Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Mer om Rainflowcykler Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 SP Bygg och Mekanik Nivåkorsningar Lastspektrum Pär Johannesson [email protected] Rainflowmatris Rainflow Cycle Counting: Hysteresis and rate independence Rainflow counting reflects – Masing rule and – Material memory rules and counts load events leading to local hysteresis cycles. stress standing Hysteresis model (cyclic stress-strain curve, Masing and Memory rules) hanging strain PJ/2011-09-29 2 1 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler From Outer Load to Local Load • Rainflow cycle counting is motivated by considering local stresses and strains (hysteresis models), but often applied to outer loads. • When and why do the local arguments apply to outer loads? • If σ(t) = ϕ(L(t))(*), then load cycles and local stress-strain cycles open and close at the same time (e.g. (*) holds for forces acting on a stiff component and stresses calculated from linear FEA and Neuber’s rule) L L σ σ, ε ∆L ε ε Rainflow counting of external loads is well justified in such cases! PJ/2011-09-29 3 Definition av rainflowcykler – Rychlik • Definitionen av rainflowcykler av Rychlik (1987): • För varje lokalt maximum ska man försöka nå upp till samma nivå, baklänges eller framlänges, genom att tappa så lite höjd som möjligt. • Den k:te rainflowcykeln definieras alltså som (mkrfc,Mk), där mkrfc=max(mk+,mk-). • • Denna definition är ekvivalent med andra definitioner: Endo’s, ASTM, 4-point, ... (även Range-Pair) Räknar hysteres-cykler i lasten. PJ/2011-09-29 4 2 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Definition av rainflowcykler – Endo’s Original (i) last 1. Vrid diagrammet så tiden går nedåt 2. Börja från toppen och låt en droppe per maximum (eller min) rinna neråt 3. Stanna om något av följande gäller a) Passerar större max (mindre min) än startpunktens b) Korsar tidigare droppes väg 4. Identifiera slutna loopar tid PJ/2011-09-29 5 Definition av rainflowcykler – Endo’s Original (ii) last tid PJ/2011-09-29 6 3 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Rainflow Cycle Counting: Algorithmic description Application of the 4-point rule to the discretized turning point signal x 1. Initialize an empty N by N matrix RFM and an empty residual vector RES (r=0). 2. Initialize the 4 point stack (s1, s2, s3, s4) = (x1, x2, x3, x4), and set k = 5 (next point). 3. Apply the counting rule: if min(s1, s4) ≤ s2, s3 ≤ max(s1, s4), then store the cycle (s2, s3), RFM(s2, s3) = RFM(s2, s3) +1, delete (s2, s3) from the stack and refill it: a) if r = 0: (s1, s2, s3, s4) = (s1, s4, xk, xk+1), k = k+2 b) if r = 1: (s1, s2, s3, s4) = (RESr, s1, s4, xk), k = k+1, r = r - 1 c) if r > 1: (s1, s2, s3, s4) = (RESr-1, RESr, s1,s4), r = r – 2 else, go to the next point: r = r + 1, RESr = s1 , (s1, s2, s3, s4) = (s2, s3, s4, xk), k = k + 1 4. Repeat step 3 until the signal is exhausted. PJ/2011-09-29 7 PJ/2011-09-29 8 Simple Example Sequence of 14 turning points with 8 levels. Demonstrate the different counting methods. 4 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Rainflow Cycle Counting: Simple example x = (2 , 7 , 4 , 8 , 2 , 5 , 4 , 6 , 1 , 7 , 4 , 5 , 2 , 5) 8 7 Load 6 5 4 3 2 1 0 5 10 15 Time Cycles: (7 , 4) (5 , 4) (2 , 6) (4 , 5) RES = (2 , 8 , 1 , 7 , 2 , 5) PJ/2011-09-29 9 PJ/2011-09-29 10 Övning: Räkna rainflowcykler • Räkna rainflowcyklerna i signalen x = (1, 4, 2, 3, 2, 5, 3, 4, 3, 4) 5 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Rainflow Cycle Counting: The residual – 4-point counting gives RFM = (400,240), RES = (0, 360, -200, 440, 0) – Closed cycles after first run: (400,240) and (360,-200) – Closed cycles in second run: (0, 360), (440, -200) and (400,240) stress [MPa] first run 500 second run M M M 1 M -500 1 2 1 0 M 0 5 2 10 sample 15 20 500 M 400 M M stress [MPa] An example for first and repeated runs Stress signal: (0, 360, -200, 400, 240, 440, 0) Counting results 1 M 1 2 1 300 200 100 0 M 2 -100 -200 0 1 2 3 strain 4 5 6 -3 x 10 PJ/2011-09-29 11 Rainflow Cycle Counting: The residual (ctd.) stress [MPa] An example for first and repeated runs M 1 400 M M 1 1 2 M 2 4 200 3 1 0 5 M 2 4 strain Total damage: d = 1/ N 1 = N ⋅ d0 + d1 + (N − 1) ⋅ d2 ⇒d = d0 + d2 1− d1 + d2 Cycles Algorithm Damage 2, 4 (identical) 4-point count d0 First run only 1 Extra rule on the residual d1 Second run only 3 and 5 Extra rule on the residual d2 2 -200 0 Type of cycles First run as well as second run 6 -3 x 10 For short signals: d1 , d2 can’t be neglected since they may contain large cycles. For long signals: d0 >> d1 , d2 (typically) d ≈ d0 (4-point-count) For HCF, N >> 1 : d ≈ d0+d2 = RFM + 4-point-count(RES,RES) PJ/2011-09-29 12 6 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Markov Counting Definition of the Markov matrix M M(i,j) = Number of transitions from bin i to bin j PJ/2011-09-29 13 Markov Counting (ctd.) Ex 1: Vertical wheel force (country road) • The Markov matrix contains the number of transitions in the discretized turning point signal from one level (row) to the next level (column) Ex 2: Ramp + noise and sinusoidal + noise • Both signals have similar Markov matrices but different Rainflow matrices. • Damage(Markov) << Damage(Rainflow). • Differences become small for narrow band loads. 30 5 (b) Markov matrix From 20 1 250 200 0.6 150 20 0 0.4 100 30 0.2 50 20 25 0 500 1000 1500 2000 5 10 15 20 25 To 5 10 15 20 25 To 5 From from 15 10 0.8 0 10 0 0.5 to 1 10 15 10 20 0 25 0 500 1000 1500 2000 PJ/2011-09-29 14 7 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Markov Load – Model for Turning Points Load Measurement Turning Points TP-filter Extract peaks & valleys Markov Matrix Model Frequencies of transition Assumptions: Frequency content not important. Stationarity Markov Model: Markov Chain of Turning Points. Frequency of transitions given by Markov matrix. Markov Property: Next value only depends on the current value, not on complete history of values. PJ/2011-09-29 15 PJ/2011-09-29 16 Example: Markov load 8 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Example: Five Simulated Markov loads All 5 simulations are different. Damage Exponent = 5 PJ/2011-09-29 17 Example: Five Simulated Markov loads Level crossings Load spectrum Blue: five simulated Markov loads PJ/2011-09-29 18 9 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Limiting rainflow matrix What is the typical shape of the rainflow matrix for a random load? Limiting shape of rainflow matrix Definition: The shape of the rainflow matrix for a very long observation. n = 100 n = 1 000 n = 10 000 n=∞ PJ/2011-09-29 19 Example: Markov load – Limiting rainflow matrix PJ/2011-09-29 20 10 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Example: Five Simulated Markov loads Level crossings Load spectrum Blue: five simulated Markov loads Red: Obtained from theoretically computed limiting rainflow martix PJ/2011-09-29 21 Rainflow damage: upper & lower bounds Input Level crossings Expected rainflow damage Example: Previous Markov model Upper Bound Upper Bound: Markov Load Model Markov matrix True value --Limiting Rainflow matrix Markov model: 0.306 Lower bound: Markov count 0.313 0.165 Lower Bound PJ/2011-09-29 22 11 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Cycle Counting – Overview of Methods Time signals 2D methods 1D methods Damage Markov Rainflow Range-pair count Levelcrossing Range count Rainflow damage Upper bound Lower bound PJ/2011-09-29 23 Rainflowcykler och multi-input-laster Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 SP Bygg och Mekanik Nivåkorsningar Lastspektrum Pär Johannesson [email protected] Rainflowmatris PJ/201109-29 24 12 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Realistic Example – Measured Service Loads Vertical wheel force measured on the front left wheel of a truck. Three road types: City, Highway and Country. PJ/2011-09-29 25 Definition av rainflowcykler – Rychlik • Definitionen av rainflowcykler av Rychlik (1987): • För varje lokalt maximum ska man försöka nå upp till samma nivå, baklänges eller framlänges, genom att tappa så lite höjd som möjligt. • Den k:te rainflowcykeln definieras alltså som (mkrfc,Mk), där mkrfc=max(mk+,mk-). • • Denna definition är ekvivalent med andra definitioner: Endo’s, ASTM, 4-point, ... (även Range-Pair) Räknar hysteres-cykler i lasten. PJ/2011-09-29 26 13 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Service load example – Rainflow counting Demonstrate counting methods using realistic service loads. Different ways of plotting and presenting the result. Discussion and interpretation of results. PJ/2011-09-29 27 Service load example – Level crossing & Range-pair Range pair & level crossing can be used as display options for rainflow matrices – Comparison of different signals by overlaid plotting – RP and LC hold somewhat complementary information level crossing range pair 1 0.35 city highway country road 0.8 0.7 0.6 0.5 0.4 0.25 0.2 0.15 0.1 0.05 0.3 0.2 0 10 city highway country road 0.3 wheel force z front left [] wheel force z front left [] 0.9 1 10 2 10 count 3 10 4 10 0 0 10 5 10 count PJ/2011-09-29 28 14 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Multidimensionella laster – Vändpunkter & Accelerering Multidimensionella laster eller multi-input laster: – Lasten har flera införingspunkter, eller – lasten påförs i flera riktningar. – Hur reducera lasten? – Hur definiera vändpunkter för multi-input lasten? – Hur accelerera lasten? PJ/2011-09-29 29 2D-last – Tidssignal & Vändpunkter Vändpunkter för 2D-last: Behåll värden vid de tidpunkter då antingen X1 eller X2 har en vändpunkt. PJ/2011-09-29 30 15 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler 2D-last –Vändpunkter & Rainflowfilter Vändpunkter för 2D-last: Vändpunkterna är värdena då antingen X1 eller X2 har en vändpunkt. PJ/2011-09-29 31 2D-last – Vändpunkter i 4 riktningar Vändpunkter i 4 riktningar (X1, X2 , X1+X2 och X1-X2) för 2D-last : För att bättre bevara ”fasen” mellan signalerna studeras linjärkombinationer. Behåll värdena då någon av signalerna X1, X2, X1+X2 eller X1-X2 har en vändpunkt. PJ/2011-09-29 32 16 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler 2D-last – Fasplan & rainflowfilter (a) TP, 2 riktningar (b) TP, 4 riktningar 1 X2, kraft höger / kN 2 X , kraft höger / kN 1 0.5 0 −0.5 −1 −1 −0.5 0 0.5 X , kraft vänster / kN 1 0.5 0 −0.5 −1 −1 1 −0.5 0 0.5 X , kraft vänster / kN 1 (c) Rainflow−filter, 2 riktningar (d) Rainflow−filter, 4 riktningar 1 X2, kraft höger / kN 2 X , kraft höger / kN 1 0.5 0 −0.5 −1 −1 1 −0.5 0 0.5 X , kraft vänster / kN 1 0.5 0 −0.5 −1 −1 1 −0.5 0 0.5 X , kraft vänster / kN 1 1 PJ/2011-09-29 33 Multi-input Loads: From Outer Load to Local Load • Rainflow cycle counting is motivated by considering local stresses and strains (hysteresis models), but often applied to outer loads. • When and why do the local arguments apply to outer loads? • For one input: If σ(t) = ϕ(L(t))(*), then load cycles and local stress-strain cycles open and close at the same time (e.g. (*) holds for forces acting on a stiff component and stresses calculated from linear FEA and Neuber’s rule) L σ σ, ε ∆L ε L2 L1 ε Superposition principle: σ=c1L1+c2L2 Rainflow counting of linear combinations of external loads is well justified in such cases! PJ/2011-09-29 34 17 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Rainflow Projection (RP) Method input projections c1,1 L1 + c1,2 L 2 + c1,3 L3 projection Rainflow matrices Rainflow - counting c2,1 L1 + c2,2 L 2 + c2,3 L3 PJ/2011-09-29 35 Rainflow Projection (RP) Method RP- visualisation - load-influence-sphere y • projektion • Rainflow counting • damageaccumulation L2 -L1 L1 L3 (- L1- L2 + L3)/√ √(3) z x damage - potential PJ/2011-09-29 36 18 Kurs i Lastanalys för Utmattning 3-4 Oktober 2011 Rainflowcykler Rainflow Projection (RP) Method RP- visualisation - histogram • projektion • Rainflow counting • damageaccumulation PJ/2011-09-29 37 19
© Copyright 2024