Grundläggande Lastanalys - Fatigue

Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Grundläggande Lastanalys
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
SP Bygg och Mekanik
Nivåkorsningar
Lastspektrum
Pär Johannesson
[email protected]
Rainflowmatris
1
Målet med lastanalys
Vi behöver verktyg för att:
• Beskriva lasten så att informationen blir användbar.
• Ta fram den väsentliga informationen i lasten.
• Kondensera lasten så att det blir lättare att tolka och jämföra laster.
PJ/2011-09-09
2
1
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Grundläggande lastanalys för utmattning
Lastinformation
mycket
Last
”tidssignal”
Rainflow-filter
Rainflowmatris
Lastspektrum
Nivåkorsningar
Cykler i lasten
2-D & 1-D
”histogram”
P-M + Wöhler
lite
Potentiell skada
”tal”
“Skadeverkan”
(Pseudoskada eller ekvivalent amplitud)
PJ/2011-09-09
3
Reducering av lasten
Bibehåll relevant information vad gäller utmattning.
Lastmätning
Vändpunkter
Vändpunkter
TP-filter
RFC-filter
Extrahera
toppar & dalar
Ta bort
små cykler
Antaganden: •
Frekvensinnehållet är inte viktigt för
utmattning.
TP-filter (TP=Turning Points)
•
Små cykler är mätbrus och/eller ger
försumbar skada.
RFC-filter (RFC=RainFlow Cycle)
PJ/2011-09-09
4
2
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Delskadeberäkning – Wöhlerkurvan
• Den enklaste typen av belastning är av typen konstant amplitud.
1
0.5
0
−0.5
−1
Wöhlerkurvan: Modell för utmattningslivslängden
•
log(S)
finite
life
N
α
β
Sf
= Livslängden
= Parameter, beskriver styrkan
= Parameter, skadeexponenten.
= Utmattningsgränsen.
infinite life
Sf
log(N)
103
106
PJ/2011-09-09
5
Blocklast – Skadeaccumulation
• Block av laster med konstant amplitud.
•
•
Palmgren-Miner’s delskadehypotes: Varje cykel med amplituden
Sk förbrukar en andel 1/Nk av totala livslängden.
Delskadan definieras som
och brott sker när hela livslängden är förbrukad; D>1.
PJ/2011-09-09
6
3
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Spektrumlast
• En verklig belastning är ofta en blandning av cykler med
olika amplitud.
• Vi kallar det för spektrumlast (eller variabel-amplitud-last).
• Exempel på spektrumlaster
Smalbandig last
Bredbandig last
PJ/2011-09-09
7
Delskada för spektrumlast
• Wöhlerkurvan
– Kan motstå N cykler med amplituden S
2S
α, β material parametrar.
• Rainflowcykler, Endo (1967)
– Omvandlar en komplicerad lastsekvens
till skadeekvivalenta cykler.
– Lasten X(t) ger amplituderna S1, S2, S3, …
time
• Palmlgren-Miner’s delskadehypotes
– Varje cykel med amplitud Sk förbrukar en andel 1/Nk av totala livet.
– Delskada under tiden T:
– Brott sker när skadan överstiger 1; D>1.
PJ/2011-09-09
8
4
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Definition av rainflowcykler – Rychlik
•
Definitionen av rainflowcykler av Rychlik (1987):
• För varje lokalt maximum ska man försöka nå upp till samma nivå, baklänges
eller framlänges, genom att tappa så lite höjd som möjligt.
• Den k:te rainflowcykeln definieras alltså som (mkrfc,Mk), där mkrfc=max(mk+,mk-).
•
•
Denna definition är ekvivalent med andra definitioner:
Endo’s, ASTM, 4-point, ... (även Range-Pair)
Räknar hysteres-cykler i lasten.
PJ/2011-09-09
9
Lastanalys av fältmätning
• Analysen exemplifieras med uppmätta signaler från tåg i trafik
mellan Oslo och Kristiansand.
Mätning 1
30
Spänning / MPa
20
10
0
−10
−20
−30
0
60
120
180
240
300
360
Tid / min
420
480
540
420
480
540
600
660
Mätning 2
30
Spänning / MPa
20
10
0
−10
−20
−30
0
60
120
180
240
300
360
Tid / min
600
660
PJ/201109-30
PJ/2011-09-09
10
5
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Förbehandling av signal
– TP-filter (eller min-max-filter):
Reducerar antalet sampel utan att
påverka hysterescykler.
– Rainflow-filter (eller hysteres-filter):
Reducerar antalet sampel och
eliminerar små hysterescykler (små
rainflowcykler).
Original
Min-max-filter
Rainflow-filter
– Diskretisering:
Delar in lastvidden i fixa nivåer och
”avrundar” lastvärden till närmsta nivå.
PJ/2011-09-09
11
Exempel: Vändpunkter, Rainflow-filter & diskretisering
PJ/2011-09-09
12
6
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Rainflowfilter av fältmätning
• Uppmätta signaler från tåg i trafik mellan Oslo och Kristiansand.
Mätning 1
30
Spänning / MPa
20
10
0
−10
−20
−30
0
60
120
180
240
300
360
Tid / min
420
480
540
600
660
540
600
660
Mätning 2
30
För vår Norge-mätning:
Spänning / MPa
20
Före RFC-filter:
Skada = 100%
#cykler = 500 000
Efter rainflow-filter: Skada = 99.8%
#cykler = 25 000
En reducering med en faktor 20, med ”bibehållen skada”.
Tröskel = 4 MPa, skadeexponent β =5
10
0
−10
−20
−30
0
60
120
180
240
300
360
Tid / min
420
480
PJ/2011-09-09
13
Rainflowmatris – 2D histogram över cyklerna
•
•
•
Från vändpunkterna i signalen extraheras rainflowcykler.
Diskretiserar lastnivåerna (ofta 32 eller 64 klasser).
Rainflowmatrisen är ett tvådimensionellt histogram över antalet cykler
i en given klass.
Antalet cykler
Amplitud
Medelvärde
PJ/2011-09-09
15
7
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Rainflowmatris – min-max-format
Rainflow matrisen kan representeras i min-max-format, vilket
innebär att x-axeln är cykelminimat och y-axeln är cykelmaximat.
Min-max-formatet är det lämpligaste för vidare analys av
rainflowmatrisen, t ex regenerering eller extrapolering.
Här visar färgkodningen cykelantalet.
•
•
•
Mätning 2
30
20
20
10
10
Max / MPa
Max / MPa
Mätning 1
30
0
0
−10
−10
−20
−20
−30
−30
−20
−10
0
10
Min / MPa
20
30
−30
−30
−20
−10
0
10
Min / MPa
20
30
PJ/2011-09-09
16
Rainflowmatris – amplitud-medelvärde-format
•
•
Det kanske vanligaste sättet att rita en rainflow matris är i amplitudmedelvärde formatet, där x-axeln representerar medelvärdet av cykeln
och y-axeln amplituden.
I amplitud-medelvärde formatet är det lättare att tolka lastens
utmattningsegenskaper, där amplituden är den viktigaste.
Mätning 2
30
25
25
20
20
Amplitud / MPa
Amplitud / MPa
Mätning 1
30
15
10
5
0
−30
15
10
5
−20
−10
0
10
Medelvärde / MPa
20
30
0
−30
−20
−10
0
10
Medelvärde / MPa
20
30
PJ/2011-09-09
17
8
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Nivåkorsningar
Rainflowmatrisen kan vara svår att tolka, pga 2D-plot.
Behov av 1D-storheter, som är lättare att tolka och jämföra.
Nivåkorsningar är antalet gånger lastsignalen korsar en given nivå.
•
•
•
(a) Nivåkorsningsspektrum
30
•
20
Lastnivå / MPa
10
0
−10
Nivåkorsningarna kan
beräknas direkt från
signalen, men också från
rainflowmatrisen eftersom
en cykel med minimum m
och maximum M korsar
alla lastnivåer däremellan.
−20
−30
0
10
1
10
2
3
4
10
10
10
Antalet nivåkorsningar
5
10
PJ/2011-09-09
18
Lastspektrum
Den viktigaste endimensionella karaktäristiken av lasten är lastspektrat.
Fördelningen för rainflowamplituderna i lasten.
Fås från rainflowmatrisen genom att summera över cykelmedelvärdena.
(b) Lastspektrum
30
Mätning 1
Mätning 2
•
25
Amplitud / MPa
•
•
•
20
15
Lastspektra presenteras
oftast i form av det
kumulativa antalet cykler
större än en given
amplitud, som funktion av
amplituden.
10
5
0
0
10
1
2
3
4
10
10
10
10
Kumulativa antalet cykler
5
10
PJ/2011-09-09
19
9
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Amplitudhistogram & Skadehistogram
I ett amplitudhistogram ser
man inte de viktigaste
stora cyklerna.
•
•
•
Skadehistogramet är viktat med
hur stor skada cyklerna ger.
Visar hur skadan är fördelad
mellan de olika cyklerna.
(a) Histogram över rainflowamplituder
5000
(b) skadehistogram
0.08
Mätning 1
Mätning 2
Relativ skada per cykel, β=5
0.07
Antalet cykler
4000
3000
2000
1000
0.06
0.05
0.04
0.03
0.02
0.01
0
0
10
20
Amplitud / MPa
30
0
0
10
20
Amplitud / MPa
30
PJ/2011-09-09
20
PJ/2011-09-09
21
Cykelräkning – Sammanfattning
Lastmätning
Nivåkorsningar
Vändpunkter
Bevaka
skadeverkan
Rainflowmatris
Lastspektrum
10
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Inspektion och korrektion av data
Lastdata kommer från mätutrusting och kan innehålla mätfel.
Olika typer av fel:
Mätbrus
– kan korrigeras med t ex lågpassfilter.
Drift/Offset
– kan uppskattas och signalen justeras
Spikar
– kan detekteras och rekonstruera signalen.
PJ/2011-09-09
22
Skadeverkan – Pseudoskada
Skada
(Rainflow + Wöhler + Palmgren-Miner)
Pseudoskada
d = ∑ S kβ
… per km
~
d =d/L
… för designlivslängd
d life = K ⋅ d
k
• Skadan utan
parametern α.
• Beror på skadeexponenten β.
• Normerad
pseudoskada.
• L är längden på
mätningen.
• Extrapolerad
pseudoskada.
• K repetitioner motsvarar
designlivslängden.
PJ/2011-09-30
24
11
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Exempel: Pseudoskada
• Uppmätt last för lastbil
som transporterar grus.
• Längd på mätning: 80 km
• Designlivslängd: 106 km
Pseudoskada
… med skadeexponent β=5.
d
=
∑Sβ
k
… per km
… för designlivslängd
• Längd på mätning,
L = 80 km
• Extrapoleringsfaktor,
K = 106/80 = 12 500
~
d = d/L
k
d life
= d /(80 km)
= 1.26 ⋅1011 MPa 5 /km
= 1.01⋅1013 MPa 5
= K ⋅d
= 12500 ⋅ d
= 1.26 ⋅1017 MPa 5
• Rimliga värden?
• Hur tolka enheten MPa5?
PJ/2011-09-30
25
Skadeverkan – Ekvivalent amplitud
Idé:
• Konstruera en last med konstant amplitud.
• Skadeekvivalent med uppmätt last.
• Lättare att tolka än pseudoskada
(samma enhet som uppmätt last).
Uppmätt last
Ekvivalent amplitud
1/ β
 K

Aeq = 
⋅ d 
 N0 
• d = pseudoskada (beror på β)
• K = extrapolerinsfaktor till designlivslängd
• N0 = Antalet ekvivalenta cykler med
amplituden Aeq
K repetitioner av
uppmätt last är
skadeekvivalent med
N0 cykler med amp. Aeq
…
2Aeq
Ekvivalent last:
N0 cykler med amplituden Aeq
PJ/2011-09-30
26
12
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Exempel: Ekvivalent amplitud
• Uppmätt last för lastbil
som transporterar grus.
• Längd på mätning: 80 km
• Designlivslängd: 106 km
Ekvivalent amplitud
• Pseudoskada
d = 1.01·1013 MPa5 (med skade-exponent β=5)
• Extrapoleringsfaktor, K = 106/80 = 12 500
• Ekvivalent cykelantal, N0 = 106
• Rimliga värden?
• Största uppmätta amplitud är 221 Mpa.
PJ/2011-09-30
27
PJ/2011-09-30
28
Ekvivalent last: härledning
Skada för uppmätt last:
Designlivslängden motsvarar
Ekvivalent last:
repetitioner:
cykler med amplituden
Skada för ekvivalent last:
Skadeekvivalens:
ger
13
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Example: Measured Service Loads
Vertical wheel force measured on the front left wheel of a truck.
Three road types: City, Highway and Country.
A typical customer load is often defined by combining
measurements from different road types.
1. City
(21 km)
µ1 =
~
d1
45%
= 0.00261
2. Highway µ2
(12 km) d~2
=
3. Country µ3
(14 km) d~3
=
30%
= 0.00164
25%
= 0.00112
PJ/2011-09-30
29
Example: Customer Usage
A typical customer load is often defined by combining measurements from
different road types.
A typical city distribution truck is 45% city, 30% highway, and 25% country road.
The pseudo damage during the design life of, say, L=600·103 km, can be calculated
as
where
are the damage intensities (per km) for the different road
types, and has been calculated from the measurements.
In terms of equivalent load it becomes
PJ/2011-09-09
30
14
Kurs i Lastanalys för Utmattning
3-4 Oktober 2011
Grundläggande Lastanalys
Sammanfattning – Lastanalys för utmattning
Lastinformation
mycket
Last
”tidssignal”
Rainflow-filter
Rainflowmatris
Lstspektrum
Nivåkorsningar
Cykler i lasten
2-D & 1-D
”histogram”
P-M + Wöhler
lite
Potentiell skada
”tal”
“Skadeverkan”
(Pseudoskada eller ekvivalent amplitud)
PJ/2011-09-09
31
15