smartere energiløsninger via big energidata

GREEN TECH CENTER ÅBNINGSEVENT
DEN 24. JUNI 2014
WORKSHOP 2
SMARTERE ENERGILØSNINGER
VIA BIG ENERGIDATA
Anders Midtgaard
Thomas Hune
General Manager
INSERO Software A/S
[email protected]
+45 4082 8811
Director of Energy
INSERO Software A/S
[email protected]
+45 40158022
Mikkel Baun Kjærgaard
Associate Professor ved Center for Smarte energiløsninger
Mærsk Mc-Kinney Møller Institute
[email protected]
+45 2197 2447
Emil Holmegaard
PhD Studerende ved Center for Smarte energiløsninger
Mærsk Mc-Kinney Møller Institute
[email protected]
Baggrunden for Green Tech Centeret er
omstillingen af samfundet til vedvarende energi.
http://www.youtube.com/watch?v=lWuRxLNcCV4
Lean'Energy'Cluster'fokus'
'
'
'
'
• A'cleantech'ini+a+ve'in'the'field'of'
energy'and'climate'technology'
'
• Work'to'promote'energy'efficiency,'based'
on'sustainability'across'the'value'chain'of'
the'en+re'energy'system.'
'
• Work'to'create'na+onal'as'well'as'
interna+onal'cluster'ac+vi+es.'
'
• We'bring'together'companies,'public'
authori+es'and'knowledge'ins+tu+ons'to'
secure'growth'in'the'market'and'new'
businesses.'
'
Lean'Energy'Cluster'fokus'
Green Tech Eksport Hubs
Nantong
Hvorfor Big Data
Mængde af devices og hastigheden på
dataproduktion stiger voldsomt
I 2016 forventes
verdens datacentre
at håndtere
6.6 zettabytes pr. år
Svarende til
hver person på
jorden
streamer
2,5 timers
HD video pr. dag
Vi har teknologier til
at lagre alle disse
data
Udfordringen er at
strukturere data,
søge og finde
information
Det udfordrer vores
traditionelle SQL
teknologier
Krav til Scalebility:
Mængden af data
Antal brugere
Typer/format af data
Vore devices vil
‘tale sammen’
Brugeren vil ikke
vide hvilke data
information er
baseret på
Informationerne vil
komme fra
forskellige services
Disse services vil
IKKE blive leveret fra
samme leverandør
Stiller krav om åben
kommunikation og
adgang til fælles
data
Adgang til data vil
skabe en ny
platform for
forretningsudvikling
og nye services
Hvordan sikrer man kommunikation mellem
markedsdeltagere
http://www.youtube.com/watch?featur
e=player_embedded&v=OIRxKHZuIiw
Hvordan sikrer man kommunikation mellem
markedsdeltagere
http://www.youtube.com/watch?featur
e=player_embedded&v=OIRxKHZuIiw
Energisektoren har samme udfordring som ATM og
standarder vil blive udviklet til en åben kommunikation
http://www.youtube.com/watch?featur
e=player_embedded&v=OIRxKHZuIiw
Green Tech Centeret
Data fra Green Tech Centeret
Detaljeret view af data og kalkulerede værdier
Data fra Energilaug Vejle Nord
Stor Skala
legeplads for
smart Grid
løsninger
VVM for 3-5 stk. 130 vindmøller
p.t. 15 store virksomheder
Stor Skala
legeplads for
smart Grid
løsninger
p.t. tilsagn fra AAB
Landsby (Andkær)
Stor Skala
legeplads for
smart Grid
løsninger
p.t. 50 familier
Data i dataplatformen i øjeblikket…
•
•
•
•
•
•
15 industrivirksomheder
Green Tech House
Advice House
5 Testplatforme
20 En-familie huse
20 EL-biler
• Antal fysiske målepunkter
ca. 700 (10 sek. data)
• Kalkulerede dataværdier
ca. 400
• Historiske data for 3 år for nogle industrier
Data i dataplatformen i nære fremtid…
•
•
•
•
10 industrivirksomheder
Green Tech House (BMS system)
20-200 En-familie huse
40 lejligheder
• Antal fysiske målepunkter
ca. 5000 (10 sek. data)
• Kalkulerede dataværdier
ca. 2500
• Historiske data for 3 år for alle huse/industrier
Big data
Big data is high volume, high velocity, and/or high
variety information assets that require new forms of
processing to enable enhanced decision making,
insight discovery and process optimization.
- Laney, 2012
Volume and Velocity
Fra manuel til automatisk data indsamling i høj
opløsning
Antal data punkter om året for en kontor bygning
1E+14
1E+12
1E+10
100000000
1000000
10000
100
1
Manuelt
Smart Meters
Sub Metering (0.02 Hz)
Sub Metering (1 Hz)
Fuldstændig Sub
Metering (3600 Hz)
Variety
• Vejrforhold
– Temperatur, Fugtighed, Vindstyrke, Vindretning,
Solindstråling, …
• Aktiviteter
– Menneskelig tilstedeværelse og adfærd
– Produktions aktiviteter
• Udstyr
• Andre typer af data
Nye måder at behandle data på
Big Data
Machine Learning
Information Visualisation
Information Visualisation
Forbrug per blok i Los Angeles
Vinter
Sommer
http://sustainablecommunities.environment.ucla.edu/maproom/index.html
Energi Effektivitet
Mål: Forstå hvordan machine learning og
informations visualisering kan hjælpe virksomheder
med at optimere deres energiforbrug.
Studie med virksomheder i energilauget.
• Interview om energi effektivitet
• Evaluering af tyve forskellige typer af visualisering
af data
Eksempel: Advicehouse
5500 m2
Ca. 100 medarbejdere
Elektricitetsmålinger I 2014 (106.692 kWh)
Data i spil
Virksomheder
Kommune
Borgere
Organisationer
Hvem har adgang / må bruge data og til hvad?
Hvordan får man adgang til data?
Workshop
Problemstillinger
Husholdningen
Kommunen
Virksomheden
Typer af Data
Vejr Data
Energi Data
Adfærds Data
Green Tech Center
Sociale Medier
Offentlige Data
Opgave: Fortæl en historie
3 grupper
30 minutter
Lav en tegneserie der
håndtere en problemstilling
hvor der benyttes data fra
Green Tech Centeret og
Big data teknikker.
Vejle og Resilience
http://100resilientcities.rockefellerfoundation.org/cities/entry/vejles-resilience-challenge
Resilience
Hvordan kan big data
data hjælpe?
Fra Rockefeller fonden:
• Adaptive: changes based on new evidence
• Reflective: Learns from past experiences
• Robust: is organized & transparently managed
• …
Examples of (Big)Data analysis
in FINESCE
Thomas Hune, Director, INSERO
Software
Overview
FINESCE (Future INtErnet Smart Utility ServiCEs) is the smart energy
use case project of the 2nd phase of Future Internet Public Private
Partnership Programme (FI-PPP) funded by the European Union within
FP7.
7 trial sites combining Smart Energy Solutions with Future Internet
technology.
FINESCE Partners and Trial Sites
trial site
partner location
Agenda
• WP1 presentation from E.ON
• WP2 presentation from Insero
• WP2 presentation from SEnerCon
FINESCE WP1
FI providing the sustainable smart city energy
COMPANY
LOGO
David Lillienberg
FI providing the sustainable smart city energy
Scope
•
Elaborate how Future Internet
technologies can contribute to
an efficient and robust
Demand Side Management
system
•
Execute Demand Side
Management and Demand
Side Response tests with
external buildings in Malmö,
Sweden, based on an
integrated approach of energy
carriers
Participants
•
E.ON, RWTH Aachen
WP1 introduction
Scope
•
The scope of the WP1 trial is to execute Demand Side Management and
Demand Side Response tests with external buildings Malmö, Sweden, based
on an integrated approach of energy carriers
Desired outcomes
•
How Future Internet technologies can contribute to an efficient and robust
Demand Side Management system
•
Evaluate and test different business model(s) according to defined use cases
to obtain better view on Demand Side Management and Demand Side
Response as well as ideas on customer’s potential to act as balancing power
•
Scale-up strategy for the trial, e.g. ability for other towns/regions/business
sectors to use the results/functionality
Participants
•
E.ON, RWTH Aachen
•
WP leader: David Lillienberg, E.ON
Hyllie, Malmö
WP1 Architecture
Price data
Weather data
Generation data (CO2)
GE prime candidates
Platform
Data context group
• BigData Analysis
• Complex Event
Processing
• Publish/Subscribe Broker
Security and Access
group
• Access Control
• Identity Management
Optimization  Forecasting  Load steering  Baselining
Internet
Command signals
Command signals
BMS
Command signals
BMS / HEMS
Heat loads
Heat loads
El loads
El loads
Commercial buildings
Possible future
scope:
- Interface to
Meter Data
Management
- Interface to
Distribution
management
system
Residential buildings
Decentralized generation (possible future scope)
- Large scale PV and Hyllie allocated wind turbines
- Batteries
Use cases, GEs, APIs
Use cases
•
•
•
Cost optimization (electricity/heat) by price signals
Optimization of demand (electricity/heat) by energy mix signals
Instantaneous reduction of energy consumption
GE prime candidates
•
•
•
•
•
Big Data
Complex Event Processing
Publish/Subscribe Broker
Access Control
Identity Management
APIs
•
•
•
•
getTemperature: This method provides temperature forecast for the Hyllie district over a
time interval
getPowerPrice: This method provides the Nord Pool power (electricity) price over a time
interval
getDistrictHeatingPrice: This method provides the district heating price over a time interval
getDemand: This method provides the demand on load linked to the trial/demand response
over a time interval
Big Data in WP1
Purpose
•
Utilize the Generic Enabler “BigData
Analysis” for processing large amount of
data in order to validate optimization and
find relevant insights concerning patterns
and dependencies
Accessible data
•
Consumption
•
Production
•
Outside temperature
•
Sun radiation
•
Etc.
Big Data
CUSTOMER
DISTRIBUTION
PRODUCTION
Thank you!
Email: [email protected]
Telephone: +46(0)702021113
FINESCE
WP2
FI for end users of energy ecosystems
Thomas Hune (INSERO Software)
COMPANY
LOGO
Goals
WP 2 goal
•
To test the mutual interaction of the technologies as well as the users’
experiences with the technologies. Furthermore, the coherence of the
technologies with the entire energy system tested in an area outside the
collective district heating.
Stenderup
WP 2 data
Indoor climate
Electricity
consumption
Electricity
production
EV charging and
usage
Heat production
and consumption
• +40 data points per house
• Update frequency from 10
sec to 5 min
WP 2 data analysis - plans
House modelling – forecasting
• Forecasting indoor climate and heat consumption
• User behaviour – seasonal changes
• Electricity consumption – user models
EV usage
• Driving patterns compared to “normal” car
• Charing – battery usage – range
Finding and understanding flexibility
• Parameters influencing flexibility
• How much and when - forecasting
Impact of modernisation actions
Multivariate big data analyses for consumption and modernisation events
Dr. Johannes D. Hengstenberg
Elmer Stöwer
SEnerCon GmbH
06 14
Who is SEnerCon?
Engineers, Programmers, Developers work on
• interactive web tools,
• web services and
• mobile apps
Focus on Efficiency of Heating Systems
Online Energy Advise for 1 million households per year
iESA - 78.000 interactive Energy Savings Accounts
• monitor, display, analyse and benchmark meter readings of households
Projects:
• Web Energy Performance Certificates,
• Climate Campaign (last campaign 44.000 Heating reports),
• EU-Projects: ECCC, EPLACE, EECC, FINESCE.
SEnerCon’s FINESCE Team
67
What is the iESA?
iESA:
Since 2006 an interactive monitoring and
energy savings advice tool for residential
energy consumption
• 80.000 Users have registered and
collect
• manually 1,500 meter readings per day
• Technical equipment
• Base data of buildings
Logging and Evaluation of modernisation
events
• Univariate analysis: saving effects of
green modernisation
68
What is the iESA?
EAC - Energy Analysis from Consumption /
HEMON - Heating Energy Monitor:
Heating energy consumption is analysed with
regression analysis over outside temperature
• Consumption signature of the building
• Automatic allocation of
• ‘base’ energy for warm water, cooking etc
• heating energy
• Predicts annual consumption within short
time
• Extended Benchmarking of heating
energy consumption
69
Saving effects of green modernization
Replacement of boiler: specific consumption before and after
kWh/(m2[AN].a), weather adjusted 2006 - 2012, 24 04 14, N=98
Example Boiler replacement:
20
• 20 kWh per m2 average reduction
• Half of modernizations disappoint investors
Reduction in kWh/m2
• variation of +- 20 kWh (!)
0
-20
-40
-60
-80
-100
-120
In modernization praxis and theory are not the same
-140
0
50
Challenges for our current Analysis
• Samples are much too small for multivariate analysis
• Algorithms and databases are too slow for upscaling
200
250
300
20
0
-20
Reduction in kWh/m2
• Low motivation of users to provide basic & event data
150
Replacement of boiler with solar heating: reduction specific consumption in
kWh/(m2[AN].a), weather adjusted 2006 - 2012, 24 04 14
• Buildings data not fully structured and centralized
• Data is fragmented and incomplete
100
Specific consumption before replacement
-40
-60
-80
-100
-120
-140
0
50
100
150
200
250
300
Consumption before replacement
70
With big data analysis and FI-WARE we can have…
Permanent comparisons of consumption
before and after modernizations
• Run multivariate analysis of all
combinations of green modernization
measurements
Where should our money go?
• Run cohort analyses to categorize
building types, age, localizations etc
• Create consumption patterns based on
geographical distribution
• Predict chances and returns of
investments in single or combined
modernization measures
• Predict economic and ecological impact
of subsidies and building regulation
71
Thank you!
Elmer Stöwer
SEnerCon GmbH
Hochkirchstraße 11 · 10829 Berlin
Telefon 030/ 76 76 85 - 0
Fax 030/ 76 76 85 - 11
[email protected]
www.senercon.de, www.energiesparkonto.de, www.heizspiegel.de, www.enerplace.eu