Optimering av processer vid cementklinker- och kalktillverkning Ett projekt inom MinBaS Innovation MinBasdagen 2015-03-18 3 Mål • Ny kunskap om när vi använder biobränslen och restmaterial – – – – klinkerbildningen klinkermineralernas struktur ny termodynamiska data Hur MgO påverkar smälttemperaturen • Utveckla för bättre processtyrning – befintlig modell – ny modeller för stoftbildning – ny modell för kemi och flöden i schaktugn MinBasdagen 2015-03-18 4 Projektet är indelat i tre delprojekt • WP1 Klinkermineralbildning och smältfasens egenskaper • WP2 Optimering av kalk och cement processerna • WP3 Utveckling av schaktugnsmodell MinBasdagen 2015-03-18 5 Projektet Koordinator Projektledare Rainer Backman Industridoktorander Matias Eriksson Erik Viggh Forskare Bodil Hökfors Anders Lyberg Stefan Sandelin MinBasdagen 2015-03-18 Kjell Dahlberg Mikael Wendel Process Automation Michael Lundh Torbjörn Ottosson Johan P. Sandstedt 6 WP1 Klinkermineralbildning och smältfasens egenskaper I temperaturområdet mellan 100 - 1000°C sker det många reaktioner på partikelytorna • Undersöka om reaktioner mellan partiklar • Inverkan av cirkulerande ämnen som MgO, S, Na och K som i ugnsystemet på smältfasen. • Kan vi med SEM, XRD och optisk mikroskop 'se' reaktionsprodukterna? MinBasdagen 2015-03-18 7 WP 2 Optimering av kalk och cement processerna Task 1: Syrgasanrikning för energieffektiv kalkproduktion (pågår) Task 2: Oxyfuel förbränning för energieffektivitet vid kalkproduktion (pågår) Task 3: Råmaterialsegenskaper för kalkproduktion (pågår) Aktiveringsenergi Task 4: Task 5: Modellering av stoft i gasfas vid kalkproduktion Modellering av stoft i gasfas vid cementproduktion Hur uppstår dammet i processen Task 6: Utveckling av energibalansberäkningar för cementproduktion Förbättring av ASPEN/CHEMAPP simuleringsverktyg. MinBasdagen 2015-03-18 8 Modellering av stoft i gasfas vid cementproduktion MinBasdagen 2015-03-18 9 WP3 Utveckling av schaktugnsmodell • • • • • • • • • Upprättande av kravspecifikation för modellering Val av modellverktyg Insamling av basdata för modellen Modellering Teoretisk validering av utfall av modelleringen Framtagning av teknik för utökad datainsamling från processen – Rökgasdata online från schakt och kanaler, ej enbart från rökgaser efter ugn – Temperaturmätning på fler och ”rätt” ställe i ugnen Validering av modell och framtagen mätteknik med fullskaleförsök Utvärdering av modell Översättning av utvald data till programkod. MinBasdagen 2015-03-18 10 Alf Isaksson, SECRC 2015-03-18 ABB Research in Control MinBas,18 March, 2015 © ABB Group April 1, 2015 | Slide 1 A Global Leader in Power and Automation Leading Market Positions in Main Businesses ~150,000 © ABB Group April 1, 2015 | Slide 2 $ 42 billion In revenue (2013) employees Present in Formed in +100 1988 countries merger of Swiss (BBC, 1891) and Swedish (ASEA, 1883) engineering companies How ABB is organized Five global divisions Power Products Power Systems Discrete Automation and Motion Low Voltage Products Process Automation $10.9 billion 35,300 employees $8.1 billion 19,600 employees $8.8 billion 28,500 employees $7.7 billion 31,400 employees $8.3 billion 28,300 employees (2011 revenues, consolidated; including Thomas & Betts revenue for LP division) ABB’s portfolio covers: © ABB Group April 1, 2015 | Slide 3 Electricals, automation, controls and instrumentation for power generation and industrial processes Power transmission Distribution solutions Low-voltage products Motors and drives Intelligent building systems Robots and robot systems Services to improve customers productivity and reliability Power and productivity for a better world ABB’s vision As one of the world’s leading engineering companies, we help our customers to use electrical power efficiently, to increase industrial productivity and to lower environmental impact in a sustainable way. © ABB Group April 1, 2015 | Slide 4 ABB Corporate Research Local Lab Locations Västerås SE Baden CH Krakow PL Ladenburg DE Raleigh US Beijing CN Shanghai CN Bangalore IN Close to major customers, universities and ABB‘s business responsible units © ABB Group April 1, 2015 | Slide 5 Corporate Research: Local Labs and Research Areas Chief Technology Officer Claes Rytoft, ad interim Global Research Manager Franz Schmaderer Communication Stefan Svensson CHCRC Stefan Ramseier Control Alf Isaksson Electromagnetics CNCRC QinJian Liu Robert Chin DECRC Materials Jan-Henning Fabian Jens Rocks Mechanics INCRC Xiaolong Feng Akilur Rahman Power electronics Waqas Arshad PLCRC Marek Florkowski Sensors Andrea Andenna SECRC Mikael Dahlgren Software Roland Weiss Switching Riccardo Bini © ABB Group April 1, 2015 | Slide 6 USCRC Le Tang Research Area Control Scope The research area focuses on Control as well as Protection in a broad sense: © ABB Group April 1, 2015 | Slide 7 Control: Manipulate a set of input variables in such a way that the controlled system produces the desired (optimal) output according to some performance measure. Protection: Based on measured variables detect and prevent malfunctions before they do occur, or at least before their effect becomes too costly Research Area Control Sub Research Areas and Coordinators AE Diagnostics & Service (Michal Orkisz, PLCRC) Service-related research in monitoring, diagnostics, reliability and lifetime at component, system, fleet and process level. D&S P&GM PC © ABB Group April 1, 2015 | Slide 8 Automation Engineering (Rainer Drath, DECRC) Develop knowledge and methods to increase ABB’s engineering efficiency and quality. Production & Grid Management (Iiro Harjunkoski, DECRC) Planning, scheduling and tracking of industrial production processes and electrical grids. Process Control (Michael Lundh, SECRC) Techniques and technologies for modeling, control, and optimization of industrial processes. Research Area Control Sub Research Areas and Coordinators cont‘d ESC Grid Protection (Przemyslaw Balcerek, PLCRC) Develop utility oriented protection solutions utilizing all available measurements, modern system thinking, and advanced computation. GP MC CC © ABB Group April 1, 2015 | Slide 9 Electrical Systems Control (Mats Larsson, CHCRC) Automation solutions for efficient operation of power and energy systems. Motion Control (Luca Peretti, SECRC) Efficient and effective use of the electromechanical chain by exploiting position, speed and current regulators in suitable devices for drives and actuators. Converter Control (Tobias Geyer, CHCRC) Current control and modulation of three-phase power electronic converters. Research Area Process Control Key Research Directions 1. Advanced control lifecycle considerations Simplified engineering and maintenance 2. Control platform considerations Scalability from device to cloud 3. Industry line specific advanced control applications © ABB Group April 1, 2015 | Slide 10 Develop re-usable solutions for Minerals & cement Mining Oil & Gas Pulp & paper etc. Historical Notes Cement 2005 Raw Mix Preparation 2009 Cement Mill Control Pilot site – Buzzi Unicem, Guidonia (I) By end of 2007 more then 40 plants in operation Modelica integration into APC tools 2006 Precalciner Control Pilot site – Holcim, Lägerdorf (D) In 2009 12 plants commissioned 2006 Mill Control Pilot site – Jura Cement, Wildegg (CH) By end of 2007 10 mills in operation 2008 Kiln Control Pilot site – Holcim, Siggenthal (CH) By end of 2009 5 plants in operation 2012 Cement Mill Fingerprint © ABB Corporate Research April 1, 2015 | Slide 11 Nonlinear models to be used for advanced control benefit estimation Historical Notes Grinding and GMDs 2010 GMD Remote Monitoring and Diagnostics Pilot site – Xstrata, Collahuasi (CHI) By end of 2014, 36 GMDs in the system 2011 and 2013 GMD Stator Winding Optimization I&II Pilot site – Newmont Mining Corporation, Yanacocha (PE) GMD Design tool in use since 2012 2012 Grinding Circuit Control Pilot site – Boliden AB, Aitik (SE) Pilot implementation in 2014 2015 SmartMill - APC Integration Ongoing Target date Q3 2015 © ABB Corporate Research April 1, 2015 | Slide 12 Mining 2.0 Transformation for productivity Project Goal © ABB Group Slide 13 SECRC/A/COPAN Jan Nyqvist March 2015 Development of a automation portfolio for underground mines Benefit Extend ABB business in underground mining Improved operational efficiency, at least 20% Technical Solutions Mine ventilation control Integration of mobile machines Wireless communication in underground mines Asset and personell localisation Logistics operation optimization Automated scheduling for logistics operations Fleet management Real time material tracking
© Copyright 2025