Mobile Sensing VIII – Social and Psychological Sensing Spring 2015 Petteri Nurmi Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 1 Learning Objectives • How social and psychological sensing operate? What are the main sensors? What are thin slices? • How co-location can be characterized? What are proxemics? How can co-location be determined? • What is prosodic sensing? Why is it important? • What are F-formations? Why are they important for social/psychological sensing? • What other sensors can be used and how? Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 2 Social and Psychological Sensing? • Social and psychological sensing refer to the extraction of information about • Characteristics of social phenomena, including social interactions, group behavior, and so forth • Psychological states, such as personality, mood, etc. • Phenomena seldom directly observable • Several so-called “weak cues” need to be combined • Ground truth typically collected through subjective responses (standardized questionnaires) Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 3 Thin Slices • Thin slicing refers to the ability of finding patterns based on short measurement windows • Outcomes of many social psychology situations can be detected using short amount of measurements ‒ Accuracy of predicting the outcome correctly higher than chance, improves up until around 5 minute mark • Not only tells about the social dynamics of situations, but also about the judgments made by individuals ‒ E.g., all people make assumptions about personality èSensing need not run continuously, as long as start point of interactions can be identified reliably Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 4 Information Types • Co-location patterns a key characteristics for extracting social information • Without co-location (physical or virtual), no social behavior possible • Spatial and orientational characteristics relate to social norms and characterize social interactions • Psychological sensing relies on indirect behavioral variations – both between users and within a user • Speech variations: prosodic sensing • Behavior variations: changes in activity patterns, including changes in physical activity and in device interaction patterns Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 5 Co-location • Co-location refers to people (or objects) being together in the same location • Prerequisite for social interactions and hence an important part of social sensing ‒ Mapping social networks ‒ Estimating spread of diseases, team performance, dissemination of ideas, etc. ‒ Flocking, “follow-leader” detection, etc. • Essential for any type of application that assumes cooperation between users ‒ Authentication / device association ‒ Cooperative work applications Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 6 Proxemics and Social Sensing • Co-location relates to social situations through theory of proxemics • Interpersonal distances characterize social distances • Four categories: intimate, personal, social, and public ‒ Typical distances: <1m, 1-2m, 2-5m, 5-10m • Subject to cultural variations • In social interactions also take into account the way people are facing (e.g., queuing vs. talking to people) Source: http://en.wikipedia.org/wiki/Proxemi cs/ • Hence meaning of co-location dependent on physical distance as well Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 7 Co-location sensing • Co-location sensing refers to the detection of people that are co-located • Several different technologies can be used: • Positioning: co-location can be determined by comparing locations of individuals • Proximity sensors: infrared, Bluetooth, WiFi direct ‒ Different ranges and applicability requirements with each technology, not necessarily supported on all devices • Distance based ‒ Ultrasound and radio signals decay as function of distance • Ambient fingerprint ‒ Comparing environmental parameters, e.g., audio, lightning, and other factors Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 8 Co-location Sensing: System Level View • Co-location detection requires careful system design • Resolution best when multiple sensing technologies combined together è high energy footprint • Need to compare measurements across devices è increased energy drain from sharing measurements • Potential privacy concerns in sharing measurements • Core design considerations from system point: 1. Accurate activity/inactivity detection to focus the sensing on periods where co-location patterns changing 2. Rely on privacy sensitive features where possible, e.g., compare spectral audio features instead of raw signals Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 9 Example: Mapping Social Networks • Mapping social networks one of the most important applications of co-location detection • On an individual level, characterize extent and nature of social interactions ‒ In turn provides cues about personality, mood, etc. • On an aggregate level, characterize dissemination patterns and provide indications of cohesion ‒ Team cohesion important for group performance ‒ Dissemination patterns relate to speed of exchange: including, ideas, diseases, and so forth Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 10 Example: Authentication • Zero-Interaction Authentication: user can be authenticated with a device if (s)he is within close proximity of the target device • Typically requires users to carry a security token ‒ Mobile phone, car key, work badge or other token • Vulnerable to so-called ghost and leech attacks • One attacker close to token, other close to device, messages relayed between the token and target device • Co-location sensing one of the most promising countermeasures ‒ Require token can be observed AND that environments sufficiently similar Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 11 Co-location sensing: Wearable vs. Mobile Devices • Co-location sensing extensively studied in wearable computing using so-called sociometric badges • Wearable badge that integrates several sensors • Proximity typically detected using a combination of position related sensors (Bluetooth, IR, WiFi) and analysis of audio (coconversation) • (Much) more difficult on mobile devices • Devices in arbitrary placements and often obstructed • Hardware variations influence sensing accuracy • Sensors may be turned off or not available on all participating devices ‒ Former problem particularly for Bluetooth, latter for any other sensor, especially on “feature phones” • Badges typically ultimately provide line-of-sight distance è can capture co-location at fine proxemics levels Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 12 Co-location sensing baselines: Positioning and Infrastructure Sensing • Comparing location estimates of two (or more) people provides a baseline for co-location detection Co-located Distant • Indoor positioning (WiFi and other RF technologies, magnetometer): requires mapping the environment • Outdoor positioning: GPS • Infrastructure-based sensing • Proximity sensing, e.g., WiFi sniffing (detecting beacon scan messages), Apple iBeacon, etc. ‒ Performance determined by range of technology, widely used for coarse level customer analytics • Computer vision, including depth-camera sensing Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 13 Proximity Sensors • The simplest case of detecting (some form of) co-location is to use proximity sensing • Devices are assumed to be co-located if they are within the transmitting range of a sensor • Resolution of co-location detection depends on the range of the transmitting technology • WiFi: up to 30 meters, Bluetooth: around 10-15 meters • Thus, e.g., people in nearby office rooms are detected as co-located even if not really there • Transmitters need to be turned on: Bluetooth automatically goes into discoverable mode after 2 minutes • Highly useful as an infrastructure-based approach Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 14 Coarse-scale Proximity Sensing • The coarsest granularity of proximity sensing is provided by GSM signals • Range can be up to 30km • But also highly energy-efficient as GSM signals “free” as the phone requires them anyway • Granularity not sufficient for detecting whether two devices are currently co-located • However, can be used to map social networks, and hence also the extent of social interactions • The more locations and times of day two devices are in the same GSM cell, the higher the likelihood of some form of social relationship between owners of devices Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 15 Radio Frequency Based Co-Location Sensing • Similarity of radio frequency (RF) environment widely used technique for co-location determination • Attenuation: radio (and sound) waves decrease as a function of distance • Also obstacles and environmental conditions affect radio propagation è exact distance cannot be determined • Radio frequency similarity measures instead compare “distances” through similarity of radio environment • The higher the similarity, the closer the devices • Operate on measurements consisting of reference point identifiers and measurements of signal characteristics ‒ E.g., Bluetooth & WiFi: MAC addresses of transmitting devices and their received signal strength (RSS) values ‒ GPS: satellite identifiers, estimated signal-to-noise ratio (SNR) Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 16 RF-Based Co-Location Sensing • Formally, RF sensing considers measurements of the form: {(mx1,sx1),...(mxn,sxn)} where • mxi is (some form of) identifier of ith transmitter • sxi is (some form of) signal characteristics of ith transmitter as observed by device x • Mx and My defined as the sets of transmitters devices x and y can observe • Proximity sensing simplest way to adopt RF measurements for co-location sensing • If at least one shared transmitter, they are necessarily within distance 2r, where r is the range of the transmitter Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 17 RF-Based Co-Location Sensing • The resolution of RF-based co-location sensing can be increased by adopting a feature-based approach • Co-location detection seen as a classification problem where feature vectors derived from measurements of two devices 1. Set-based metrics: • Subset count N∩(x,y) = |Mx ∩ My | • Number of unaccounted transmitters: Nx (x,y) = |Mx| + |My| - 2 N∩(x,y) • Jaccard-similarity: J(x,y) = |Mx ∩ My| / |Mx ∪ My | • Generally, the more overlap in the set of transmitters, the closer the devices • Respectively, the more unaccounted transmitters, the further apart the devices are Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 18 RF-Based Co-Location Sensing 2. Signal characteristics similarity measures • Basic idea to estimate attenuation by comparing similarity of signal characteristics • ‒ Require shared ordering of transmitters ‒ Potentially need signal preprocessing, e.g., normalizing values and/or filling in missing/unaccounted values • • Euclidean distance: √∑ (sxi- syi)2 Extended Tanimoto: (sx ∙ sy) / ( |sx |2 + |sy|2 - sx ∙ syi ) • Hamming distance: ∑ M∪ |sxi- syi| • Exponential difference: ∑ M∪ exp(|sxi- syi|) Most of these similarity measures dependent on the number of transmitters è need normalization Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 19 RF-Based Co-Location Sensing 3. Rank-based measures • When signal characteristics consist of signal strengths (WiFi, Bluetooth), stronger implies closer • Hence, some transmitters more important than others ‒ • Rank correlation (Spearman or Kendall): ‒ • Measures level of agreement between rx and ry Sum of square of ranks (Euclidean distance of ranks): ‒ • We use rx and ry denote the ranking of transmitters for devices x and y SSR(x,y) = ∑ (rxi- ryi)2 Generally the more features can be meaningfully compared, the better the resolution accuracy Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 20 Challenges in RF-Based Sensing: Device and Environment Variations • Sensitivities of RF receivers on mobile devices vary • Signal characteristics have different strengths across devices • Obstacles and relative positions of devices can cause some (weaker) measurements to be shielded • Range of measurements may vary across devices • Alternative signal representations can be used to mitigate device-specific variations • Response rate: replaces sxi with ratios rrxi which measure the fraction of measurements where i can be observed ‒ Defined over a measurement window w, e.g., w = 10 seconds • Hyperbolic: relative differences between transmitters typically more invariant across devices: ‒ Compares measurements of the form hij= log sxi - log sxj Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 21 Challenges in RF-Based Sensing: Similarity Scaling • Many of the listed similarity measures are sensitive to the number of transmitters that can be observed • However, relative distances not stable over time: • Depending on environment, normalized or raw similarities work better Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 22 Ambient Fingerprinting • Ambient fingerprinting estimates co-location by comparing properties of current device environment • Anything can be compared (if you are brave enough): ‒ GammaSense: coarse-grained localization (house/neighbourhood level) using background radioactivity • Audio, magnetometer, temperature, humidity, ... • Characteristics that are being compared should be 1. Spatially distinctive 2. Invariant across devices 3. Sufficiently stable over time • “Best-effort” fingerprinting: combine whatever information is available at the given time Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 23 Audio Ambient Fingerprinting • Audio the most popular ambient characteristics for ambient fingerprinting • Recall (Lecture VII) that difference between detecting whether audio environment same or similar ‒ Music fingerprinting and related techniques can be used for detecting same kind of environment • Time-domain audio similarity • Maximum cross-correlation between two signals • Voiced / unvoiced segmentation ‒ Using log-energy and/or spectral entropy ‒ Frame labelled as 0 if unvoiced, 1 otherwise ‒ Similarity can be determined by comparing the 0/1 vectors of devices (e.g., Sound of Silence) Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 24 Audio Ambient Fingerprinting • Frequency-domain similarity • Difference in FFT coefficients of selected frequency bands and variations: ‒ Frame difference: mapping difference in coefficients across two frames into a binary code ‒ “Hyperbolic” difference: comparing the ratio between pairs of frequency bands 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 Similarity = 7 1 0 1 1 1 0 1 1 • Speech similarity • Compare voiced/unvoiced status of frames and the mutual information of frames ‒ Effective at detecting co-located conversations when devices not obstructed Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 25 Accuracy of Co-Location Detection • Proximity sensing • Depends on application level requirements • Cannot separate proxemics levels, and with most technologies also proximity “too far” • But works well in certain applications, e.g., in authentication distances typically close or very far • Ambient fingerprinting • Highly dependent on the nature of activity and signal characteristics • E.g., accurate during speech activity without significant background noise as well as in situations where clear light/magnetic/temperature pattern • But also easy to break Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 26 Accuracy: Sensor Fusion • Performance of co-location detection can be improved through sensor fusion • Particularly important for ambient fingerprinting • But also can be used to improve resolution of proximity sensing • Also improves resilience of colocation sensing • Typically fusion done through boosting-based classifier design Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 27 F-Formations and Pose Sensing • F-Formation • Refers to the spatial and orientational divisioning of space between interacting people • Two participants: face-to-face, L form, or side-by-side • Three participants: typically circular formation • User pose sensing can thus be used to support colocation sensing • Recall that pose sensing consists of two tasks: estimating device attitude and aligning device attitude with use orientation • Can be accomplished using a combination of accelerometers, gyroscopes and magnetometers Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 28 Prosody • Prosody defined as: • the stress and intonation patterns of utterances (dictionary.com) • the rhythmic and intonational aspect of language (merriam-webster) • Accordingly, characterizes the way people speak • Important in characterizing several social and psychological factors, e.g., extroversion, mood, domination, etc. • Together with speech recognition, forms the dominant application area for audio in mobile sensing Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 29 Pitch and Fundamental Frequency • Pitch • Perceived tone frequency of a sound • Fundamental frequency F0 • Inverse of the signal period of a periodic signal • Most of the energy in a spectrum concentrated around integer multiples of fundamental frequency • Sinusoids above F0 referred to as harmonics • In speech, the frequency at which vocal chords resonate • Pitch not the same as fundamental frequency • But closely related for most signals • Pitch can be located at a higher harmonic than F0 or combination of non-periodic signals can result in pitch Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 30 Prosodic Sensing • Refers to the extraction of prosodic features from speech signals • Common types of prosodic features • Fundamental frequency, variations in pitch (so-called spectral envelope), and spectral harmonics • Intensity and rate of speech • Mel frequency cepstral coefficients (MFCC) • Most features can be estimated “on the side” during pitch/F0 estimation • Accuracy of the actual values typically less important than the capability of capturing variations in the features Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 31 Prosodic Sensing Pipeline • Preprocessing • Noise removal, framing, windowing • “Activity” detection: significant audio level detection and/or voiced/unvoiced detection • Fundamental frequency estimation • Autocorrelation or cepstral analysis together with temporal tracking • Feature extraction • Power of voiced segments, ratio of voiced segments compared to all (speech) segments, variation in F0 etc. Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 32 Prosodic Sensing Pipeline Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 33 Interactions and Application Usage as Sensor • Frequency and nature of interactions can also be used characterize behaviors • Distribution of application launch events • Distribution of the duration of application usage events • Extent of application usage, e.g., number of distinct application categories considered • Similarly frequency and extent of “checking” behaviors can be considered • How often screen turned on without unlocking/using device? • VERY weak cue • Frequency of application usage can relate to mood, stress, personality, and many other phenomena • Should be combined with other cues to increase discrimination resolution of behavior Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 34 Example: MoodScope ● Mood can be used as an input for recommendation and context aware systems ● Mood inferred from communication and application usage ● SMS, email, location, web browsing, application usage, and extent of phone calls made ● Initial accuracy of 66% but can be extended to 93% after personalized training for two months ● Data gathered from 32 users for two months. ● Three models: ● general model for everyone ● personalized trained data (40% in 10 days) ● Hybrid, user can provide correct ground truth (72% in 10 days) Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 16.4.2015 35 Example: StressSense • The individual stress level is used as an input in health applications to reduce anxiety • Uses the microphone as the only sensor for detecting individuals stress level • Prosodic features: pitch range and mean, pitch jitter, spectral centroid, high frequency ratio, MFCC, speaking range, and Teager Energy Operator critical band autocorrelation envelope • Provides 81% accuracy for indoor environments and 76% accuracy for outdoor environments • Experimented on 14 participants in three different tasks. Doing and interview as an interviewee, conducting a marketing task, and a natural stress free environment • GSR sensors which can measure stress from increased skin conductance used for gathering ground truth Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 16.4.2015 36 Summary • Social and psychological sensing refers to detection of psychological and social phenomena from sensors • Can be extracted even from “thin slices” of observations • Requires detecting phenomena through the sensing of multiple “weak cues” • Co-location sensing essential enabler for social sensing and many application domains • Proximity sensing: detecting when devices are within “sufficiently” close range • Proxemics sensing: characterizing nature of closeness according to distance • Proximity sensing, RF similarity, ambient fingerprinting Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 37 Summary • Prosodic sensing another important class of features for social and psychological sensing • Characterizes how person speaks • Most features relate to variations in pitch and spectral characteristics during spoken segments • Will be covered in detail during Lecture IX • Other types of sensor information • Pose and relative orientation of people, e.g., Fformations and posture • Characteristics and extent of application usage Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 38 References • Hall, E. T., Proxemics, Current Anthropology, 1968, 9, 83-108 erence (PerCom), 2012 • Kendon, A., Spatial organization in social encounters: The F-formation system, Conducting interaction: Patterns of behavior in focused encounters, Cambridge University Press Cambridge, UK, 1990, 209-238 • Wyatt, D.; Choudhury, T.; Bilmes, J. & Kitts, J. A., Inferring Colocation and Conversation Networks from Privacy-Sensitive Audio with Implications for Computational Social Science, ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2, 7:1-7:41 • Eagle, N. & Pentland, A. S., Inferring friendship network structure by using mobile phone data, Proceedings of the National Academy of Sciences (PNAS), National Academy of Sciences, 2009, 15274-15278 • Tucker, S.; Bergman, O.; Ramamoorthy, A. & Whittaker, S., Catchup: A Useful Application of Time-travel in Meetings, Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work (CSCW), 2010 • Corner, M. D. & Noble, B. D., Zero-interaction authentication, Proceedings of the 8th annual international conference on Mobile computing and networking (MobiCom), 2002, 1-11 • LiKamWa, R.; Liu, Y.; Lane, N. D. & Zhong, L., MoodScope: Building a Mood Sensor from Smartphone Usage Patterns, Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys), 2013 Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 39 References • Krumm, J. & Hinckley, K., The NearMe Wireless Proximity Server, Proceedings of the 6th International Conference on Ubiquitous Computing (UbiComp), Springer, 2004 • Varshavsky, A.; Scannell, A.; LaMarca, A. & de Lara, E., Amigo: Proximity-Based Authentication of Mobile Devices, Proceedings of the 9th International Conference on • Mathur, S.; Miller, R. D.; Varshavsky, A.; Trappe, W. & Mandayam, N. B., ProxiMate: proximitybased secure pairing using ambient wireless signals, Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services (MobiSys), ACM, 2011, 211-224 Ubiquitous Computing (UbiComp), Springer, 2007, 253-270 • Bucur, D. & Kjærgaard, M. B., GammaSense: Infrastructureless Positioning Using Background Radioactivity, EuroSSC, 2008, 69-82 • Kim, D. H.; Kim, Y.; Estrin, D. & Srivastava, M. B., SensLoc: sensing everyday places and paths using less energy, Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems (SenSys), ACM, 2010, 43-56 • Kjærgaard, M. B. & Munk, C. V., Hyperbolic Location Fingerprinting: A Calibration-Free Solution for Handling Differences in Signal Strength, Proceedings of the 6th Annual IEEE International Conference on Pervasive Computing and Communications (PerCom), 2008, 110-116 • Lu, H.; Frauendorfer, D.; Rabbi, M.; Mast, M. S.; Chittaranjan, G. T.; Campbell, A. T.; GaticaPerez, D. & Choudhury, T., StressSense: Detecting Stress in Unconstrained Acoustic Environments Using Smartphones, Proceedings of the 2012 ACM Conference on Ubiquitous Computing, ACM Press, 2012, 351-360 Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 17.4.2015 40
© Copyright 2024