Process Control

Optimering av processer vid
cementklinker- och
kalktillverkning
Ett projekt inom MinBaS Innovation
MinBasdagen 2015-03-18
3
Mål
• Ny kunskap om när vi använder biobränslen och restmaterial
–
–
–
–
klinkerbildningen
klinkermineralernas struktur
ny termodynamiska data
Hur MgO påverkar smälttemperaturen
• Utveckla för bättre processtyrning
– befintlig modell
– ny modeller för stoftbildning
– ny modell för kemi och flöden i schaktugn
MinBasdagen 2015-03-18
4
Projektet är indelat i tre delprojekt
• WP1 Klinkermineralbildning och
smältfasens egenskaper
• WP2 Optimering av kalk och cement
processerna
• WP3 Utveckling av schaktugnsmodell
MinBasdagen 2015-03-18
5
Projektet
Koordinator
Projektledare
Rainer Backman
Industridoktorander Matias Eriksson
Erik Viggh
Forskare
Bodil Hökfors
Anders Lyberg
Stefan Sandelin
MinBasdagen 2015-03-18
Kjell Dahlberg
Mikael Wendel
Process Automation
Michael Lundh
Torbjörn Ottosson
Johan P. Sandstedt
6
WP1 Klinkermineralbildning och
smältfasens egenskaper
I temperaturområdet mellan 100 - 1000°C sker det
många reaktioner på partikelytorna
•
Undersöka om reaktioner mellan partiklar
•
Inverkan av cirkulerande ämnen som MgO, S,
Na och K som i ugnsystemet på smältfasen.
•
Kan vi med SEM, XRD och optisk mikroskop
'se' reaktionsprodukterna?
MinBasdagen 2015-03-18
7
WP 2 Optimering av kalk och
cement processerna
Task 1:
Syrgasanrikning för energieffektiv kalkproduktion (pågår)
Task 2:
Oxyfuel förbränning för energieffektivitet vid kalkproduktion (pågår)
Task 3:
Råmaterialsegenskaper för kalkproduktion (pågår)
Aktiveringsenergi
Task 4:
Task 5:
Modellering av stoft i gasfas vid kalkproduktion
Modellering av stoft i gasfas vid cementproduktion
Hur uppstår dammet i processen
Task 6:
Utveckling av energibalansberäkningar för cementproduktion
Förbättring av ASPEN/CHEMAPP simuleringsverktyg.
MinBasdagen 2015-03-18
8
Modellering av stoft i gasfas vid
cementproduktion
MinBasdagen 2015-03-18
9
WP3 Utveckling av schaktugnsmodell
•
•
•
•
•
•
•
•
•
Upprättande av kravspecifikation för modellering
Val av modellverktyg
Insamling av basdata för modellen
Modellering
Teoretisk validering av utfall av modelleringen
Framtagning av teknik för utökad datainsamling från processen
–
Rökgasdata online från schakt och kanaler, ej enbart från rökgaser efter ugn
–
Temperaturmätning på fler och ”rätt” ställe i ugnen
Validering av modell och framtagen mätteknik med fullskaleförsök
Utvärdering av modell
Översättning av utvald data till programkod.
MinBasdagen 2015-03-18
10
Alf Isaksson, SECRC 2015-03-18
ABB Research in Control
MinBas,18 March, 2015
© ABB Group
April 1, 2015 | Slide 1
A Global Leader in Power and Automation
Leading Market Positions in Main Businesses
~150,000
© ABB Group
April 1, 2015 | Slide 2
$ 42
billion
In revenue
(2013)
employees
Present
in
Formed
in
+100
1988
countries
merger of Swiss (BBC, 1891)
and Swedish (ASEA, 1883)
engineering companies
How ABB is organized
Five global divisions
Power
Products
Power
Systems
Discrete
Automation
and Motion
Low Voltage
Products
Process
Automation
$10.9 billion
35,300
employees
$8.1 billion
19,600
employees
$8.8 billion
28,500
employees
$7.7 billion
31,400
employees
$8.3 billion
28,300
employees
(2011 revenues, consolidated; including Thomas & Betts revenue for LP division)

ABB’s portfolio covers:

© ABB Group
April 1, 2015 | Slide 3
Electricals, automation, controls
and instrumentation for power
generation and industrial
processes

Power transmission

Distribution solutions

Low-voltage products

Motors and drives

Intelligent building systems

Robots and robot systems

Services to improve customers
productivity and reliability
Power and productivity for a better world
ABB’s vision
As one of the world’s leading engineering companies, we
help our customers to use electrical power efficiently, to
increase industrial productivity and to lower environmental
impact in a sustainable way.
© ABB Group
April 1, 2015 | Slide 4
ABB Corporate Research
Local Lab Locations
Västerås SE
Baden CH
Krakow PL
Ladenburg DE
Raleigh US
Beijing CN
Shanghai CN
Bangalore IN
Close to major customers, universities and
ABB‘s business responsible units
© ABB Group
April 1, 2015 | Slide 5
Corporate Research: Local Labs and Research Areas
Chief Technology Officer
Claes Rytoft, ad interim
Global Research Manager
Franz Schmaderer
Communication
Stefan Svensson
CHCRC
Stefan Ramseier
Control
Alf Isaksson
Electromagnetics
CNCRC
QinJian Liu
Robert Chin
DECRC
Materials
Jan-Henning Fabian
Jens Rocks
Mechanics
INCRC
Xiaolong Feng
Akilur Rahman
Power electronics
Waqas Arshad
PLCRC
Marek Florkowski
Sensors
Andrea Andenna
SECRC
Mikael Dahlgren
Software
Roland Weiss
Switching
Riccardo Bini
© ABB Group
April 1, 2015 | Slide 6
USCRC
Le Tang
Research Area Control
Scope
The research area focuses on Control as well as
Protection in a broad sense:
© ABB Group
April 1, 2015 | Slide 7

Control: Manipulate a set of input variables
in such a way that the controlled system
produces the desired (optimal) output
according to some performance measure.

Protection: Based on measured variables
detect and prevent malfunctions before they
do occur, or at least before their effect
becomes too costly
Research Area Control
Sub Research Areas and Coordinators
AE
Diagnostics & Service (Michal Orkisz, PLCRC)
Service-related research in monitoring, diagnostics, reliability and
lifetime at component, system, fleet and process level.
D&S
P&GM
PC
© ABB Group
April 1, 2015 | Slide 8
Automation Engineering (Rainer Drath, DECRC)
Develop knowledge and methods to increase ABB’s engineering
efficiency and quality.
Production & Grid Management (Iiro Harjunkoski, DECRC)
Planning, scheduling and tracking of industrial production processes
and electrical grids.
Process Control (Michael Lundh, SECRC)
Techniques and technologies for modeling, control, and optimization of
industrial processes.
Research Area Control
Sub Research Areas and Coordinators cont‘d
ESC
Grid Protection (Przemyslaw Balcerek, PLCRC)
Develop utility oriented protection solutions utilizing all available
measurements, modern system thinking, and advanced computation.
GP
MC
CC
© ABB Group
April 1, 2015 | Slide 9
Electrical Systems Control (Mats Larsson, CHCRC)
Automation solutions for efficient operation of power and energy
systems.
Motion Control (Luca Peretti, SECRC)
Efficient and effective use of the electromechanical chain by exploiting
position, speed and current regulators in suitable devices for drives
and actuators.
Converter Control (Tobias Geyer, CHCRC)
Current control and modulation of three-phase power electronic
converters.
Research Area Process Control
Key Research Directions
1. Advanced control lifecycle considerations

Simplified engineering and maintenance
2. Control platform considerations

Scalability from device to cloud
3. Industry line specific advanced control applications

© ABB Group
April 1, 2015 | Slide 10
Develop re-usable solutions for

Minerals & cement

Mining

Oil & Gas

Pulp & paper

etc.
Historical Notes Cement
2005 Raw Mix Preparation
2009 Cement Mill Control
Pilot site – Buzzi Unicem, Guidonia (I)
By end of 2007 more then 40 plants in operation
Modelica integration into APC tools
2006 Precalciner Control
Pilot site – Holcim, Lägerdorf (D)
In 2009 12 plants commissioned
2006 Mill Control
Pilot site – Jura Cement, Wildegg (CH)
By end of 2007 10 mills in operation
2008 Kiln Control
Pilot site – Holcim, Siggenthal (CH)
By end of 2009 5 plants in operation
2012 Cement Mill Fingerprint
© ABB Corporate Research
April 1, 2015 | Slide 11
Nonlinear models to be used for advanced control
benefit estimation
Historical Notes Grinding and GMDs
2010 GMD Remote
Monitoring and Diagnostics
Pilot site – Xstrata, Collahuasi (CHI)
By end of 2014, 36 GMDs in the
system
2011 and 2013 GMD Stator
Winding Optimization I&II
Pilot site – Newmont Mining
Corporation, Yanacocha (PE)
GMD Design tool in use since 2012
2012 Grinding Circuit Control
Pilot site – Boliden AB, Aitik (SE)
Pilot implementation in 2014
2015 SmartMill - APC Integration
Ongoing
Target date Q3 2015
© ABB Corporate Research
April 1, 2015 | Slide 12
Mining 2.0
Transformation for productivity

Project Goal



© ABB Group
Slide 13
SECRC/A/COPAN Jan Nyqvist March 2015
Development of a automation portfolio for
underground mines
Benefit

Extend ABB business in underground mining

Improved operational efficiency, at least 20%
Technical Solutions

Mine ventilation control

Integration of mobile machines

Wireless communication in underground mines

Asset and personell localisation

Logistics operation optimization

Automated scheduling for logistics operations

Fleet management

Real time material tracking