[PtCl3(C2H4)]H2O (Inorg. Chem. 1975, 14, 2653) M. P. Schützenberger (1868): 1st transition metal carbonyl Classical „not classical" metal carbonyl CO as an almost pure -Donor L. Mond (1890): 1st Binary Transition metal carbonyls Accidental discovery during attempts to prepare Ammonia-Soda (Solvay-procedure) by traces of CO decomposition on Nickel valves. Back reaction affords high purity Nickel 100th Birthday of Metal carbonyls: J. Organomet. Chem. 1990, 383, 1 Ludwig Mond (1839 – 1909) W. Hieber (ab 1928): Development of the chemistry of metal carbonyls Miller, Tebboth, Tremaine (1948): Walter Hieber (1895 – 1976) Kealy, Pauson (1951): H suggested structure: Fe H bereits 1901 (J. Thiele): Preparation of K+(C5H5)- 1952: G. Wilkinson, R. B. Woodward "Sandwich-Structure" E. O. Fischer "Double-Cone Structure" Beginning of modern organometallic chemistry: - Enormous interest in the last 50 years - Large structural variety due to different geometries - Various bonding situations - Economic interest homogeneous and heterogeneous catalysis - Organometallic chemistry in Organic Synthesis 50th Birthday of Ferrocene: J. Organomet. Chem. 2002,637-639, 1 1973: Nobel prize for E. O Fischer and G. Wilkinson An organometallic bond in everyday life (until recently) 200-D-Mark-Schein mit Paul Ehrlich und Salvarsan HO As As H2N OH NH2 Salvarsan IV. General Trends for the Transition Metals Early Transiton Metals low electronegativities higher oxidation states “harder” metal centers OXOPHILLIC!! Late Transition Metals higher electronegativities lower oxidation states “softer” metal centers V. The Bonding in Transition Metal Complexes 9 valence orbitals are available for bonding with organic molecules (ligands): (n-1) dxz dxy dyz dx2-y2 dz2 (n) s px py pz Only partial occupation: Empty orbitals Metal as an Electron acceptor Occupied Orbitals Metal as an Electron donor (Note: the shading represents occupied orbitals, not the phase!) 3d-Orbitals Donor/Acceptor-Synergy: - -Donor bond s, pz, dz2-AO‘s (o. Hybride) s, pz-AO‘s (e.g. PR3, X-) *-MO‘s (e.g. CO) -MO‘s (e.g. C5H5-, Alkene, Alkyne) dxz, dyz, px, py-AO‘s (o. Hybrid) px, py-AO‘s (e.g. X-, OR-, NR2-) -MO‘s (e.g. CO, C5H5-, Alkyne) - -Donor bond - -Backbonding dxz, dyz-AO‘s (o. Hybride) px, py, dxz, dyz- AO‘s (e.g. carbene, PR3) *-MO‘s (e.g. CO, alkene, alkyne) -MO‘s (e.g. H2) - -Backbonding dxy, dx2-y2- AO‘s *-MO‘s (e.g. C5H5-, Alkyne) (in addition, also -bonding, e.g. in C8H82--complexes) Electroneutrality principle: The metal tries to be uncharged (as a rule of thumb). 0 W(CO)6 +6 W(CH3)6 CO as (weak) -Donor/strong -Acceptor CH3 as stronger -Donor/weaker -Acceptor See also for example [CoL6]3+ L = NH3, F- ... strongly electronegative Donor atom Coordination number: 2-8 (4-6 most common) X see: Angew. Chem. 1994, 106, 2515 18-Electron-Rule: The most important rule, in order to measure the stability of organometal transition metal complexes; 9 fully occupied orbitals Compare to the octet rule for main group metals TM-d-Electrons + Bonding electrons = 18 Valence electrons How to count electrons? Ni(CO)4 d10 + 4x2 = 18 VE Fe(CO)5 d8 + 5x2 = 18 VE Cr(CO)6 d6 + 6x2 = 18 VE There are two different counting conventions (note these are only formalisms): Covalent Counting Model (Neutral Ligand-Method) Ionic Counting Model (Electron Pair-Method) C5H5- 6 C5H5 2 CO 4 2 CO 4 Cl- Cl 2 5 1 Fe(+II) 6 Fe(0) 8 18 Ionic Counting Model 18 Covalent Counting Model C5H5- 6 C5H5 Fe(+II) 6 Fe(0) 8 C5H5- 6 C5H5 5 18 18 5 Experimentally found charge distribution: Fe+0,2/C5H5-0,1 strongly covalent; contrast to: 2 NaCp + FeCl2 Cp2Fe + 2 NaCl Odd number of bonding electrons Metal-Metal-Bonding Mn(0) 5 CO M-M Mn(0) 7 5 CO 10 17 OC O C O C O C Fe Fe CO C C O C C O O O Fe2(CO)9 Fe(0) 3 CO 3 2-CO M-M 8 6 3 1 18 7 10 1 18 x- (hapticity) Number x the carbon atoms coordinated to the metal x- (nature of bridging) Number x bridging between metal atoms Contributions of different ligands to the total electron number of a complex: (Huheey, Keiter, Keiter, S. 741) Bonding in metal carbonyl complexes using the VB-Theory: OC O C O C O C Fe Fe CO C C O C C O O O from: Riedel (Hrsg.), "Moderne Anorganische Chemie", S. 592 Why is the 18-electron rule obeyed in organometallic chemistry? MO-Diagram for an octahedral complex ML6 (only -bonding): t1u* a1g* np dx2-y2, dz2, ns eg* eg o t2g (n-1)d t2g dxy, dxz, dyz ligand field theory eg 6 -AO's (6 LGO's) t1u a1g at complete occupation of the a1g-, t1u-, eg- and t2g-levels 18 valence-electrons o is large for strong field ligands (see spectrochemical series) e.g. CO, PF3, RNC, Alkyl, Alkene, Alkyne, Arene Both good -donors and also good -/-acceptors Why is CO a strong field ligand? Aid for the construction of MO diagrams Symmetry elements, from: Klapötke, Tornieporth-Oetting, “Nichtmetallchemie“, S. 35 Symmetry elements of s-, p- and d-orbitals depending on their point groups, from: Shriver, Atkins, Langford, “Anorganische Chemie“, Anhang B4 (see also symmetry adapted orbitals/ligand group orbitals) t2g eg Molecular Orbital Diagrams for SF6 (without d-orbitals) for transition metal complexes (only -bonding) 12-22 VE Schematic representation of d-orbital splittings in a metal -complex: eg* eg* o o d d t2g t2g eg eg eg small E between M- and Lorbitals (strong -Donor) strong orbital interaction large d-orbital splittings eg large E between M- und Lorbitals (strong -Donor) little orbital interaction small d-orbital splittings - good -Donors eg* strongly anti-bonding empty Schematic representation of d-orbital splitting at the metal through interaction with a -acceptor ligand: t2g* -AO's eg* eg* (LGO's) o o t2g t2g Interaction with empty -orbitals stabilisation of the t2g-levels o < o - good -Acceptors t2g strongly bonding fully occupied Therefore for these ligands the 18-Electron-Rule is obeyed: [V(CO)6]-, Fe(PF3)5, CpMn(CO)3, [Fe(CO)4]2-, Ni(CNR)4, HMn(CO)5 CpCo(CO)2, Cp2Fe, [Cp2Co]+, (C6H6)2Cr, [CpMo(CO)3]2 Exceptions due to steric considerations, e.g.: V(CO)6, Ti(CH2SiMe3)4, Cp2ZrCl2, W(CH3)6 Why is the 18-electron rule in coordination chemisty frequently disobeyed? Many exceptions, but here are two extreme examples: Flouride is a good -Donor t2g is antibonding empty A relatively weak -Donor eg* only weakly antibonding Fully occupied Schematic diagram of the d-orbital splitting at the metal through interaction with a -donor function: eg* eg* o o t2g interaction with filled -orbitals destabilisation of the t2g-levels o > o t2g* -AO's (LGO's) t2g MO-diagram for an octahedral complex ML6 only-bonding only- and -bonding from: Elschenbroich/Salzer, "Organometallchemie", S.228 -Ligand orbital groups -Ligand orbital groups from: Riedel (Hrsg.), "Moderne Anorganische Chemie", S. 216 Early Transition Metals Middle Transition Metals Late Transition Metals 16e- and sub-16econfigurations are common Coordination geometries higher than 6 relatively common 18e- configurations are common 16e- and sub-16econfigurations are common Coordination geometries of 6 are common Coordination geometries of 5 and lower are common: d8 = square planar
© Copyright 2024