-3ﺍﻟﺪﻭﺍﻝ ﺍﳊﻘﻴﻘﻴﺔ ﳌﺘﻐﲑ ﺣﻘﻴﻘﻲ ﻟﻴﻜﻦ Χ ﳎﻤﻮﻋﺔ ﻋﺪﺩﻳﺔ ،ﺃﻱ: Χ⊂ℜ ﺗﻌﺮﻳﻒ :ﺇﺫﺍ ﺃﳊﻘﻨﺎ ﺑﻜﻞ ﻋﺪﺩ xﻣﻦ ، Χﺑﻮﺍﺳﻄﺔ ﻗﺎﻧﻮﻥ ﻣﺎ ﻋﺪﺩﺍ yﻣﻦ ، ℜﻓﺈﻧﻨﺎ ﻧﻘﻮﻝ ﻗﺪ ﻋﺮﻓﻨﺎ ﻋﻠﻰ Χﺩﺍﻟﺔ ﺣﻘﻴﻘﻴﺔ ﳌﺘﻐﲑ ﺣﻘﻴﻘﻲ .ﻳﺮﻣﺰ ﳍﺬﺍ ﺍﻟﻘﺎﻧﻮﻥ ﺑﺎﻟﺮﻣﺰ ، fﻭﻧﻜﺘﺐ: x∈ Χ y = f ( x) , ﺗﻨﺒﻴﻪ : ﺃ -ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻌﺪﺩ yﻟﻴﺲ ﻭﺣﻴﺪﺍﹰ،ﻓﺈﻥ ﺍﻟﺪﺍﻟﺔ fﺗﺴﻤﻰ ﺑﺎﻟﺪﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ. ﺏ -ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻌﺪﺩ yﻭﺣﻴﺪﺍﹰ ،ﻓﺈﻥ ﺍﻟﺪﺍﻟﺔ fﺗﺴﻤﻰ ﺑﺎﻟﺪﺍﻟﺔ ﻭﺣﻴﺪﺓ ﺍﻟﻘﻴﻤﺔ. ﺝ -ﰲ ﻛﻞ ﺩﺭﺍﺳﺘﻨﺎ ﺇﺫﺍ ﻗﻠﻨﺎ ﺩﺍﻟﺔ،ﻧﻌﲏ ﺎ ﺩﺍﻟﺔ ﻭﺣﻴﺪﺓ ﺍﻟﻘﻴﻤﺔ ،ﺇﻻ ﺇﺫﺍ ﺃﺷﲑ ﺇﱃ ﻋﻜﺲ ﺫﻟﻚ. wﺍﻤﻮﻋﺔ fﺗﺴﻤﻰ ﳎﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ ﺍﻟﺪﺍﻟﺔ ، fﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ) ، D( fﻭﺗﺴﻤﻰ ﳎﻤﻮﻋﺔ ﺍﻟﻘﻴﻢ yﺍﻟﱵ ﺗﺄﺧﺬﻫﺎ ﻫﺬﻩ ﺍﻟﺪﺍﻟﺔ ﲟﺠﻤﻮﻋﺔ ﻗﻴﻤﻬﺎ،ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ) . Ε( f ﻋﻨﺪﻫﺎ ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﺗﻄﺒﻴﻖ ﻣﻦ ) D( fﻋﻠﻰ ) . Ε( f ﺇﺫﺍ ﻛﺎﻧﺖ Ε( f ) ⊂ Υﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ f ﺗﻄﺒﻴﻖ ﻣﻦ ) D( fﰲ . Υ ﺃﻣﺜﻠﺔ : -1ﺩﺍﻟﺔ ﺩﺭﳜﻠﻲ : D( f ) = ℜ ، ﻻﺣﻆ ﺃﻥ: -2ﺍﻟﺪﺍﻟﺔ ﺍﻹﺷﺎﺭﺓ : }Ε( f ) = {0,1 0 , x ∉ Q y = f ( x) = 1 , x ∈ Q 1 , x > 0 y = f ( x) = sgn x = 0 , x = 0 − 1 , x < 0 ﻭﻧﻘﺮﺃ yﺗﺴﺎﻭﻱ ﺇﺷﺎﺭﺓ ﻻﺣﻆ ﺃﻥΕ( f ) = {− 1,0,+1} ، D( f ) = ℜ : -3ﺩﺍﻟﺔ ﺍﳉﺰﺀ ﺍﻟﺼﺤﻴﺢ : x ]y = f ( x) = [x ﻭﻧﻘﺮﺃ yﺗﺴﺎﻭﻱ ﺍﳉﺰﺀ ﺍﻟﺼﺤﻴﺢ ﻟﻠﻌﺪﺩ Ε( f ) = Ζ ، D ( f ) = ℜ ﻻﺣﻆ ﺃﻥ: x . 40 PDF created with pdfFactory trial version www.pdffactory.com -4ﺍﻟﺪﺍﻟﺔ ﻋﺎﻣﻠﻲ : !y = f (n ) = n ﻻﺣﻆ ﺃﻥ، D( f ) = Ν : Ε( f ) = Ν -1.3ﺍﶈﺪﻭﺩﻳﺔ : ﻟﺘﻜﻦ Aﳎﻤﻮﻋﺔ ﻏﲑ ﺧﺎﻟﻴﺔ ﻣﻦ ) ، D( fﻭ B ﺻﻮﺭﺓ Aﻭﻓﻖ ﺍﻟﺪﺍﻟﺔ . f ﺗﻌﺎﺭﻳﻒ : -1ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﳏﺪﻭﺩﺓ ﻣﻦ ﺍﻷﺳﻔﻞ ﻋﻠﻰ ﺍﻤﻮﻋﺔ، Aﺇﺫﺍ ﻭﺟﺪ ﻋﺪﺩ c1ﲝﻴﺚ ﻣﻬﻤﺎ ﻳﻜﻦ xﻣﻦ Aﻳﻜﻮﻥ ، f (x) ≥ c1ﺃﻱ : ∃c1 ∈ ℜ / ∀x ∈ A → f ( x) ≥ c1 -2ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﳏﺪﻭﺩﺓ ﻣﻦ ﺍﻷﻋﻠﻰ ﻋﻠﻰ ﺍﻤﻮﻋﺔ، Aﺇﺫﺍ ﻭﺟﺪ ﻋﺪﺩ c 2ﲝﻴﺚ ﻣﻬﻤﺎ ﻳﻜﻦ xﻣﻦ Aﻳﻜﻮﻥ ، f (x) ≤ c2ﺃﻱ: ∃c 2 ∈ ℜ / ∀x ∈ A → f ( x) ≤ c 2 -3ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﳏﺪﻭﺩﺓ ﻋﻠﻰ ﺍﻤﻮﻋﺔ ، Aﺇﺫﺍ ﻛﺎﻧﺖ ﳏﺪﻭﺩﺓ ﻣﻦ ﺍﻷﺳﻔﻞ ﻭﻣﻦ ﺍﻷﻋﻠﻰ ﻋﻠﻰ ﺍﻤﻮﻋﺔ، Aﺃﻱ: ∃c > 0 / ∀x ∈ A → f ( x) ≤ c )(1 ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﳌﺘﺮﺍﺟﺤﺔ ) (1ﳏﻘﻘﺔ ﻣﻬﻤﺎ ﺗﻜﻦ xﻣﻦ ، fﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﳏﺪﻭﺩﺓ . 41 PDF created with pdfFactory trial version www.pdffactory.com -4ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ f ﳏﺪﻭﺩﺓ ﻋﻠﻰ ﺍﻤﻮﻋﺔ ، Aﺇﺫﺍ ﲢﻘﻖ ﺍﻟﺸﺮﻁ )، (1ﺃﻱ : ∃c > 0 / ∀xc ∈ A → f ( xc ) > c -5ﻳﻌﺮﻑ ﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻟﻠﺪﺍﻟﺔ fﻋﻠﻰ ﺍﻤﻮﻋﺔ ، Aﺑﺄﻧﻪ ﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻋﻠﻰ ﺍﻤﻮﻋﺔ ، Bﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ). sup f (x x∈A -6ﻳﻌﺮﻑ ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻠﺪﺍﻟﺔ f . inf ﻋﻠﻰ ﺍﻤﻮﻋﺔ ، Aﺑﺄﻧﻪ ﺍﳊﺪ ﺍﻷﺩﱏ ﻋﻠﻰ ﺍﻤﻮﻋﺔ ، Bﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ )f (x x∈A -7ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﺗﺄﺧﺬ ﻗﻴﻤﺔ ﻋﻈﻤﻰ ﰲ ﺍﻟﻘﻄﺔ x0ﻣﻦ ، Aﺇﺫﺍ ﻛﺎﻥ : ) ∀x ∈ A → f ( x) ≤ f ( x0 . f (xx ) = max ﻧﺮﻣﺰ ﻟﻠﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ ﻟﻠﺪﺍﻟﺔ fﻋﻠﻰ ﺍﻤﻮﻋﺔ Aﺑﺎﻟﺮﻣﺰ ) ، max f ( xﻭﻧﻜﺘﺐ )f ( x x∈A x∈A . sup f (x) = max ﻋﻨﺪﻫﺎ ﻳﻜﻮﻥ )f ( x x∈A x∈A -8ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﺗﺄﺧﺬ ﻗﻴﻤﺔ ﺻﻐﺮﻯ ﰲ ﺍﻟﻘﻄﺔ x0ﻣﻦ ، Aﺇﺫﺍ ﻛﺎﻥ: ) ∀x ∈ A → f ( x) ≥ f ( x0 . f (xx ) = min ﻧﺮﻣﺰ ﻟﻠﻘﻴﻤﺔ ﺍﻟﺼﻐﺮﻯ ﻟﻠﺪﺍﻟﺔ fﻋﻠﻰ ﺍﻤﻮﻋﺔ Aﺑﺎﻟﺮﻣﺰ )، min f ( xﻭﻧﻜﺘﺐ )f ( x x∈A x∈A . sup f (x) = min ﻋﻨﺪﻫﺎ ﻳﻜﻮﻥ )f ( x x∈A x∈A wﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ،ﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﺼﻐﺮﻯ ﻳﺴﻤﻴﺎ ﻗﻴﻤﺎﹰ ﻗﺼﻮﻯ. -2.3ﺍﻟﺮﺗﺎﺑﺔ : ﺍﻟﺪﺍﻟﺔ f ﺗﺴﻤﻰ ﻋﻠﻰ ﺍﻤﻮﻋﺔ Aﻣﻦ ) : D( f ﺃ -ﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ ،ﺇﺫﺍ ﻛﺎﻥ : ) ∀x1 ∈ A , ∀x2 ∈ A ; x1 ≤ x2 → f ( x1 ) ≤ f ( x2 ﺏ -ﻣﺘﺰﺍﻳﺪﺓ ،ﺇﺫﺍ ﻛﺎﻥ : ) ∀x1 ∈ A , ∀x2 ∈ A ; x1 < x2 → f ( x1 ) < f ( x2 ﺝ -ﻟﻴﺴﺖ ﻣﺘﺰﺍﻳﺪﺓ ،ﺇﺫﺍ ﻛﺎﻥ : ) ∀x1 ∈ A , ∀x2 ∈ A ; x1 < x2 → f ( x1 ) ≥ f ( x2 ﺩ -ﻣﺘﻨﺎﻗﺼﺔ ،ﺇﺫﺍ ﻛﺎﻥ : ) ∀x1 ∈ A , ∀x2 ∈ A ; x1 < x2 → f ( x1 ) > f ( x2 ﻩ -ﺭﺗﻴﺒﺔ ،ﺇﺫﺍ ﻛﺎﻧﺖ ﻟﻴﺴﺖ ﻣﺘﺰﺍﻳﺪﺓ ﺃﻭ ﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ. ﻭ -ﺭﺗﻴﺒﺔ ﲤﺎﻣﺎﹰ ،ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺘﺰﺍﻳﺪﺓ ﺃﻭ ﻣﺘﻨﺎﻗﺼﺔ. 42 PDF created with pdfFactory trial version www.pdffactory.com wﻧﻔﺲ ﺍﻟﺘﻌﺎﺭﻳﻒ ﰲ ﺣﺎﻟﺔ ) . A= D( f -3.3ﺍﻟﻨﻬﺎﻳﺎﺕ : ﻟﺘﻜﻦ ﺩﺍﻟﺔ ﺣﻘﻴﻘﺔ ﳌﺘﻐﲑ ﺣﻘﻴﻘﻲ ﻭ aﻋﺪﺩﺍﹰ ﻣﻦ . ℜ f -1.3.3ﺗﻌﺎﺭﻳﻒ : • -1ﻳﻌﺮﻑ − εﺟﻮﺍﺭ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ ، aﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ) ، Vε (aﺑﺄﻧﻪ ﳎﻤﻮﻋﺔ ﺍﻟﻨﻘﻂ xﺍﳌﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ : } Vε (a ) = {x ∈ ℜ / x − a < ε , x ≠ a } = {x ∈ ℜ / 0 < x − a < ε • ﺃﻱ ﺃﻥ: • } Vε (a ) = Vε (a ) − {a -2ﺍﻟﻨﻬﺎﻳﺔ ﺳﺤﺐ ﻛﻮﺷﻲ :ﺍﻟﻌﺪﺩ lﻳﺴﻤﻰ ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ fﰲ ﺍﻟﻘﻄﺔ ، aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻨﻘﻄﺔ aﺑﺈﻧﺸﺎﺀ ﳏﺘﻤﻞ ﻟـ ، aﺃﻭ ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ . aﻭﻣﻦ ﺃﺟﻞ ﻛﻞ (ε > 0) , εﻳﻮﺟﺪ (δ > 0) , δ ﲝﻴﺚ ﻣﻦ ﺃﺟﻞ ﻛﻞ xﳛﻘﻖ ﺍﻟﺸﺮﻁ ، 0 < x − a < εﺗﺘﺤﻘﻖ ﺍﳌﺘﺮﺍﺟﺤﺔ . f ( x) − l < ε ﺃﻱ : (lim ) f ( x) = l ) ⇔ (∀ε > 0, ∃δ > 0 / (∀x ∈ D( f ) / 0 < x − a < δ ) → f ( x) − l < ε x→ a ﺃﻭ (lim f (x) = l) ⇔ ∀ε > 0, ∃δ > 0 / ∀x ∈ V (a ) ⊂ D( f ) → f (x) ∈ V (l) • δ ε x→ a -3ﺍﻟﻨﻬﺎﻳﺔ ﺣﺴﺐ ﻗﺎﻳﻦ :ﺍﻟﻌﺪﺩ lﻳﺴﻤﻰ ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ fﰲ ﺍﻟﻘﻄﺔ ، aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ . aﺃﻱ : • ) ∃δ 0 > 0 / Vδ 0 (a ) ⊂ D( f ﻭﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ (a n )n≥1ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ ، aﲝﻴﺚ: • ) ∀n ≥ 1 → a n ∈ Vδ 0 (a ﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ( f (a n ))n ≥1ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ . l ﻧﻈﺮﻳﺔ :ﺗﻌﺮﻳﻒ ﺍﻟﻨﻬﺎﻳﺔ ﺣﺴﺐ ﻛﻮﺷﻲ ،ﻳﻜﺎﻓﺊ ﺗﻌﺮﻳﻔﻬﺎ ﺣﺴﺐ ﻗﺎﻳﻦ. ﺍﻟﱪﻫﺎﻥ : ]⇐[ ﻋﻨﺪﻧﺎ lim f ( x) = l x→ a ،ﺣﺴﺐ ﻛﻮﺷﻲ ﺗﻌﲏ : • ) ∃δ 0 > 0 / Vδ 0 (a ) ⊂ D( f )*( ﻟﺘﻜﻦ ﺍﳌﺘﺘﺎﻟﻴﺔ • ) ∀ε > 0, ∃δ ∈ ]0, δ 0 ] / ∀x ∈ Vδ (a ) → f ( x) ∈ Vε (l (a n )n≥1ﻣﺘﺘﺎﻟﻴﺔ ﻛﻴﻔﻴﺔ ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻨﻘﻄﺔ ، aﺣﻴﺚ: 43 PDF created with pdfFactory trial version www.pdffactory.com • ) ∀n ≥ 1 → a n ∈ Vδ 0 (a ) • = a ⇔ ∀ε > 0 ∃nε ∈ N / ∀n ≥ nε → a n ∈ Vε (a ) n (lim a ∞→ n • ﻻﺣﻆ ﻣﻦ ﺃﺟﻞ ε = δﺣﻴﺚ δﻣﻌﺮﻓﺔ ﰲ )*( ﻳﻮﺟﺪ ، nδﲝﻴﺚ ﻣﻦ ﺃﺟﻞ ﻛﻞ n ≥ nδﻳﻜﻮﻥ ) . a n ∈Vε (a ﻫﺬﺍ ﻳﻌﲏ ﺣﺴﺐ )*( ﺃﻥ ) ، f (a n ) ∈Vε (lﻭﻣﻨﻪ : ) ∀ε > 0 , ∃nε = nδ ∈ Ν / ∀n ≥ nε → f (a n ) ∈ Vε (l ﺃﻱ lim f (a n ) = l ∞→ n ]⇒[ lim f ( x) = l x→ a ،ﻭﺑﺎﻟﺘﺎﱄ ﺍﻟﻌﺪﺩ lﻫﻮ ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ fﰲ ﺍﻟﻘﻄﺔ aﺣﺴﺐ ﻗﺎﻳﻦ. ﺣﺴﺐ ﻗﺎﻳﻦ. ﻧﻔﺮﺽ ﺃﻥ lﻟﻴﺴﺖ ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ fﰲ ﺍﻟﻘﻄﺔ aﺣﺴﺐ ﻛﻮﺷﻲ ،ﺃﻱ ﺃﻥ ﺍﻟﺼﻴﻐﺔ )*( ﻏﲑ ﺻﺤﻴﺤﺔ،ﺃﻱ: • ∃ε 0 > 0 , ∀δ ∈ ]0, δ 0 ] , ∃xδ ∈ V δ (a ) / f ( xδ ) − l ≥ ε 0 )∗ ∗( ﻻﺣﻆ ﺍﻟﺼﻴﻐﺔ )∗ ∗( ﺻﺤﻴﺤﺔ ﻣﻦ ﺃﺟﻞ δ0 n = δ ، n ≥ 1,ﺃﻱ ﻳﻮﺟﺪ )، a δﻧﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ 0 • ،( a nﻣﻦ ) Vδ 0 (a n n ﻣﻦ ﺃﺟﻠﻪ ﻳﺘﺤﻘﻖ: )∗ ∗ ∗( f (a n ) − l ≥ ε 0 ﻭﺑﺎﻟﺘﺎﱄ ﻣﻦ ﺃﺟﻞ ﻛﻞ (n ≥ 1 ), nﻳﻜﻮﻥ : • • ) a n ∈ Vδ 0 (a ) ⊂ Vδ 0 (a ﻭ n ﺍﻟﱵ ﺗﻌﲏ lim a n = a ∞→ n δ0 n < 0 < an − a . ﻟﻜﻦ ﺍﳌﺘﺮﺍﺟﺤﺔ f (a n ) − l ≥ ε 0ﺗﻌﲏ ﺃﻥ lﻟﻴﺲ ﺎﻳﺔ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ، ( f (a n ))n≥1ﻭﻫﺬﺍ ﻣﻨﺎﰲ ﻟﻜﻮﻥ lﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ fﰲ ﺍﻟﻘﻄﺔ aﺣﺴﺐ ﻗﺎﻳﻦ ﻭﺑﺎﻟﺘﺎﱄ ﺍﻟﻔﺮﺽ ﻏﲑ ﺻﺤﻴﺒﺢ. ﻣﺜﺎﻝ : ﺃ -ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ . f (x) = x ﻧﺘﺄﻛﺪ ﺣﺴﺐ ﻗﺎﻳﻦ ﺃﻥlim f ( x) = a : x→ a . a ∈ ℜ, fﻣﻌﺮﻓﺔ ﻋﻠﻰ ﻛﻞ ℜﻭﺑﺎﻟﺘﺎﱄ ﻫﻲ ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ ، aﻻﺣﻆ ﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ (a n )n≥1ﻣﻦ ﻫﺬﺍ limﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ( f (a n ))n≥1ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﻧﻔﺲ ﺍﻟﻨﻘﻄﺔ ، aﻷﻥ ﻣﻦ ﺃﺟﻞ ﻛﻞ (n ≥ 1 ), n ﺍﳉﻮﺍﺭ ﺣﻴﺚ a n = a ∞→ n . lim ﻋﻨﺪﻧﺎ ، f (a n ) = a nﻭﺑﺎﻟﺘﺎﱄf ( x) = a : x→ a ﺏ -ﺍﻟﺪﺍﻟﺔ 1 x f ( x) = sin ﻟﻴﺴﺖ ﳍﺎ ﺎﻳﺔ ﰲ ﺍﻟﺼﻔﺮ. 44 PDF created with pdfFactory trial version www.pdffactory.com ﻧﺄﺧﺬ ﺍﳌﺘﺘﺎﻟﻴﺘﲔ ، (bn )n≥1 ، (a n )n≥1ﺣﻴﺚ : 1 nπ ﻻﺣﻆ ﺃﻥ 2 (4n − 3)π = , an = ∀n ≥ 1 , bn lim bn = lim a n = 0 ∞→ n ∞→ n ، limﺫﻟﻚ ﻷﻥ: ﺑﻴﻨﻤﺎ ) f (a n ) ≠ lim f (bn ∞→n ∞→n 1 f (a n ) = f = sin π = 0 ⇒ lim f (a n ) = 0 ∞→ n nπ 1 4n − 3 = sin f (bn ) = f π = 1 ⇒ lim f (bn ) = 1 ∞→ n 2 (4n − 3)π ﻭ ﻭﻣﻨﻪ ﺍﻟﺪﺍﻟﺔ f ﻟﻴﺴﺖ ﳍﺎ ﺎﻳﺔ ﰲ ﺍﻟﻨﻘﻄﺔ . x = 0 ﻧﺘﻴﺠﺔ : ﺃ -ﺍﻟﻨﻘﻄﺔ aﻗﺪ ﻻ ﺗﻨﺘﻤﻲ ﺇﱃ ﳎﺎﻝ ﺗﻌﺮﻳﻒ ﺍﻟﺪﺍﻟﺔ. ﺏ -ﺎﻳﺔ ﺍﻟﺪﺍﻟﺔ fﺇﺫﺍ ﻭﺟﺪﺕ ﺗﻜﻮﻥ ﻭﺣﻴﺪﺓ. -2.3.3ﺃﻧﻮﺍﻉ ﺍﻟﻨﻬﺎﻳﺎﺕ : .1ﺍﻟﻨﻬﺎﻳﺔ ﻣﻦ ﺍﻟﻴﻤﲔ ﻭﺍﻟﻨﻬﺎﻳﺔ ﻣﻦ ﺍﻟﻴﺴﺎﺭ : • • ﻣﻦ ﺃﺟﻞ ﻛﻞ (ε > 0), εﻳﺮﻣﺰ ﺇﱃ ﺍﻟﻨﺼﻒ ﺍﻷﳝﻦ ﻟﻠﺠﻮﺍﺭ ) Vε (aﺑﺎﻟﺮﻣﺰ ) ، Vε (a + 0ﻭﺇﱃ ﻧﺼﻔﻪ ﺍﻷﻳﺴﺮ ﺑﺎﻟﺮﻣﺰ • )، Vε (a − 0ﺃﻱ : • [ Vε (a − 0) = ]a − ε , a ، • [ Vε (a + 0) = ]a , a + ε ﺗﻌﺎﺭﻳﻒ : ﺃ -ﺣﺴﺐ ﻛﻮﺷﻲ : -1ﺍﻟﻌﺪﺩ lﻳﺴﻤﻰ ﺎﻳﺔ ﻣﻦ ﺍﻟﻴﺴﺎﺭ )،ﻳﺴﺮﻯ( ،ﻟﻠﺪﺍﻟﺔ f ﰲ ﺍﻟﻘﻄﺔ ، aﺇﺫﺍ ﻛﺎﻥ : ∀ε > 0 , ∃δ > 0 / ∀x ∈ ]a − δ , a [ ⊂ D( f ) → f ( x) − l < ε -2ﺍﻟﻌﺪﺩ lﻳﺴﻤﻰ ﺎﻳﺔ ﻣﻦ ﺍﻟﻴﻤﲔ )،ﳝﲎ ( ﻟﻠﺪﺍﻟﺔ f ﰲ ﺍﻟﻘﻄﺔ ، aﺇﺫﺍ ﻛﺎﻥ : ∀ε > 0 , ∃δ > 0 / ∀x ∈ ]a , a + δ [ ⊂ D( f ) → f ( x) − l < ε ﺏ -ﺣﺴﺐ ﻗﺎﻳﻦ : -1ﺍﻟﻌﺪﺩ lﻳﺴﻤﻰ ﺎﻳﺔ ﻳﺴﺮﻯ ﻟﻠﺪﺍﻟﺔ fﰲ ﺍﻟﻘﻄﺔ ، aﺇﺫﺍ ﻭﺟﺪ (δ ≥ 0) , δﲝﻴﺚ ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ fﻣﻌﺮﻓﺔ ﰲ • )، Vδ (a − 0ﻭﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ (a n )n≥1ﻣﻦ ) Vδ (a − 0ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ aﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ( f (a n ))n≥1 • ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ . l 45 PDF created with pdfFactory trial version www.pdffactory.com -2ﺍﻟﻌﺪﺩ lﻳﺴﻤﻰ ﺎﻳﺔ ﳝﲎ ﻟﻠﺪﺍﻟﺔ ﰲ ﺍﻟﻘﻄﺔ aﺇﺫﺍ ﻭﺟﺪ (δ ≥ 0) , δﲝﻴﺚ ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ f f ﻣﻌﺮﻓﺔ ﰲ ) ، Vδ (a + 0ﻭﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ (a n )n≥1ﻣﻦ ) Vδ (a + 0ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ aﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ( f (a n ))n≥1ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ . l ﻳﺮﻣﺰ ﻟﻠﻨﻬﺎﻳﺔ ﺍﻟﻴﺴﺮﻯ ﺑﺎﻟﺮﻣﺰ ) lim f ( xﺃﻭ ) ، f (a − 0ﻭﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻴﻤﲎ ﺑﺎﻟﺮﻣﺰ ) lim f (xﺃﻭ ) f (a + 0 x→ a + 0 x→ a − 0 • • ﻧﺘﻴﺠﺔ : -1ﺃ ⇔ 1-ﺏ1- ،ﻭ ﺃ ⇔ 2-ﺏ2- . -2ﺗﻜﻮﻥ ﻟﻠﺪﺍﻟﺔ fﺎﻳﺔ lﰲ ﺍﻟﻘﻄﺔ ، aﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻭﺟﺪﺕ ﻟﻠﺪﺍﻟﺔ fﺎﻳﺔ ﳝﲎ ﻭﺎﻳﺔ ﻳﺴﺮﻯ ﰲ ﺍﻟﻘﻄﺔ aﻣﺘﺴﺎﻭﻳﺘﺎﻥ، . f (a − 0) = lim ﻋﻨﺪﻫﺎ ﻳﻜﻮﻥf ( x) = f (a + 0 ) : x→ a ﻣﻼﺣﻈﺔ :ﰲ ﺣﺎﻟﺔ " " a = 0ﺗﻜﺘﺐ ﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻴﺴﺮﻯ ﻭﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻴﻤﲎ ﻋﻠﻰ ﺍﻟﺸﻜﻞ : )lim f ( x x→ −0 ﺃﻭ )، f (− 0ﻭ )lim f ( x x→ +0 ﺃﻭ ) f (+ 0ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ . ﻣﺜﺎﻝ :ﻟﺘﻜﻦ fﺩﺍﻟﺔ ﻣﻌﺮﻓﺔ ﻙ ﺍﻟﺘﺎﱄ: x + 2 , x > 0 f ( x) = 3 , x≤ 0 x ﻧﺒﺤﺚ ﻋﻦ ﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻴﻤﲎ ﻭﺍﻟﻴﺴﺮﻯ ﻟﻠﺪﺍﻟﺔ ﰲ ﺍﻟﺼﻔﺮ ﻻﺣﻆ ﺃﻥ: f (+ 0) = lim ( x + 2 ) = 2 x→ +0 f (− 0) = lim x 3 = 0 x→ −0 ﻭﻣﻨﻪ ) ، f (+ 0) ≠ f (− 0ﺃﻱ ﺃﻥ ﺍﻟﺪﺍﻟﺔ f ﻟﻴﺲ ﳍﺎ ﺎﻳﺔ ﰲ ﺍﻟﻨﻘﻄﺔ . x = 0 ﺗﻨﺒﻴﻪ :ﳝﻜﻦ ﻧﻘﻞ ﻣﻔﻬﻮﻡ ﺍﻟﻴﻤﲔ ﻭﺍﻟﻴﺴﺎﺭ ﺇﱃ ﳎﻤﻮﻋﺔ ﻗﻴﻢ ﺍﻟﺪﺍﻟﺔ fﻛﺎﻟﺘﺎﱄ : (lim f (x) = l + 0) ⇔ ∀ε > 0, ∃δ > 0 / ∀x ∈ V (a ) ⊂ D( f ) → f (x) ∈ [l, l + ε [ = V (l + 0) (lim f (x) = l − 0) ⇔ ∀ε > 0, ∃δ > 0 / ∀x ∈ V (a ) ⊂ D( f ) → f (x) ∈ ]l − ε , l] = V (l − 0) • δ ε x→ a • δ ε x→ a ﻣﺜﺎﻝ :ﻟﺘﻜﻦ fﺩﺍﻟﺔ ﻣﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ: , x< 0 , x=0 x>0 ﻻﺣﻆ ﺃﻥ , 1 − x f ( x) = 2 1 + x lim f ( x) = 1 + 0 x→0 46 PDF created with pdfFactory trial version www.pdffactory.com -2ﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻼﻣﺘﻨﻬﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ fﰲ ﻧﻘﻄﺔ ﺛﺎﺑﺘﺔ : ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ f ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ . a ﺗﻌﺎﺭﻳﻒ : ﺃ -ﺣﺴﺐ ﻛﻮﺷﻲ :ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ f ، limﺇﺫﺍ ﻛﺎﻥ ﳍﺎ ﺎﻳﺔ ﻏﲑ ﻣﻨﺘﻬﻴﺔ ﰲ ﺍﻟﻨﻘﻄﺔ ، aﻭﻧﻜﺘﺐ ∞ = )f ( x x→ a • ∀ε > 0, ∃δ > 0 / ∀x ∈ Vδ (a ) ⊂ D( f ) → f ( x) > ε • ) ∞( ∀ε > 0, ∃δ > 0 / ∀x ∈ Vδ (a ) ⊂ D( f ) → f ( x) ∈ Vε ﺃﻱ: ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ • > 0 / ∀x ∈ Vδ1 (a ) ⊂ D( f ) → f ( x) ∈ Vε (+ ∞ ) • > 0 / ∀x ∈ Vδ 2 (a ) ⊂ D( f ) → f ( x) ∈ Vε (− ∞ ) (lim f (x) = +∞) ⇔ ∀ε > 0 , ∃δ (lim f (x) = −∞) ⇔ ∀ε > 0 , ∃δ 1 x→ a 2 x→ a ﺣﻴﺚ ) ∞( Vε (+ ∞ ) , Vε (− ∞ ) , Vεﻫﻲ − εﺟﻮﺍﺭ ﻟـ ∞ + ∞ , − ∞ ,ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ .ﺍﻧﻈﺮ ﻓﻘﺮﺓ . 2.4.2 ، limﺇﺫﺍ ﻛﺎﻧﺖ ﻣﻦ ﺃﺟﻞ ﺏ -ﺣﺴﺐ ﻗﺎﻳﻦ :ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﳍﺎ ﺎﻳﺔ ﻏﲑ ﻣﻨﺘﻬﻴﺔ ﰲ ﺍﻟﻨﻘﻄﺔ aﻭﻧﻜﺘﺐ ∞ = )f ( x x→ a ، limﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ( f (a n ))n≥1ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ (a n )n≥1ﻣﻦ ﺟﻮﺍﺭ ﺍﻟﺘﻌﺮﻳﻒ ﺍﳌﺜﻘﻮﺏ ﺣﻴﺚ a n = a ∞→ n . lim ﺍﻟﻜﱪ ،ﺃﻱf (a n ) = ∞ : ∞→ n ﻧﺘﻴﺠﺔ : -1ﺃ ⇔ ﺏ -2ﻛﻤﺎ ﰲ ﺍﻟﺘﻨﺒﻴﻪ ﺍﻟﺴﺎﺑﻖ ،ﳝﻜﻦ ﺃﻥ ﻧﻌﺮﻑ ﺍﻟﻨﻬﺎﻳﺔ ﻏﲑ ﻣﻨﺘﻬﻴﺔ ﻟﻠﺪﺍﻟﺔ fﻋﻠﻰ ﻳﺴﺎﺭ ﺍﻟﻨﻘﻄﺔ aﻭﻋﻠﻰ ﳝﻴﻨﻬﺎ،ﺍﻟﱵ ﻧﻜﺘﺒﻬﺎ xlimﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ ﻋﻠﻰ ﺍﻟﺸﻜﻞ lim f (x) = ∞ :ﻭ ∞ = )f (x →a + 0 x→ a − 0 ﺗﻨﺒﻴﻪ :ﺍﻟﺪﻭﺍﻝ ﺍﻟﱵ ﺎﻳﺘﻬﺎ ﻣﺎ ﻻﺎﻳﺔ ﺗﺴﻤﻰ ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﻜﱪ،ﻭﺍﻟﺪﻭﺍﻝ ﺍﻟﱵ ﺎﻳﺘﻬﺎ ﺍﻟﺼﻔﺮ ﺗﺴﻤﻰ ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﻣﺜﺎﻝ : f ( x) = lg x2 lim f ( x) = −∞ , = )f ( x lim f ( x) = +∞ , -3ﺍﻟﻨﻬﺎﻳﺔ ﰲ ﻣﺎ ﻻ ﺎﻳﺔ : ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ f 1 x4 x→0 x→ 0 ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻤﺎ ﻻ ﺎﻳﺔ ،ﺃﻱ : ) ∃δ > 0 / Vδ (∞ ) ⊂ D( f ﺗﻨﺒﻴﻪ ﺃﻥ • ) ∞( Vδ (∞ ) = Vδ . 47 PDF created with pdfFactory trial version www.pdffactory.com ﺗﻌﺎﺭﻳﻒ : ﺃ -ﺣﺴﺐ ﻛﻮﺷﻲ :ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﻌﺪﺩ lﻫﻮ ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ ، limﺇﺫﺍ ﻛﺎﻥ : ﰲ ﺍﳌﺎ ﻻ ﺎﻳﺔ ﻭﻧﻜﺘﺐ f ( x) = l ∞→x f ) ∀ε > 0، ∃δ > 0 / ∀x ∈ Vδ (∞ ) ⊂ D( f ) → f ( x) ∈ Vε (l ﺃﻱ : ) )) (− ∞ ) ⊂ D( f ) → f (x) ∈ V (l ) > 0 / ∀x ∈ Vδ1 (+ ∞ ) ⊂ D( f ) → f ( x) ∈ Vε (l 1 > 0 / ∀x ∈ Vδ 2 2 ε ( lim f (x) = 0) ⇔ (∀ε > 0، ∃δ ( lim f (x) = 0) ⇔ (∀ε > 0 ، ∃δ ∞x→ + ∞x→ − ﺏ -ﺣﺴﺐ ﻗﺎﻳﻦ :ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﻌﺪﺩ lﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ fﰲ ﺍﳌﺎ ﻻ ﺎﻳﺔ ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ (a n )n≥1ﻣﻦ ) ∞( ، Vδﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﻜﱪ ﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ( f (a n ))n≥1ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ . l ) ﰲ ﺣﺎﻟﺔ ∞ x → +ﺣﺪﻭﺩ ﺍﳌﺘﺘﺎﻟﻴﺔ ﺗﻜﻮﻥ ﰲ ) ∞ ، Vδ (+ﻭﰲ ﺣﺎﻟﺔ ∞ x → −ﺣﺪﻭﺩ ﺍﳌﺘﺘﺎﻟﻴﺔ ﺗﻜﻮﻥ ﰲ ) ∞ ( Vδ (− ﻧﺘﻴﺠﺔ :ﺃ ⇔ ﺏ ﻣﺜﺎﻝ : 3 − 2x x +1 = )f ( x 3 − 2x = +2 + 0 x +1 -4ﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻼﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﳌﺎ ﻻ ﺎﻳﺔ : 3 − 2x = −2 − 0 , x +1 lim ∞x→ + lim ∞x→ − ∞ = )lim f ( x ∞→x ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ﺗﻜﺘﺐ ﻛﺎﻟﺘﺎﱄ : ) ∞( ∀ε > 0، ∃δ > 0 / ∀x ∈ Vδ (∞ ) ⊂ D( f ) → f ( x) ∈ Vε ﺍﻟﺘﻔﺎﺻﻴﻞ ﺗﺴﺘﻨﺘﺞ ﻣﺒﺎﺷﺮﺓ ﻣﻦ ﺃﻧﻮﺍﻉ ﺍﻟﻨﻬﺎﻳﺎﺕ ﺍﻟﺴﺎﺑﻘﺔ. -3.3.3ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳊﺴﺎﺑﻴﺔ ﻋﻠﻰ ﺍﻟﻨﻬﺎﻳﺎﺕ ﻭﺧﺼﺎﺋﺺ ﺍﻟﻨﻬﺎﻳﺎﺕ : -1ﺇﺫﺍ ﻛﺎﻧﺖ ﺃ- lim g ( x) = l 2 , lim f ( x) = l 1 x→ a lim( f ( x) ± g ( x)) = l 1 ± l 2 x→ a lim f ( x) ⋅ g ( x) = l 1 ⋅ l 2 ﺏ- ﺝ- x→ a ،ﻓﺈﻥ : l2 ≠ 0 ، f ( x) l 1 = g ( x) l 2 x→ a lim x→ a -2ﳎﻤﻮﻉ ﻭﻓﺮﻕ ﺩﺍﻟﺘﲔ ﻻ ﻣﺘﻨﺎﻫﻴﺘﲔ ﰲ ﺍﻟﺼﻐﺮ،ﻫﻮ ﺩﺍﻟﺔ ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ. -3ﺟﺪﺍﺀ ﺩﺍﻟﺔ ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ،ﻭﺩﺍﻟﺔ ﳏﺪﻭﺩﺓ ،ﻫﻮ ﺩﺍﻟﺔ ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ. ، limﻓﺈﻧﻪ : -4ﺇﺫﺍ ﻛﺎﻥ f (x) = l x→ a 48 PDF created with pdfFactory trial version www.pdffactory.com ∃δ > 0 / ∀x ∈ Vδ (a ) → f ( x) ≤ c cﺛﺎﺑﺖ ، limﻓﺈﻧﻪ: -5ﺇﺫﺍ ﻛﺎﻥ f ( x) = l ≠ 0 x→ a ∃δ 1 > 0 / ∀x ∈ Vδ1 (a ) → f ( x)l > c ﺃ- cﺛﺎﺑﺖ ﺏ- -6ﺇﺫﺍ ﻭﺟﺪ >0 1 ≤c )f ( x → ) ∃δ 2 > 0 / ∀x ∈ Vδ 2 (a ، δﲝﻴﺚ ﻣﻦ ﺃﺟﻞ ﻛﻞ xﻣﻦ ) ، Vδ (aﻳﻜﻮﻥ: )g ( x) ≤ f ( x) ≤ h( x )g ( x) ≤ f ( x) ≤ h( x ﻓﺈﻥ: lim f ( x) = l x→ a -7ﺇﺫﺍ ﻭﺟﺪ > 0 ﻭ lim g ( x) = lim h( x) = l x→ a x→ a . ، δﲝﻴﺚ ﻣﻦ ﺃﺟﻞ ﻛﻞ xﻣﻦ ) ، Vδ (aﻳﻜﻮﻥ: ) f ( x) ≤ g ( xﻭ , lim f ( x) = l 1 x→ a * lim g ( x) = l 2 x→ a ﻓﺈﻥ. l 1 ≤ l 2 : ﻣﻼﺣﻈﺔ :ﺍﳋﺼﺎﺋﺺ 7 ← 1ﺻﺤﻴﺤﺔ ﺃﻳﻀﺎﹰ ﰲ ﺣﺎﻟﺔ: . x → +∞ , x → −∞ , x → a + 0 , x → a − 0 ﻣﺜﺎﻝ : sin x =1 x -1 lim x→ 0 ﻟﱪﻫﺎﻥ ﺍﻟﻨﻬﺎﻳﺔ ﻧﱪﻫﻦ ﺻﺤﺔ ﺍﳌﺘﺮﺍﺟﺤﺔ )(1 ﺣﻴﺚ : sin x <1 x < cos x π π 0 ≠ x ∈ − , 2 2 ﻧﺄﺧﺬ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ،ﺃﻱ. R = 1 : > > > ﻣﻦ ﺍﻟﺸﻜﻞ ﻧﻼﺣﻆ ﺃﻥ ﻣﺴﺎﺣﺔ ﺍﳌﺜﻠﺚ AOBﺃﻗﻞ ﻣﻦ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ AOBﺍﻟﱵ ﺃﻗﻞ ﻣﻦ ﻣﺴﺎﺣﺔ ﺍﳌﺜﻠﺚ ، AODﺃﻱ: ﲟﺎﺃﻥ )*( 1 (OA)2 sin x < 1 (OA)2 x < 1 OA. AD 2 2 2 , OA = 1 , sin x = AB ﳛﺼﺮﻫﺎ OB ، tgx = ADﺣﻴﺚ xﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﱵ ﻣﻊ OA ﺑﺮﺍﺩﻳﺎﻥ،ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ : 1 1 1 sin x < x < tgx 2 2 2 49 PDF created with pdfFactory trial version www.pdffactory.com : ﻭﻣﻨﻪ ﻳﻜﻮﻥ sin x > 0 ، sin x < x < tg x 1< x 1 < sin x cos x ﻭﺑﺎﻟﺘﺎﱄ ﳓﺼﻞ ﻋﻠﻰ ﺍﳌﺘﺮﺍﺟﺤﺔ . cos x < sin x <1 x :ﺃﻱ sin x π π x ≠ 0 , − , ﻣﻦx ﳏﻘﻘﺔ ﻣﻦ ﺃﺟﻞ ﻛﻞ-1- ﻓﺈﻥ ﺍﳌﺘﺮﺍﺟﺤﺔ،ﺯﻭﺟﻴﺔ ﻭcos x ﲟﺎ ﺃﻥ ﺍﻟﺪﺍﻟﺔ x 2 2 : ﻳﻜﻮﻥ، ﳊﺴﺎﺏ ﺍﻟﻨﻬﺎﻳﺔ ﺍﳌﻄﻠﻮﺑﺔ-1- ﻧﻄﺒﻴﻖ ﺍﳌﺘﺮﺍﺟﺤﺔ lim cos x < lim x→ 0 x→ 0 sin x <1 x , 1 < lim x→ 0 sin x <1 x sin x =1 x→ 0 x x 1 -2 lim 1 − = e x→ ∞ x n 1 lim 1 + = e ﻣﻌﻠﻮﻡ ﺃﻥ n → +∞ n , lim x∈ℜ n∈Ν 1 1 1 < < n +1 x n : ﺃﻱ، n ≤ x ≤ n + 1 ﻳﻜﻮﻥn = [x] ﺑﻮﺿﻊ. x > 1 ﻓﺈﻥ، x → +∞ ﲟﺎﺃﻥ-ﺃ ﻭﺍﺿﺢ ﺃﻥ ﺍﳌﺘﺮﺍﺟﺤﺔ n x 1 1 1 1 + < 1 + < 1 + n + 1 x n n +1 . ﺻﺤﻴﺤﺔ (x → +∞ ) ⇔ (n → +∞ ) ﻭﺍﺿﺢ ﺃﻳﻀﺎﹰ ﺃﻥ ﻋﻨﺪﻧﺎ 1 lim 1 + n →∞ n n +1 n 1 1 = lim 1 + lim 1 + = e ⋅ 1 = e n →∞ n n →∞ n n +1 1 lim1 + n n →∞ 1 e n +1 lim 1 + = = =e n→∞ 1 1 n + 1 lim 1 + n→∞ n + 1 ﻭ ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺍﳊﺼﺮ ﻳﻜﻮﻥ 50 PDF created with pdfFactory trial version www.pdffactory.com x 1 lim 1 + = e ∞x→ + x ﺏ -ﲟﺎﺃﻥ ∞، x → −ﻓﺈﻥ . x < −1ﺑﻮﺿﻊ y = − xﳓﺼﻞ ﻋﻠﻰ: −y y −y y −1 y = lim = = lim ∞y → + ∞y → + y y −1 y −1 1 1 lim 1 + = e.1 = e = lim 1 + ∞y → + y − 1 y→ +∞ y − 1 ﺃﻱ ﺃﻥ: 1 1 lim 1 + = lim 1 − ∞x→ − ∞y → + y x x y 1 = lim 1 + ∞y → + y − 1 x 1 lim 1 + = e ∞x→ − x -4.3.3ﺎﻳﺔ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺮﺗﻴﺒﺔ : ﻧﻈﺮﻳﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ fﻣﻌﺮﻓﺔ ﻭﺭﺗﻴﺒﺔ ﻋﻠﻰ ﺍﺎﻝ ]، [a, bﻓﺈﺎ ﰲ ﻛﻞ ﻧﻘﻄﺔ x0ﻣﻦ ﺍﺎﻝ [ ]a, bﲤﻠﻚ ﺎﻳﺔ ﻳﺴﺮﻯ ﻭﺎﻳﺔ ﳝﲎ ﻣﻨﺘﻬﻴﺔ،ﻭﰲ ﺍﻟﻨﻘﻄﺔ b, aﺎﻳﺔ ﳝﲎ ،ﻳﺴﺮﻯ ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ. ﺍﻟﱪﻫﺎﻥ :ﻧﱪﻫﻦ -1ﻧﱪﻫﻦ ﺃﻥ ﻟﻠﺪﺍﻟﺔ fﺎﻳﺔ ﳝﲎ ﰲ ﻛﻞ ﻧﻘﻄﺔ ، x0ﺣﻴﺚ . a ≤ x0 < b -2ﻧﱪﻫﻦ ﺃﻥ ﻟﻠﺪﺍﻟﺔ fﺎﻳﺔ ﻳﺴﺮﻯ ﰲ ﻛﻞ ﻧﻘﻄﺔ ، x0ﺣﻴﺚ . a < x0 ≤ b ﻧﺄﺧﺬ ﺍﳊﺎﻟﺔ ﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ fﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ )،ﺣﺎﻟﺔ ﻟﻴﺴﺖ ﻣﺘﺰﺍﻳﺪﺓ ﺗﱪﻫﻦ ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ (. -1ﻋﻨﺪﻧﺎ: )∀x ∈ ]x0 , b] → f ( x0 ) ≤ f ( x ﻧﻼﺣﻆ ﺃﻥ ﳎﻤﻮﻋﺔ ﻗﻴﻢ ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ ﺍﺎﻝ ] ]x0 , bﳏﺪﻭﺩﺓ ﻣﻦ ﺍﻷﺳﻔﻞ ،ﺃﻱ: ∃m = inf ) f ( x) ≥ f ( x0 ] ] x∈ x0 ,b ﻣﻦ ﺧﺼﺎﺋﺺ ﺍﻟﻌﺪﺩ m ∀x ∈ ]x0 , b] → f ( x) ≥ m > m − ε w ) , ∃xε ∈ ]x0 , b] / m + ε > f ( xε w ﻧﺮﻣﺰ ﻟﻠﻔﺮﻕ xε − x0ﺑﺎﻟﺮﻣﺰ ، δﻭﺍﺿﺢ ﺃﻥ . δ > 0 ∀ε > 0 , ∀ε > 0 )(1 )(2 ﻻﺣﻆ ) ∀x ∈ ]x0 , xε [ = ]x0 , x.0 + δ [ → f ( x) ≤ f ( xε )(3 ﻣﻦ ) (3), (2), (1ﻳﻜﻮﻥ : 51 PDF created with pdfFactory trial version www.pdffactory.com • ∀ε > 0, ∃δ > 0 / ∀x ∈ ]x0 , x.0 + δ [ = Vδ ( x0 + 0 ) → f ( x) − m < ε f ( x0 + 0 ) = lim f ( x) = m ﺃﻱ ﺃﻥ x→ x0 + 0 -2ﻋﻨﺪﻧﺎ: ) ∀x ∈ [a , x0 [ → f ( x) ≤ f ( x0 ﻧﻼﺣﻆ ﺃﻥ ﳎﻤﻮﻋﺔ ﻗﻴﻢ ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ ﺍﺎﻝ [ [a , x0ﳏﺪﻭﺩﺓ ﻣﻦ ﺍﻷﻋﻠﻰ ،ﺃﻱ : ) ∃M = sup f ( x) ≤ f (x0 [ x∈[a , x0 ﻣﻦ ﺧﺼﺎﺋﺺ ﺍﻟﻌﺪﺩ : M )(1 ∀x ∈ [a , x0 [ → f ( x) ≤ M < M + ε , ∀ε > 0 w ∀ε > 0 , ∃xε ∈ [a , x0 [ / f ( xε ) > M − ε w ﻧﺮﻣﺰ ﻟﻠﻔﺮﻕ x0 − xεﺑﺎﻟﺮﻣﺰ ، δﻭﺍﺿﺢ ﺃﻥ . 0 < δ )(3 ) ∀x ∈ ]xε , x0 [ = ]x0 − δ , x.0 [ → f ( x) ≥ f ( xε ﻻﺣﻆ ﻣﻦ ) (3), (2), (1ﻳﻜﻮﻥ : )(2 • ∀ε > 0, ∃δ > 0 / ∀x ∈ ]x0 − δ , x.0 [ = Vδ ( x0 + 0) → f ( x) − M < ε f ( x0 − 0 ) = lim f ( x) = M ﺃﻱ ﺃﻥ: x→ x0 − 0 ﻧﺘﻴﺠﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ -1ﺇﺫﺍ ﻛﺎﻧﺖ fﻣﻌﺮﻓﺔ ﻭﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ ] ، [a, bﻓﺈﻥ : )∀x ∈ [a , b] → f ( x − 0 ) ≤ f ( x) ≤ f ( x + 0 -2ﺇﺫﺍ ﻛﺎﻧﺖ fﻣﻌﺮﻓﺔ ﻭﻟﻴﺴﺖ ﻣﺘﺰﺍﻳﺪﺓ ﻋﻠﻰ ] ، [a, bﻓﺈﻥ : )∀x ∈ [a , b] → f ( x + 0 ) ≤ f (x) ≤ f ( x − 0 -3ﺍﻟﻨﻈﺮﻳﺔ ﺻﺤﻴﺤﺔ ﰲ ﺣﺎﻟﺔ ﺍﺎﻝ ] [a, bﻛﻴﻔﻲ ،ﺃﻱ ﻣﻔﺘﻮﺡ ﺃﻭ ﻏﲑ ﻣﻨﺘﻪ . -5.3.3ﻣﻌﻴﺎﺭ ﻛﻮﺷﻲ ﻟﻨﻬﺎﻳﺎﺕ ﺍﻟﺪﻭﺍﻝ : ﺗﻌﺮﻳﻒ :ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﲢﻘﻖ ﺷﺮﻁ ﻛﻮﺷﻲ ﰲ ﺍﻟﻨﻘﻄﺔ،ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ aﻭﲢﻘﻖ ﺍﻟﺸﺮﻁ: • ∀ε > 0, ∃δ > 0 / ∀x′, x′′ ∈ Vδ (a ) → f ( x′) − f ( x′′) < ε ﻧﻈﺮﻳﺔ :ﺗﻜﻮﻥ ﻟﻠﺪﺍﻟﺔ fﺎﻳﺔ ﻣﻨﺘﻬﻴﺔ ﰲ ﺍﻟﻨﻘﻄﺔ ، aﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻧﺖ ﲢﻘﻖ ﺷﺮﻁ ﻛﻮﺷﻲ ﰲ ﺗﻠﻚ ﺍﻟﻨﻘﻄﺔ. ، limﺃﻱ : ﺍﻟﱪﻫﺎﻥ [⇐] :ﻧﻔﺮﺽ ﺃﻥ f ( x) = l x→ a −1− ε 2 • < ∀ε > 0, ∃δ > 0 / ∀x ∈ Vδ (a ) ⊂ D( f ) → f (x) − l 52 PDF created with pdfFactory trial version www.pdffactory.com • ﺇﺫﺍ ﻛﺎﻧﺖ x′′ , x′ﻧﻘﻄﺘﲔ ﻛﻴﻔﻴﺘﲔ ﻣﻦ ) ،Vδ (aﻓﺈﻧﻪ ﻣﻦ −1 −ﻳﻨﺘﺞ ε ε + =ε 2 2 < f ( x′) − f ( x′′) = ( f ( x′) − l ) − ( f ( x′′) − l ) ≤ f ( x′) − l + f ( x′′) − l ﻭﻣﻨﻪ ﺷﺮﻁ ﻛﻮﺷﻲ ﳏﻘﻖ . ]⇒[ ﻧﻔﺮﺽ ﺃﻥ fﲢﻘﻖ ﺷﺮﻁ ﻛﻮﺷﻲ ﰲ ﺍﻟﻨﻘﻄﺔ ، aﺃﻱ: −2− • ∀ε > 0, ∃δ > 0 / ∀x′, x′′ ∈ Vδ (a ) ⊂ D( f ) → f ( x′) − f ( x′′) < ε • ﻭﻣﻨﻪ ﻳﻮﺟﺪ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ) Vδ (aﻟﻠﻨﻘﻄﺔ aﺗﻜﻮﻥ ﻓﻴﻪ ﺍﻟﺪﺍﻟﺔ ﻣﻌﺮﻓﺔ. • ﻟﺘﻜﻦ (a n )n≥1ﻣﺘﺘﺎﻟﻴﺔ ﻣﻦ ) ،Vδ (aﺣﻴﺚ: . lim an = a ∞→n ﻧﱪﻫﻦ ﺃﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ، ( f (a n ))n ≥1ﲤﻠﻚ ﺎﻳﺔ ﻣﻨﺘﻬﻴﺔ ﻏﲑ ﻣﺘﻌﻠﻘﺔ ﺑﺎﺧﺘﻴﺎﺭ . (a n )n≥1 ﻋﻨﺪﻧﺎ a n = a limﺗﻌﲏ : ∞→n ∀ε > 0, ∃nε ≥ 1 / ∀n ≥ nε → a n − a < ε ﻣﻦ ﺃﺟﻞ ε = δ εﺣﻴﺚ δﻣﻌﺮﻓﺔ ﰲ ﺍﻟﺼﻴﻐﺔ −1 −ﻳﻜﻮﻥ : ε = δ , ∃nδ ε ≥ 1 / ∀n ≥ nδ ε → a n − a < δ ε −3− ﻫﺬﺍ ﻳﻌﲏ ﺃﻧﻪ • • ) , ∀m ≥ nδε → a n ∈Vδ ε (a ) , a m ∈Vδ ε (a ﻣﻦ ﻫﻨﺎ ﺣﺴﺐ ﺍﻟﺼﻴﻐﺔ − 3 − , − 2 − ∀n ≥ nδ ε ﻳﻜﻮﻥ : ∀ε > 0, ∃nε′ = nδ ε / ∀n ≥ nε′ , ∀m ≥ nε′ → f (a n ) − f (a m ) < ε ﺃﻱ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ ( f (a n ))n ≥1ﻟﻜﻮﺷﻲ . ∃l = lim ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﻛﻮﺷﻲ ﻓﻘﺮﺓ 1.8.2ﺍﳌﺘﺘﺎﻟﻴﺔ ( f (a n ))n ≥1ﺗﻜﻮﻥ ﻣﺘﻘﺎﺭﺑﺔ ،ﺃﻱ f (a n ) : ∞→n • ﻧﱪﻫﻦ ﺃﻥ lﻣﺴﺘﻘﻞ ﻋﻦ ﺍﺧﺘﻴﺎﺭ ﺍﳌﺘﺘﺎﻟﻴﺔ (a n )n≥1ﻣﻦ ) . Vδ (a • ﻧﻔﺮﺽ ﺍﻟﻌﻜﺲ ،ﺃﻱ ﺗﻮﺟﻮﺩ ﻣﺘﺘﺎﻟﻴﺔ ﺃﺧﺮﻯ (bn )n ≥1ﻣﻦ ) Vδ (aﲢﻘﻖ: lim b = lim an = a n→∞ n ∞→ n lim ، limﺣﻴﺚf (a n ) = l 1 ≠ l 2 : ﻭ f (bn ) = l 2 ∞→n ∞→ n ﻣﻌﻠﻮﻡ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ (c n )n ≥1ﺍﳌﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ : }= {c1 , c 2 , c3 ,........} ≡ {a 1 , b1 , a 2 , b2 , a 3 ........ ) (c n ≥1 n • . lim ﻣﻦ ) ،Vδ (aﻭﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ ، aﺃﻱc = a : n→∞ n 53 PDF created with pdfFactory trial version www.pdffactory.com ﻣﻦ ﻫﻨﺎ ﻭﻣﻦ ﺷﺮﻁ ﻛﻮﺷﻲ ،ﻭﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ، (a n )n≥1ﻧﺴﺘﻨﺘﺞ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ ( f (c n ))n ≥1ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﻋﺪﺩ l 3ﺃﻱ: lim f (cn ) = l 3 ∞→n ﺍﳌﺘﺘﺎﻟﻴﺔ ( f (c n ))n ≥1ﻫﻲ ﺍﳌﺘﺘﺎﻟﻴﺔ }{ f (a ), f (b ), f (a ), f (b ),........... ﻫﺬﺍ ﻳﻌﻦ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ )) ( f (b )) , ( f (aﺟﺰﺋﻴﺘﺎﻥ ﻣﻦ ﺍﳌﺘﺘﺎﻟﻴﺔ )) . ( f (c 2 n ≥1 n n ≥1 2 1 1 n ≥1 n n ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﻓﻘﺮﺓ 7.2ﻳﻜﻮﻥ : l 1 = l 3ﻭ ، l 2 = l 3ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ. l 1 = l 2 : • ﻭﻣﻨﻪ ﺎﻳﺔ ( f (a n ))n ≥1ﻣﺴﺘﻘﻠﺔ ﻋﻦ ﺍﺧﺘﻴﺎﺭ ﺍﳌﺘﺘﺎﻟﻴﺔ (a n )n≥1ﻣﻦ ) ،Vδ (aﺃﻱ ﺃﻥ fﳍﺎ ﺎﻳﺔ ﻣﻨﺘﻬﻴﺔ ﰲ ﺍﻟﻨﻘﻄﺔ . a ﻣﻼﺣﻈﺔ :ﻧﻈﺮﻳﺔ ﻛﻮﺷﻲ ﺻﺤﻴﺤﺔ ﻋﻨﺪﻣﺎ ﻧﺴﺘﺒﺪﻝ ﺍﻟﻜﺘﺎﺑﺔ ، x → aﺑﺎﻟﻜﺘﺎﺑﺔ: x→ a +0 ،ﺃﻭ x→ a −0 ،ﺃﻭ ∞→x -4.3ﺍﻻﺳﺘﻤﺮﺍﺭ : ﻟﺘﻜﻦ fﺩﺍﻟﺔ ﺣﻘﻴﻘﻴﺔ ﳌﺘﻐﲑ ﺣﻘﻴﻘﻲ ﻭ aﻋﺪﺩﺍﹰ ﻣﻦ . ℜ -1.4.3ﺗﻌﺎﺭﻳﻒ : -1ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ، aﺇﺫﺍ ﻛﺎﻧﺖ : wﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻨﻘﻄﺔ a f ( x) = f (a ) w lim x→ a ﺃﻱ ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ، aﺇﺫﺍ ﲢﻘﻘﺖ ﺍﻟﺸﺮﻭﻁ ﺍﻟﺘﺎﻟﻴﺔ : ﺃ- ﺏ- ﺝ- • ) ∃δ 0 > 0 / Vδ 0 (a ) ⊂ D( f ∃ lim f ( x) = l x→ a f (a ) = l ﻧﺘﻴﺠﺔ :ﻣﻦ ﺍﻟﺘﻌﺮﻳﻒ ﺍﻟﺴﺎﺑﻖ ﻭﻣﻦ ﺗﻌﺮﻳﻒ ﺍﻟﻨﻬﺎﻳﺔ ﺣﺴﺐ ﻗﺎﻳﻦ ﻭ ﻛﻮﺷﻲ ﻧﺴﺘﻨﺘﺞ ﺗﻌﺮﻳﻔﲔ ﻟﻼﺳﺘﻤﺮﺍﺭ. ﺃ -1ﺣﺴﺐ ﻛﻮﺷﻲ :ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ، aﺇﺫﺍ ﲢﻘﻖ : • ) ∃δ 0 > 0 / Vδ 0 (a ) ⊂ D( f w )) ∀ε > 0 , ∃δ ∈ ]0, δ 0 ] / ∀x ∈ Vδ (a ) → f ( x) ∈ Vε ( f (a w ﺏ -1ﺣﺴﺐ ﻗﺎﻳﻦ :ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ، aﺇﺫﺍ ﲢﻘﻖ : w • ) ∃δ 0 > 0 / Vδ 0 (a ) ⊂ D( f 54 PDF created with pdfFactory trial version www.pdffactory.com wﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ (a n )n≥1ﻣﻦ ) Vδ (aﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ ، aﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ( f (a n ))n ≥1ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ 0 ﺍﻟﻌﺪﺩ ) . f (a -2ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﺃ -2ﻋﻠﻰ ﻳﺴﺎﺭ ﺍﻟﻨﻘﻄﺔ ، aﺇﺫﺍ ﻛﺎﻧﺖ : w w • ) ∃δ 0 > 0 / Vδ 0 (a − 0) ⊂ D( f ) lim f ( x) = f (a x→ a − 0 ﺏ -2ﻋﻠﻰ ﳝﲔ ﺍﻟﻨﻘﻄﺔ ، aﺇﺫﺍ ﻛﺎﻧﺖ : w w • ) ∃δ 0 > 0 / Vδ 0 (a + 0) ⊂ D( f ) lim f ( x) = f (a x→ a + 0 ﻣﻼﺣﻈﺔ : -1ﻣﻦ ﺍﻟﺘﻌﺎﺭﻳﻒ ﺃ ، 1ﺃ ، 2ﺏ 2ﻧﺴﺘﺨﻠﺺ ﺗﻌﺮﻳﻒ ﻛﻮﺷﻲ ﻟﻼﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻴﻤﲔ ،ﻭﻣﻦ ﺍﻟﻴﺴﺎﺭ. -2ﻣﻦ ﺍﻟﺘﻌﺎﺭﻳﻒ ﺏ ، 1ﺃ ، 2ﺏ 2ﻧﺴﺘﺨﻠﺺ ﺗﻌﺮﻳﻒ ﻗﺎﻳﻦ ﻟﻼﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻴﻤﲔ ،ﻭﻣﻦ ﺍﻟﻴﺴﺎﺭ. ﻧﺘﺎﺋﺞ : -1ﺃ ⇔ 1ﺏ f -2ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﺍﻤﻮﻋﺔ ، Aﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺘﻤﺮﺓ ﰲ ﻛﻞ ﻧﻘﻄﺔ ﻣﻦ . A f -3ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ، aﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺘﻤﺮﺓ ﻣﻦ ﺍﻟﻴﻤﲔ،ﻭﻣﻦ ﺍﻟﻴﺴﺎﺭ ﰲ ﺍﻟﻨﻘﻄﺔ . a 1 ) ( ( lim f ( x) = f lim f ) -4ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ f ) ⇔ ( aﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻟﻠﻨﻘﻄﺔ aﻭ x x→ a x→ a -5ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ]، [a, bﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺘﻤﺮﺓ ﰲ ﻛﻞ ﻧﻘﻄﺔ ﻣﻦ [، ]a, bﻭﻣﺴﺘﻤﺮﺓ ﻣﻦ ﺍﻟﻴﻤﲔ ﰲ ﺍﻟﻨﻘﻄﺔ aﻭﻣﻦ ﺍﻟﻴﺴﺎﺭ ﰲ ﺍﻟﻨﻘﻄﺔ . b ﺃﻣﺜﻠﺔ : -1ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ ، fﺣﻴﺚ : a =0 ﻭﺍﺿﺢ ﺃﻥ ، D( f ) = ℜﻭ 1 ≤ x x 1 , x≠0 x sin f ( x) = x 0 , x=0 ∀x ∈ ℜ → 0 ≤ f ( x) − f (0) = f ( x) = x sin 55 PDF created with pdfFactory trial version www.pdffactory.com ) ∃δ 0 > 0 / Vδ 0 (0 ) ⊂ D( f ﺃﻱ ﻭ ﻳﻜﻔﻲ ﺃﺧﺬ ∀ε > 0, ∃δ > 0 / ∀x ∈ Vδ (0 ) ⊂ D( f ) → f ( x) < ε δ =ε ،ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ ) lim f ( x) = 0 = f (0 x→0 ﺃﻱ ﺃﻥ fﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ . a = 0 -2ﺗﺄﺧﺬ ] f (x) = [xﺍﻧﻈﺮ ﻣﺜﺎﻝ 3ﺑﺪﺍﻳﺔ ﺍﻟﻔﺼﻞ. lim f ( x) = f (1 + 0 ) = f (1) = 1 ﻣﻦ ﺷﻜﻞ ﺍﻟﺪﺍﻟﺔ ﻭﺍﺿﺢ ﺃﻥ x→1+ 0 )lim f ( x) = f (1 − 0 ) = 0 ≠ f (1 ﻭ x→1−0 ﺃﻱ ﺃﻥ f ﻣﺴﺘﻤﺮﺓ ﻣﻦ ﺍﻟﻴﻤﲔ ﰲ ﺍﻟﻨﻘﻄﺔ ، a = 1ﻟﻜﻦ ﻟﻴﺴﺖ ﻣﺴﺘﻤﺮﺓ ﻣﻦ ﺍﻟﻴﺴﺎﺭ ﰲ ﻧﻔﺲ ﺍﻟﻨﻘﻄﺔ. -2.4.3ﻧﻘﻂ ﻋﺪﻡ ﺍﻻﺳﺘﻤﺮﺍﺭ ﻭﺍﻟﺘﻤﺪﻳﺪ ﺑﺎﻻﺳﺘﻤﺮﺍﺭ : ﺗﻌﺮﻳﻒ :ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﻨﻘﻄﺔ aﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻟﻠﺪﺍﻟﺔ -1 -2 f ،ﺇﺫﺍ ﱂ ﻳﺘﺤﻘﻖ ﺃﺣﺪ ﺍﻟﺸﺮﻭﻁ ﺍﻟﺘﺎﻟﻴﺔ : ) a ∈ D( f )∃l ∈ ℜ / l = lim f ( x x→ a ) l = f (a -3 ﺗﺼﻨﻒ ﻧﻘﻂ ﻋﺪﻡ ﺍﻻﺳﺘﻤﺮﺍﺭ ﺇﱃ ﺛﻼﺙ ﺃﺻﻨﺎﻑ ﻫﻲ: ﺃ -ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ : ﻧﻘﻮﻝ ﻋﻦ ﺍﻟﻨﻘﻄﺔ aﺇﺎ ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺪﺍﻟﺔ ، fﺇﺫﺍ ﲢﻘﻖ ﺍﻟﺸﺮﻁ -2-ﻭﱂ ﻳﺘﺤﻘﻖ ﺃﺣﺪ ﺍﻟﺸﺮﻭﻁ . -3- ، -1ﻧﺘﻴﺠﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﻘﻄﺔ aﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ ﻟﻠﺪﺍﻟﺔ ﳓﺼﻞ ﻋﻠﻰ ﺩﺍﻟﺔ *f x→ a ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ، aﺗﻜﻮﻥ ﻣﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ : f ( x) , x ≠ a f ∗ ( x) = x=a ﻓﻌﻼﹰ ﻷﻥ ، fﺃﻱ )∃l = lim f ( x ،ﻓﺈﻥ ﺑﻮﺿﻌﻨﺎ ) l = f ∗ (a l , ) a ∈ D( f ) , lim f ∗ ( x) = lim f ( x) = l = f ∗ (a x→ a x→ a ﻭﺑﺎﻟﺘﺎﱄ ﻧﻜﻮﻥ ﻗﺪ ﻣﺪﺩﻧﺎ fﺑﺎﻻﺳﺘﻤﺮﺍﺭﻳﺔ ﰲ ﺍﻟﻨﻘﻄﺔ . a ﻋﻨﺪﻫﺎ ﻧﻘﻮﻝ ﺇﻥ ﻛﻞ ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ ﳝﻜﻦ ﺟﻌﻠﻬﺎ ﻧﻘﻄﺔ ﺍﺳﺘﻤﺮﺍﺭ. ﻣﺜﺎﻝ : 1ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ . f (x) = x sin 1 x ﻻﺣﻆ ﺃﻥ 1 =0 x lim x sin x→ 0 ،ﻟﻜﻦ ﺍﻟﻌﺒﺎﺭﺓ 1 x sin x ﻟﻴﺲ ﳍﺎ ﻣﻌﲎ ﰲ ﺍﻟﺼﻔﺮ ،ﻭﺑﺎﻟﺘﺎﱄ ﺍﻟﻨﻘﻄﺔ a = 0ﻫﻲ ﻧﻘﻄﺔ ﻋﺪﻡ 56 PDF created with pdfFactory trial version www.pdffactory.com ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ. ﻟﻠﺒﺤﺚ ﻋﻦ ﲤﺪﻳﺪ f ﺑﺎﻻﺳﺘﻤﺮﺍﺭ ﰲ ﺍﻟﻨﻘﻄﺔ a = 0ﻳﻜﻔﻲ ﺃﻥ ﳒﻌﻞ f ( x) , x ≠ a f ∗ ( x) = x=a ﻻﺣﻆ 0 , ﺃﻥ ، 0 ∈ D( f ), lim f ∗ ( x) = lim f ( x) = 0 = f ∗ (0 ) :ﺃﻱ ∗ f x→ 0 x→ 0 ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﺼﻔﺮ. ﺏ -ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ : ﻧﻘﻮﻝ ﻋﻦ ﺍﻟﻨﻘﻄﺔ aﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ ﻟﻠﺪﺍﻟﺔ ، fﺇﺫﺍ ﻭﺟﺪﺕ ﺎﻳﺔ ﻣﻨﺘﻬﻴﺔ ﻣﻦ ﺍﻟﻴﻤﲔ ﻭﺃﺧﺮﻯ ﻣﻨﺘﻬﻴﺔ ﻣﻦ ﺍﻟﻴﺴﺎﺭ ﻟﻠﺪﺍﻟﺔ fﰲ ﺍﻟﻨﻘﻄﺔ aﳐﺘﻠﻔﺘﲔ ،ﺃﻱ : ∃f (a − 0) ∈ ℜ , ∃f (a + 0 ) ∈ ℜﻭ )f (a − 0) ≠ f (a + 0 ﺍﻟﻔﺮﻕ ) ، α = f (a + 0) + f (a − 0ﻳﺴﻤﻰ ﻗﻔﺰﺓ ﺍﻟﺪﺍﻟﺔ fﰲ ﺍﻟﻨﻘﻄﺔ . a ﻣﺜﺎﻝ : 2ﺍﻟﺪﺍﻟﺔ ﺍﻹﺷﺎﺭﺓ ﺍﻧﻈﺮ ﻣﺜﺎﻝ -2-ﺑﺪﺍﻳﺔ ﺍﻟﻔﺼﻞ 1 , x > 0 f ( x) = sgn x = 0 , x = 0 − 1 , x < 0 ﻻﺣﻆ ﺃﻥ: ﺃﻱ ﺃﻥ ﺍﻟﻨﻘﻄﺔ a = 0 ∃ lim f ( x) = f (+ 0) = 1 x→ +0 ) ⇒ f (+ 0) ≠ f (− 0 ∃ lim f ( x) = f (− 0) = −1 x→ −0 ﻫﻲ ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ .ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻗﻔﺰﺓ ﺍﻟﺪﺍﻟﺔ ﻫﻲ . α = 1 − (− 1) = 2 ﺝ -ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻟﺜﺎﱐ : ﻧﻘﻮﻝ ﻋﻦ ﺍﻟﻨﻘﻄﺔ aﻫﻲ ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻟﺜﺎﱐ ﻟﻠﺪﺍﻟﺔ ، fﺇﺫﺍ ﻛﺎﻧﺖ ﰲ ﻫﺬﻩ ﺍﻟﻨﻘﻄﺔ ﻋﻠﻰ ﺍﻷﻗﻞ ﺃﺣﺪ ﺍﻟﻨﻬﺎﻳﺘﲔ ﺍﻟﻴﻤﲎ ﺃﻭ ﺍﻟﻴﺴﺮﻯ ﻏﲑ ﻣﻮﺟﻮﺩﺓ ﺃﻭ ﺗﺴﺎﻭﻱ ﺍﳌﺎﻻﺎﻳﺔ. ﻣﺜﺎﻝ :ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ fﺣﻴﺚ: ﺑﺎﺳﺘﻌﻤﺎﻝ ﺗﻌﺮﻳﻒ ﻗﺎﻳﻦ ﻟﻠﻨﻬﺎﻳﺔ ﳓﺼﻞ ﻋﻠﻰ ﻟﻜﻦ ﺗﻮﺟﺪ ﺎﻳﺔ ﻣﻦ ﺍﻟﻴﻤﲔ ﻟﻠﺪﺍﻟﺔ f 1 x cos x , x < 0 f ( x) = 0 , x=0 1 cos , x>0 x lim f (x) = 0 ﰲ ﺍﻟﻨﻘﻄﺔ x→ −0 a =0 . . 57 PDF created with pdfFactory trial version www.pdffactory.com ﻫﺬﺍ ﻳﻌﲎ ﺃﻥ ﺍﻟﻨﻘﻄﺔ a =0 ﻫﻲ ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻟﺜﺎﱐ ﻟﻠﺪﺍﻟﺔ . f ﻧﻈﺮﻳﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ fﻣﻌﺮﻓﺔ ﻋﻠﻰ ] [a, bﻭﺭﺗﻴﺒﺔ ﻋﻠﻴﻪ ،ﻓﺈﻧﻪ ﺇﺫﺍ ﻛﺎﻧﺖ ﳍﺎ ﻧﻘﻂ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﰲ ﺍﺎﻝ [ ]a, bﻓﺈﺎ ﺗﻜﻮﻥ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ. ﺍﻟﱪﻫﺎﻥ :ﻧﻔﺮﺽ ﺃﻥ f ﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ. ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﻓﻘﺮﺓ ،4.3.3ﻟﻠﺪﺍﻟﺔ fﰲ ﻛﻞ ﻧﻘﻄﺔ ﻣﻦ ﺍﺎﻝ [ ]a, bﺎﻳﺔ ﳝﲎ ﻣﻨﺘﻬﻴﺔ،ﻭﻳﺴﺮﻯ ﻣﻨﺘﻬﻴﺔ ﻭﻳﻜﻮﻥ ﻋﻨﺪﻫﺎ : ) ∀x0 ∈ ]a , b[ → f ( x0 − 0) ≤ f ( x0 ) ≤ f ( x0 + 0 ﻫﺬﺍ ﻳﻌﲎ ، ∃f (x0 + 0 ),ﺃﻱ ﺃﻥ ﺍﻟﻨﻘﻄﺔ x0ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ. ) ∃f ( x0 − 0 ﺇﺫﺍ ﻛﺎﻧﺖ ) ، f (x0 + 0) = f (x0 − 0ﻓﺈﻥ: )∃ lim f ( x) = f ( x0 + 0) = f ( x0 − 0 x→ x0 ﻭﺑﺎﻟﺘﺎﱄ ﺗﻜﻮﻥ x0ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ ،ﻭﻫﻲ ﺗﺆﻭﻝ ﺇﱃ ﻧﻘﻄﺔ ﺍﺳﺘﻤﺮﺍﺭ ﻛﻤﺎ ﻋﺮﻓﻨﺎ ﰲ ﺍﻟﻨﺘﻴﺠﺔ ﻓﻘﺮﺓ .2.4.3 ﰲ ﺣﺎﻟﺔ fﻟﻴﺴﺖ ﻣﺘﺰﺍﻳﺪﺓ ﺗﱪﻫﻦ ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ. -3.4.3ﺍﻻﺳﺘﻤﺮﺍﺭ ﺑﺎﻷﺟﺰﺍﺀ : ﺗﻌﺮﻳﻒ ﺃ :ﻧﻘﻮﻝ ﺇﻥ fﻣﺴﺘﻤﺮﺓ ﺑﺎﻷﺟﺰﺍﺀ ﻋﻠﻰ ﺍﺎﻝ ]، [a, bﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﺍﺎﻝ [ ]a, bﺑﺎﺳﺘﺜﻨﺎﺀ ﳏﺘﻤﻞ ﻟﻌﺪﺩ ﻣﻨﺘﻪ ﻣﻦ ﻧﻘﻂ ﺍﺎﻝ [، ]a, bﺍﻟﱵ ﺗﻜﻮﻥ ﻧﻘﻂ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ .ﻭﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺫﺍﻟﻚ ﲤﻠﻚ ﺎﻳﺔ ﻳﺴﺮﻯ ﰲ ﺍﻟﻨﻘﻄﺔ ، bﻭﺎﻳﺔ ﳝﲎ ﰲ ﺍﻟﻨﻘﻄﺔ . a ﺗﻌﺮﻳﻒ ﺏ :ﻧﻘﻮﻝ ﺇﻥ fﻣﺴﺘﻤﺮﺓ ﺑﺎﻷﺟﺰﺍﺀ ﻋﻠﻰ ، ℜﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻷﺟﺰﺍﺀ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ] [a, bﻣﻦ . ℜ ﻣﺜﺎﻝ :ﺍﻟﺪﺍﻟﺔ ﺍﳉﺰﺀ ﺍﻟﺼﺤﻴﺢ ]. f (x) = [x ﻣﺴﺘﻤﺮﺓ ﺑﺎﻷﺟﺰﺍﺀ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ] [a, bﻣﻦ ، ℜﻭﺑﺎﻟﺘﺎﱄ ﻫﻲ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻷﺟﺰﺍﺀ ﻋﻠﻰ ﻛﻞ ، ℜﻷﻧﻪ ﰲ ﻛﻞ ﻋﺪﺩ ﺻﺤﻴﺢ qﲤﻠﻚ ﺍﻟﺪﺍﻟﺔ fﺎﻳﺔ ﳝﲎ ﻣﻨﺘﻬﻴﺔ ﻭﻳﺴﺮﻯ ﻣﻨﺘﻬﻴﺔ ،ﻭ ) ، f (q + 0 ) ≠ f (q − 0ﺃﻱ ﰲ ﻛﻞ ﻧﻘﻄﺔ qﻣﻦ Ζﲤﻠﻚ ﺍﻟﺪﺍﻟﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ. -4.4.3ﺧﻮﺍﺹ ﺍﻟﺪﻭﺍﻝ ﺍﳌﺴﺘﻤﺮﺓ : -1.4.4.3ﺧﻮﺍﺹ ﺍﻟﺪﻭﺍﻝ ﺍﳌﺴﺘﻤﺮﺓ ﰲ ﻧﻘﻄﺔ : -1ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ f ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ aﻓﺈﺎ ﺗﻜﻮﻥ ﳏﺪﻭﺩﺓ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻨﻘﻄﺔ ، aﺃﻱ: ∀x ∈ Vδ (a ) → f ( x) ≤ c / ∃c > 0 , ∃δ > 0 -2ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ، aﻭ ، f (a ) ≠ 0ﻓﺈﻧﻪ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻨﻘﻄﺔ ، aﺗﻜﻮﻥ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ fﻣﻦ ﻧﻔﺲ ﺇﺷﺎﺭﺓ ﺍﻟﻌﺪﺩ ) ، f (aﺃﻱ : ) ∀x ∈ Vδ (a ) → signf ( x) = signf (a / ∃δ > 0 58 PDF created with pdfFactory trial version www.pdffactory.com -3ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺘﺎﻥ f ⋅ g, f ±g g, f f , g (a ) ≠ 0 , g -4ﻧﻈﺮﻳﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ) y0 = ϕ ( x0 ﻣﺴﺘﻤﺮﺗﲔ ﰲ ﺍﻟﻨﻘﻄﺔ ، aﻓﺈﻥ ﺍﻟﺪﻭﺍﻝ : ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ . a )z = f ( y ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ، y0ﻭﺍﻟﺪﺍﻟﺔ ،ﻓﺈﻧﻪ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻨﻘﻄﺔ x0ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ ﺍﳌﺮﻛﺒﺔ )y = ϕ (x h = f oϕ ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ، x0ﺣﻴﺚ ﻣﻌﺮﻓﺔ ﻭﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ . x0 ﺍﻟﱪﻫﺎﻥ : ﻧﻀﻊ f ( y0 ) = z0 ﻋﻨﺪﻧﺎ f ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ y0ﻳﻌﲏ ) / ∀y ∈ Vδ1 ( y0 ) ⊂ D( f ) → f ( y) ∈ Vε ( z0 −1− ∀ε > 0 , ∃δ 1 > 0 ﻋﻨﺪﻧﺎ ϕﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ x0ﻳﻌﲏ ) / ∀x ∈ Vδ 0 ( x0 ) ⊂ D(ϕ ) → ϕ ( x) ∈ Vε ( y0 −2− ∀ε > 0 , ∃δ 0 > 0 ﻣﻦ ﺃﺟﻞ ε = δ 1ﺣﻴﺚ δ 1ﻣﻌﺮﻓﺔ ﰲ ﺍﻟﺼﻴﻐﺔ −1 −ﻳﻜﻮﻥ ) / ∀x ∈ Vδ ′ ( x0 ) ⊂ D(ϕ ) → ϕ ( x) ∈ Vδ1 ( y0 −3− ε = δ 1 , ∃δ ′ > 0 ﻻﺣﻆ ﰲ ﺍﻟﺼﻴﻐﺔ y = ϕ (x)∈Vδ ( y0 ) − 3 −ﺣﺴﺐ ﺍﻟﺼﻴﻐﺔ −1 −ﻳﻜﻮﻥ: ) ، f ( y) = f (ϕ (x)) ∈Vε (z0ﺣﻴﺚ ) ، z0 = f (ϕ (x0 )) = f ( y0ﻫﺬﺍ ﻳﻌﲏ ﺃﻧﻪ ) ، Vδ ′ (x0 ) ⊂ D( f o ϕﻭ 1 ))) ∀ε > 0, ∃δ ′ > 0 / ∀x ∈ Vδ ′ ( x0 ) → f (ϕ ( x)) ∈ Vε ( f (ϕ ( x0 ﺃﻱ ﺃﻥ ﺍﻟﺪﺍﻟﺔ hﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ x0 -2.4.4.3ﺧﻮﺍﺹ ﺍﻟﺪﻭﺍﻝ ﺍﳌﺴﺘﻤﺮﺓ ﻋﻠﻰ ﳎﻤﻮﻋﺔ : -1ﻧﻈﺮﻳﺔ ) :ﺍﻟﻨﻈﺮﻳﺔ ﺍﻷﻭﱃ ﻟﻔﲑﺷﺘﺮﺍﺹ ( :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﺍﺎﻝ ] [a, bﻓﻬﻲ ﳏﺪﻭﺩﺓ ﻋﻠﻴﻪ ،ﺃﻱ: / ∀x ∈ [a , b] → f ( x) ≤ c ∃c > 0 ﺍﻟﱪﻫﺎﻥ :ﻧﻔﺮﺽ ﺍﻟﻌﻜﺲ ،ﺃﻱ : −1− / ∀x ∈ [a , b] → f ( x) > c ∃c > 0 ﻣﻦ ﺍﻟﺼﻴﻐﺔ −1 −ﻧﺴﺘﻨﺘﺞ ﺃﻧﻪ −2− ∀n ∈ Ν , ∃xn ∈ [a , b] / f ( xn ) > n ﻻﺣﻆ ﺍﳌﺘﺘﺎﻟﻴﺔ (xn )n≥1ﳏﺪﻭﺩﺓ ﻷﻥ ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺑﻮﻟﺰﺍﻧﻮ-ﻓﲑﺷﺘﺮﺍﺹ ﻓﻘﺮﺓ 1.7.2ﻣﻦ ﺍﳌﺘﺘﺎﻟﻴﺔ (xn )n≥1ﳝﻜﻦ ﺇﺧﺮﺍﺝ ﻣﺘﺘﺎﻟﻴﺔ ﺟﺰﺋﻴﺔ (xk )n ≥1ﻣﺘﻘﺎﺭﺑﺔ،ﺃﻱ: , a ≤ xn ≤ b ∀n ≥ 1 n / ξ = lim xkn ∞→n ∃ξ ∈ ℜ 59 PDF created with pdfFactory trial version www.pdffactory.com ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺍﳊﺼﺮ . a ≤ ξ ≤ b ﲟﺎﺃﻥ fﻣﺴﺘﻤﺮﺓ،ﻓﺎﻧﻪ ﺣﺴﺐ ﺍﻟﻨﺘﻴﺠﺔ 4ﻓﻘﺮﺓ 1.4.3ﻳﻜﻮﻥ: ) lim f (xk ) = f (ξ −3− ∞→ n n ﻋﻨﺪﻧﺎ ﺍﻟﺼﻴﻐﺔ − 2 −ﳏﻘﻘﺔ ﻣﻦ ﺃﺟﻞ ﻛﻞ (n ≥ 1), nﻭﻣﻨﻪ ﻣﻦ ﺃﺟﻞ knﳏﻘﻘﺔ ﺃﻳﻀﺎ ،ﺃﻱ: ) ( −4− ﺍﳌﺘﺮﺍﺟﺤﺔ -4-ﺗﻌﲏ ﺃﻥ: ) ( f xkn > kn ∞ = lim f xkn ∞→ n ﻫﺬﺍ ﻣﻨﺎﻑ ﻟﻠﻤﺴﺎﻭﺍﺓ − 3 −ﻭﻣﻨﻪ ﺍﻟﻔﺮﺽ ﻏﲑ ﺻﺤﻴﺢ ،ﺃﻱ ﺃﻥ ﺍﻟﺪﺍﻟﺔ fﳏﺪﻭﺩﺓ ﻓﻌﻼﹰ ﻋﻠﻰ ]. [a, b ﻗﻀﻴﺔ :ﺣﺎﻟﺔ ﺍﺎﻝ ﻏﲑ ﻣﻐﻠﻖ ،ﺍﻟﻨﻈﺮﻳﺔ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ﻏﲑ ﺻﺤﻴﺤﺔ. ﻣﺜﺎﻝ :ﺍﻟﺪﺍﻟﺔ ، f (x) = 1ﻭﺍﺿﺢ ﺃﺎ ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ [ ، ]0,1ﻟﻜﻦ ﻟﻴﺴﺖ ﳏﺪﻭﺩﺓ ﻋﻠﻴﻪ. x -2ﻧﻈﺮﻳﺔ ) ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻟﻔﲑﺷﺘﺮﺍﺹ ( :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ] ، [a, bﻓﺈﺎ ﻋﻠﻰ ﻫﺬﺍ ﺍﺎﻝ ﺗﺼﻞ ﺇﱃ ﺣﺪﻫﺎ ﺍﻻﻋﻠﻰ،ﻭﺍﻟىﺤﺪﻫﺎ ﺍﻷﺩﱏ ،ﺃﻱ: )f ( x f (ς ) = sup ∃ς ∈ [a , b ] / )f (ς ′) = inf f ( x ∃ς ′ ∈ [a , b] / ] x∈[a ,b ] x∈[a ,b ﺍﻟﱪﻫﺎﻥ :ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ] [a, bﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺴﺎﺑﻘﺔ ﺗﻜﻮﻥ ﳏﺪﻭﺩﺓ ﻋﻠﻴﻪ ،ﺃﻱ : , )∃ inf f ( x )∃ sup f ( x ] x∈[a ,b ] x∈[a ,b ﻧﱪﻫﻦ ﺃﻥ )f (ς ) = sup f ( x ] x∈[a ,b ﺑﻮﺿﻊ )M = sup f (x ] x∈[a ,b ﺃ- ﺏ- ∃ς ∈ [a , b] / ﻳﺘﺤﻘﻖ : ∀x ∈ [a , b] → f ( x) ≤ M ∀ε > 0, ∃x(ε ) ∈ [a , b] / f ( x(ε )) > M − ε ﻣﻦ ﺃﺟﻞ ، ε = 1ﻣﻦ –ﺏ -ﻧﺴﺘﻨﺘﺞ ﺃﻧﻪ: n ﺏ- ﻣﻦ ﺃ ،ﺏ ﻧﺴﺘﻨﺞ ﺃﻧﻪ : ﺣﻴﺚ ) n ≥ 1 , xn = x( 1n 1 n f (x( 1n )) > M − ∀n ≥ 1, ∃x( 1n )∈ [a , b] / 1 1 < f ( xn ) ≤ M < M + n n ∀n ≥ 1 → M − 60 PDF created with pdfFactory trial version www.pdffactory.com . lim ﻫﺬﺍ ﻳﻌﲎ ﺃﻥ f ( xn ) = M ∞→ n ﻣﻦ ﺏ ﻳﻜﻮﻥ ], xn ∈ [a , b ، ∀n ≥ 1ﺃﻱ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ (xn )n≥1ﳏﺪﻭﺩﺓ،ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺑﻮﻟﺰﺍﻧﻮ-ﻓﲑﺷﺘﺮﺍﺹ ﻣﻦ ﺍﳌﺘﺘﺎﻟﻴﺔ (xn )n≥1ﳝﻜﻦ ﺇﺧﺮﺍﺝ ﻣﺘﺘﺎﻟﻴﺔ ﺟﺰﺋﻴﺔ ) n ≥1 n (xkﻣﺘﻘﺎﺭﺑﺔ،ﺃﻱ: ∃ς ∈ ℜ / ς = lim xkn ∞→n ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺍﳊﺼﺮ . a ≤ ς ≤ b ﲟﺎﺃﻥ fﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ، ξﻓﺎﻧﻪ ﻳﻜﻮﻥ : ﻻﺣﻆ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ ﺍﳌﺘﺘﺎﻟﻴﺔ ﺍﳉﺰﺋﻴﺔ )) n ≥1 )) n ≥1 ) ( ) lim f xkn = f (ς ∞→ n ( f (xkﺟﺰﺋﻴﺔ ﻣﻦ ﺍﳌﺘﺘﺎﻟﻴﺔ ( f (xn ))n ≥1ﺍﳌﺘﻘﺎﺭﺑﺔ ﳓﻮ ، Mﺣﺴﺐ ﺧﺼﺎﺋﺺ ﺍﳌﺘﺘﺎﻟﻴﺔ ﺍﳉﺰﺋﻴﺔ n ( f (xkﻣﺘﻘﺎﺭﺑﺔ ﺃﻳﻀﺎﹰ ﳓﻮ ، Mﺃﻱ ﺃﻥ ) ، M = f (ςﻭﺑﺎﻟﺘﺎﱄ : )∃ς ∈ [a , b] / ς = sup f ( x n ] x∈[a ,b ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﻧﱪﻫﻦ )f (ς ′) = inf f ( x ] x∈[a ,b ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻧﻜﺘﺐ )sup f ( x) = min f ( x ] x∈[a ,b ] x∈[a ,b ∃ς ′ ∈ [a , b] / , )inf f ( x) = min f ( x ] x∈[a ,b ] x∈[a ,b ﻗﻀﻴﺔ :ﰲ ﺣﺎﻟﺔ ﺍﺎﻝ ﻏﲑ ﻣﻐﻠﻖ ،ﺍﻟﻨﻈﺮﻳﺔ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ﻏﲑ ﺻﺤﻴﺤﺔ. ﻣﺜﺎﻝ : ﺃ -ﺍﻟﺪﺍﻟﺔ fﺣﻴﺚ ، f ( x) = x 2ﻋﻠﻰ ﺍﺎﻝ [ ]0,1ﻻﺗﺼﻞ ﺇﱃ ﺣﺪﻫﺎ ﺍﻷﻋﻠﻰ،ﻭﻻ ﺇﱃ ﺣﺪﻫﺎ ﺍﻷﺩﱏ. ﺫﻟﻚ ﻷﻥ inf f ( x) = 0 , sup f ( x) = 1 : [x∈]0 ,1 [x∈]0 ,1 ﺏ -ﻫﺬﺍ ﺍﳌﺜﺎﻝ ﻳﺒﲔ ﺃﻥ ﺷﺮﻁ ﺍﻻﺳﺘﻤﺮﺍﺭ ﺃﺳﺎﺳﻲ ﻟﺼﺤﺔ ﺍﻟﻨﻈﺮﻳﺔ . ﰲ ﺣﺎﻝ fﻣﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ : ﻻﺣﻆ ﺃﻥ: sup f ( x) = 1 ]x∈[0 ,1 x2 , 0 < x < 1 f ( x) = 1 , x = 0 , x =1 2 inf f ( x) = 0 , ]x∈[0 ,1 ﻋﻠﻰ ﺍﺎﻝ ] [0,1ﺍﻟﺪﺍﻟﺔ ﻟﻴﺴﺖ ﻣﺴﺘﻤﺮﺓ ،ﻭﻫﻲ ﻻ ﺗﺼﻞ ﻻ ﺇﱃ ﺣﺪﻫﺎ ﺍﻷﻋﻠﻰ ﻭﻻ ﺇﱃ ﺣﺪﻫﺎ ﺍﻷﺩﱏ. -3ﻧﻈﺮﻳﺔ)ﺍﻟﻨﻈﺮﻳﺔ ﺍﻷﻭﱃ ﻟﺒﻮﻟﺰﺍﻧﻮ-ﻛﻮﺷﻲ(:ﺇﺫﺍ ﻛﺎﻧﺖ fﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ] [a, bﻭﲤﻠﻚ ﰲ ) ، ( f (a ) ⋅ f (b ) < 0ﻓﺈﺎ ﻋﻠﻰ ] [a, bﲤﻠﻚ ﻋﻠﻰ ﺍﻷﻗﻞ ﺻﻔﺮﺍ ﻭﺍﺣﺪﺍ ،ﺃﻱ: f (α ) = 0 b, a ﺇﺷﺎﺭﺗﲔ ﳐﺘﻠﻔﺘﲔ، ∃α ∈ [a , b] / 61 PDF created with pdfFactory trial version www.pdffactory.com ﺍﻟﱪﻫﺎﻥ :ﻧﻘﺴﻢ ﺍﺎﻝ ] [a, bﺇﱃ ﻧﺼﻔﲔ.ﻟﺘﻜﻦ dﻭﺳﻂ ﺍﺎﻝ. ﺇﺫﺍ ﻛﺎﻧﺖ f (d ) = 0ﻓﻬﻮ ﺍﳌﻄﻠﻮﺏ. ﺇﺫﺍ ﻛﺎﻧﺖ ، f (d ) ≠ 0ﻓﺈﻧﻪ ﻳﻜﻮﻥ ﺇﻣﺎ ، f (a ) ⋅ f (d ) < 0ﻭﺇﻣﺎ . f (b ) ⋅ f (d ) < 0 ﻧﺮﻣﺰ ﻟﻠﻤﺠﺎﻝ ﺍﻟﺬﻱ ﺗﺄﺧﺬ ﺍﻟﺪﺍﻟﺔ ﰲ ﺎﻳﺘﻴﻪ ﺇﺷﺎﺭﺗﲔ ﳐﺘﻠﻔﺘﲔ ﺑﺎﻟﺮﻣﺰ ] . ∆1 = [a1 ,b1 ﻧﻘﺴﻢ ﺍﺎﻝ ∆ 1ﺇﱃ ﻧﺼﻔﲔ ،ﻟﺘﻜﻦ d1ﻧﺼﻒ ﺍﺎﻝ ، ∆ 1ﺇﺫﺍ ﻛﺎﻧﺖ f (d1 ) = 0ﻓﻬﻮ ﺍﳌﻄﻠﻮﺏ. ﺇﺫﺍ ﻛﺎﻧﺖ ، f (d1 ) ≠ 0ﻓﺎﻧﻪ ﻧﻔﺲ ﺍﻟﺸﻲﺀ ﺍﻟﺪﺍﻟﺔ fﰲ ﺎﻳﱵ ﺃﺣﺪ ﺍﺎﻟﲔ ] ، [d1 ,b1ﺃﻭ ] [a1 ,d1ﲤﻠﻚ ﺇﺷﺎﺭﺗﲔ ﳐﺘﻠﻔﺘﲔ ،ﻧﺮﻣﺰ ﻟﻠﻤﺠﺎﻝ ﺍﻟﺬﻱ ﲤﻠﻚ ﺍﻟﺪﺍﻟﺔ fﰲ ﺎﻳﺘﻴﺘﻴﻪ ﺇﺷﺎﺭﺗﲔ ﳐﺘﻠﻔﺘﲔ ﺑﺎﻟﺮﻣﺰ ] . ∆ 2 = [a 2 ,b2 ﻧﻮﺍﺻﻞ ﺍﻟﻌﻤﻠﻴﺔ ﳓﺼﻞ ﻋﻠﻰ ﺍﺣﺘﻤﺎﻟﲔ ﺇﻣﺎ ﻳﻮﺟﺪ ﻋﺪﺩ αﻣﻦ ] ، [a, bﲝﻴﺚ ﻳﻜﻮﻥ f (α ) = 0ﻭﻣﻨﻪ ﻓﻬﻮ ﺍﳌﻄﻠﻮﺏ. ﻭﺇﻣﺎ ﳓﺼﻞ ﻋﻠﻰ ﻣﺘﺘﺎﻟﻴﺔ ﻣﻦ ﺍﺎﻻﺕ ، (∆ n )n≥1ﺣﻴﺚ ] . ∀n ≥ 1 , ∆ n = [a n , bnﲢﻘﻖ ﻣﻦ ﺃﺟﻞ ﻛﻞ (n ≥ 1), n ﺍﳌﺘﺮﺍﺟﺤﺔ . f (a n ) ⋅ f (bn ) < 0 ﻻﺣﻆ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ (∆ n )n≥1ﻫﻲ ﻣﺘﺘﺎﻟﻴﺔ ﻣﻦ ﺍﺎﻻﺕ ﺍﳌﻐﻠﻘﺔ ﻭﺍﶈﺪﻭﺩﺓ ﺍﳌﺘﺪﺍﺧﻠﺔ ﻭﻗﻄﺮﻫﺎ ﻳﺆﻭﻝ ﺇﱃ ﺍﻟﺼﻔﺮ،ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﳛﻮﻯ ﻧﻘﻄﺔ ﻭﺍﺣﺪﺓ . α -2ﻓﻘﺮﺓ 2.4.1ﻳﻜﻮﻥ ﺗﻘﺎﻃﻊ ﻛﻞ ﺍﺎﻻﺕﻧﱪﻫﻦ ﺃﻥ . f (α ) = 0 ﻧﻔﺮﺽ ﺍﻟﻌﻜﺲ ﺃﻱ ، f (α ) > 0ﺃﻭ . f (α ) < 0 n ≥1 , ∆n ﰲ ﺣﺎﻟﺔ f (α ) > 0ﺣﺴﺐ ﺍﳋﺎﺻﻴﺔ -2-ﻓﻘﺮﺓ 1.4.4.3ﻳﺘﺤﻘﻖ: ∀x ∈ Vδ (α ) → f ( x) > 0 )∗( / ∃δ > 0 ﻋﻨﺪﻧﺎ ، bn − a n = b −n aﺃﻱ : 2 ∀n ≥ nε → bn − a n < ε / ∀ε > 0 , ∃nε ∈ Ν ﻣﻦ ﺃﺟﻞ ε = δﺗﻮﺟﺪ nδﲝﻴﺚ : ∀n ≥ nδ → bn − a n < δ ﻭﻣﻨﻪ bnδ − a nδ < δ ﲟﺎ ﺃﻥ ] ، α ∈ [a n , bnﻭ ، bn − a n < δﻓﺈﻥ ﻣﻦ ﻫﻨﺎ ﻭﻣﻦ )∗( ﻳﻜﻮﻥ: δ δ δ δ / ∃nδ ∈ Ν ) ∆ nδ ⊂ Vδ (α . ∀x ∈ ∆ nδ → f (x) > 0 ﻫﺬﺍ ﻳﻨﺎﻗﺾ ﻛﻮﻥ f ﲤﻠﻚ ﺇﺷﺎﺭﺗﲔ ﳐﺘﻠﻔﺘﲔ ﰲ ﺎﻳﱵ ﻛﻞ ﳎﺎﻝ ﻣﻦ ﺍﻟﻨﻮﻉ ∆ nﲟﺎ ﻓﻴﻬﺎ ﺍﺎﻝ ، ∆ nﻭﻋﻠﻴﻪ ﺍﻟﻔﺮﺽ δ f (α ) > 0ﻣﺴﺘﺤﻴﻞ. 62 PDF created with pdfFactory trial version www.pdffactory.com ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﻧﱪﻫﻦ ﺃﻥ ﺍﻟﻔﺮﺽ f (α ) < 0ﻣﺴﺘﺤﻴﻞ ،ﻭﻋﻠﻴﻪ ﻳﻜﻮﻥ . f (α ) = 0 ﻣﺜﺎﻝ :ﻧﱪﻫﻦ ﺃﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ 2 x = 4 xﺟﺬﻭﺭ. ﻧﻼﺣﻆ ﺃﻥ x = 4ﺟﺬﺭ ﻭﺍﺿﺢ ﻟﻠﻤﻌﺎﺩﻟﺔ. ﻟﺘﻌﲔ ﻣﻮﺿﻊ ﺍﳉﺬﻭﺭ ﺍﻷﺧﺮﻯ ﻧﻀﻊ . f (x) = 2 x − 4 x ﻭﺍﺿﺢ ﺃﻥ ﺟﺬﻭﺭ ﺍﳌﻌﺎﺩﻟﺔ ﻋﻨﺪﻧﺎ 2 −2<0 2 x − 4x = 0 = )( 2 ﻫﻲ ﺃﺻﻔﺎﺭ ﺍﻟﺪﺍﻟﺔ . f f (0) = 1 − 0 = 1 > 0, f 1 ،ﻭ fﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ 1 0, 2 ،ﻭﻣﻨﻪ ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺴﺎﺑﻘﺔ، ﻟﻠﺪﺍﻟﺔ fﻋﻠﻰ ﺍﻷﻗﻞ ﺻﻔﺮ ﰲ ﺍﺎﻝ . 0, 1 2 -4ﻧﻈﺮﻳﺔ)ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻟﺒﻮﻟﺰﺍﻧﻮ-ﻛﻮﺷﻲ( :ﺇﺫﺍ ﻛﺎﻧﺖ ﻗﻴﻤﺔ λ ﺑﲔ ) f (aﻭ ) f (bﺗﻮﺟﺪ ﻧﻘﻄﺔ ﺍﻟﱪﻫﺎﻥ :ﻧﻀﻊ f (a ) = α ξ f (b ) = β , ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ]، [a, bﻭ ) ، f (a ) ≠ f (bﻓﺈﻧﻪ ﻣﻦ ﺃﺟﻞ ﺃﻱ f ﻣﻦ ] [a, bﲝﻴﺚ ﻳﻜﻮﻥ ) . C = f (ξ , α≠β ﺍﳊﺎﻟﺔ : α < β ﻧﱪﻫﻦ ﺃﻧﻪ: ∀λ ∈ [α , β ] , ∃ξ ∈ [a , b] / f (ξ ) = λ ﰲ ﺣﺎﻟﺔ λ =α ﺃﻭ ﰲ ﺍﳊﺎﻟﺔ ﻋﻨﺪﻫﺎ ﻳﻜﻮﻥ : α <λ <β λ=β ﻧﻀﻊ ﻧﺄﺧﺬ ξ =a ﺃﻭ ξ =b ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ . x ∈ [a , b] , ϕ ( x) = f ( x) − λ ϕ (a ) = f (a ) − λ = α − λ < 0 ϕ (b ) = f (b ) − λ = β − λ > 0 )∗( ﺍﻟﺪﺍﻟﺔ ) ϕ (xﲢﻘﻖ ﺷﺮﻭﻁ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻷﻭﱃ ﻟﺒﻮﻟﺰﺍﻧﻮ-ﻛﻮﺷﻲ ،ﻭﺑﺎﻟﺘﺎﱄ : ∃ξ ∈ [a , b] / ϕ (ξ ) = 0 ﺃﻱ : ﻭﺑﺎﻟﺘﺎﱄ . f (ξ ) = λ ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﰲ ﺣﺎﻟﺔ f (ξ ) − λ = 0 ∃ξ ∈ [a , b] / .β <α ﻧﺘﻴﺠﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ] ، [a, bﻓﺈﻥ ﳎﻤﻮﻋﺔ ﻗﻴﻢ ﺍﻟﺪﺍﻟﺔ ﻋﻠﻰ ] [a, bﻫﻲ ] ، [m, Mﺣﻴﺚ: )m = inf f ( x , )M = sup f ( x ] x∈[a ,b ] x∈[a ,b ﺍﻟﱪﻫﺎﻥ :ﻭﺍﺿﺢ ﺃﻥ: 63 PDF created with pdfFactory trial version www.pdffactory.com ∀x ∈ [a , b] → m ≤ f ( x) ≤ M ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻟﻔﲑﺷﺘﺮﺍﺹ ،ﺍﻟﺪﺍﻟﺔ fﺗﺄﺧﺬ ﺍﻟﻘﻴﻤﺔ ، mﻭ Mﻋﻠﻰ ] [a, bﻭﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻟﺒﻮﻟﺰﺍﻧﻮ- ﻛﻮﺷﻲ ،ﺍﻟﺪﺍﻟﺔ fﺗﺄﺧﺬ ﻛﻞ ﻗﻴﻢ ﺍﺎﻝ ] ، [m, Mﻭﺑﺎﻟﺘﺎﱄ ﻓﺈﻥ ) Ε( fﻫﻲ ] ، [m, Mﺣﻴﺚ ]. x ∈ [a , b ﻣﻼﺣﻈﺔ :ﰲ ﺣﺎﻟﺔ m= M ﺗﻜﻮﻥ fﺛﺎﺑﺘﺔ. -5.3ﺍﻻﺳﺘﻤﺮﺍﺭ ﺑﺎﻧﺘﻈﺎﻡ ،ﻣﻌﻴﺎﺭ ﺍﻻﺳﺘﻤﺮﺍﺭ : -1.5.3ﺍﻻﺳﺘﻤﺮﺍﺭ ﺑﺎﻧﺘﻈﺎﻡ : ﻣﻦ ﺍﻟﺘﻌﺎﺭﻳﻒ ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﻓﻘﺮﺓ 1.4.3ﻧﺴﺘﻄﻴﻊ ﺃﻥ ﻧﻘﻮﻝ : f ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﳎﺎﻝ ﻣﺎ Iﻣﻦ ، ℜﺇﺫﺍ ﲢﻘﻖ ﻣﻦ ﺃﺟﻞ ﻛﻞ aﻣﻦ Iﺍﻟﺸﺮﻁ: x − a < δ ) → f ( x) − f (a ) < ε / (∀x ∈ I / ∀ε > 0, ∃δ > 0 ﻣﻦ ﻫﺬﺍ ﺍﻟﺘﻌﺮﻳﻒ ﻭﺍﺿﺢ ﺃﻧﻪ ﻛﻠﻤﺎ ﺗﻐﲑﺕ aﻣﻦ ، Iﻓﺈﻥ δﺗﺘﻐﲑ ،ﻭﻛﻠﻤﺎ ﺗﻐﲑﺕ εﺃﻳﻀﺎﹰ δﺗﺘﻐﲑ ،ﺃﻱ ﺃﻥ ) ، δ = δ (ε , aﻭﺣﱴ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﱵ ﻳﻜﻮﻥ ﻓﻴﻬﺎ εﻣﻌﻄﻰ ) ﺛﺎﺑﺖ ( ﻓﺈﻥ δﺗﺘﻐﲑ ﺑﺘﻐﲑ . a ﻣﺜﺎﻝ :ﺍﻟﺪﺍﻟﺔ f (x) = 1ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ [∞]0,+ x ﻻﺣﻆ ﺃﻥ: ε1 = ε 2 ) δ 1 ≠ δ 2 ⇒ δ = δ (a a1 ≠ a 2 ﻭﺑﺎﻟﺘﺎﱄ ﰲ ﺣﺎﻟﺔ ﺍﻻﺳﺘﻤﺮﺍﺭ ﻳﻜﻮﻥ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ) δ = δ (ε , a ﻭﺍﻵﻥ ﻳﻄﺮﺡ ﺳﺆﺍﻝ :ﻫﻞ ﺑﺎﻣﻜﺎﻧﻨﺎ ﺇﳚﺎﺩ ، δﻳﻜﻮﻥ ﻣﻼﺋﻤﺎ ﻟﻜﻞ aﻣﻦ ، Iﺃﻱ ) . δ = δ (ε ﻻﺣﻆ ﰲ ﺣﺎﻟﺔ Iﻣﻨﺘﻪ ﻳﻜﻮﻥ ﻋﺪﺩ δﺑﻌﺪﺩ aﻣﻦ Iﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﺃﺻﻐﺮ ﺍﻷﻋﺪﺍﺩ δﻳﻜﻮﻥ ﻣﻼﺋﻤﺎ ﻟﻜﻞ aﻣﻦ . I ﺃﻣﺎ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ،ﺇﺫﺍ ﻭﺟﺪ δﻟﻜﻞ aﻣﻦ ، Iﻧﻘﻮﻝ ﺇﻥ ﻫﺬﻩ ﺍﻟﺪﺍﻟﺔ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ . I ﺗﻌﺮﻳﻒ :ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ﳎﺎﻝ Iﻣﻦ ، ℜﺇﺫﺍ ﻛﺎﻥ ﻣﻦ ﺃﺟﻞ ﻛﻞ (ε > 0), εﺗﻮﺟﺪ (δ > 0), δ ﲝﻴﺚ ﻣﻦ ﺍﺟﻞ ﻛﻞ ﻧﻘﻄﺘﲔ x′, x′′ﻣﻦ Iﳛﻘﻘﺎﻥ ﺍﻟﻌﻼﻗﺔ x′ − x′′ < δ ،ﻳﻜﻮﻥ ، f (x′) − f (x′′) < εﺃﻱ: ∀ε > 0, ∃δ > 0 / (∀x′, x′′ ∈ I / x′ − x′′ < δ ) → f ( x′) − f ( x′′) < ε ﺃﻱ ﺃﻥ. δ = δ (ε ) : ﻧﺘﻴﺠﺔ : ﺃ -ﺍﻻﺳﺘﻤﺮﺍﺭ ﺑﺎﻧﺘﻈﺎﻡ ⇐ ﺍﻻﺳﺘﻤﺮﺍﺭ . ﺏ -ﻋﻜﺲ -ﺃ -ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ﻏﲑ ﺻﺤﻴﺢ. 64 PDF created with pdfFactory trial version www.pdffactory.com ﻣﺜﺎﻝ : ﺃ -ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ 1 x = )، f ( xﻭ [∞I = [1,+ ﻻﺣﻆ ﺃﻥ: 1 1 x′ − x′′ − = ≤ x′ − x′′ x′ x′′ x′ ⋅ x′′ ﻭﺑﺎﻟﺘﺎﱄ ﻣﻦ ﺃﺟﻞ ﻛﻞ ε = )f ( x′) − f ( x′′ (ε > 0),ﳝﻜﻦ ﺃﺧﺬ ، δ = εﻭﻣﻨﻪ ﻧﻜﺘﺐ: x′ − x′′ < δ ) → f ( x′) − f ( x′′) < ε ﻭﺑﺎﻟﺘﺎﱄ f / / (∀x′, x′′ ∈ I ∀ε > 0, ∃δ = ε ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ . I ﺏ -ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ f → ∀x′, x′′ ∈ I 1 x = )، f ( xﻭ ]I = ]0,1 ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ Iﻟﻜﻦ ﻟﻴﺴﺖ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻵﻥ ∃ε 0 > 0 / ∀δ > 0 , (∃x1 x2 ∈ I / x1 − x2 < δ ) / f ( x1 ) − f ( x2 ) > ε 0 ﻭﻫﺬﺍ ﻭﺍﺿﺢ ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ ،ﻭﺍﳌﺘﺮﺍﺟﺤﺔ ﺍﻟﺘﺎﻟﻴﺔ 1 1 x′ − x′′ − = ≥ x′ − x′′ x′ x′′ x′ ⋅ x′′ ﻧﻈﺮﻳﺔ)ﻧﻈﺮﻳﺔ ﻛﺎﻧﺘﻮﺭ( :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ f = )f ( x′) − f (x′′ ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﺍﺎﻝ ﺍﳌﻐﻠﻖ ﻭﺍﶈﺪﻭﺩ ] [a, bﻓﺈﺎ ﺗﻜﻮﻥ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻴﻪ. ﺍﻟﱪﻫﺎﻥ :ﻧﻔﺮﺽ ﺃﻥ fﻟﻴﺴﺖ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ] ، [a, bﺃﻱ: ∃ε 0 > 0 / ∀δ > 0, (∃x′, x′′ ∈ [a , b ] / x′ − x′′ < δ ) / f ( x′) − f ( x′′) ≥ ε 0 ﻻﺣﻆ ﻣﻦ ﺃﺟﻞ 1 n = n ∈ Ν ,δ ﻳﻮﺟﺪ x′n′, x′nﳛﻘﻘﺎﻥ : )∗( ﻟﻜﻦ x′n − x′n′ < δ (∗)′ ﻣﻦ ]، [a, bﻫﺬﺍ ﻳﻌﲎ ﺃﻥ ﻛﻞ ﻣﻦ ﺍﳌﺘﺘﺎﻟﻴﺘﲔ , ( xn′ )n≥1 f ( x′n ) − f ( xn′′ ) ≥ ε 0 n ≥ 1 , x′n′ , x′n (xn′′ )n≥1ﳏﺪﻭﺩﺓ. ﻧﺄﺧﺬ ﺍﳌﺘﺘﺎﻟﻴﺔ (x′n )n≥1ﺍﶈﺪﻭﺩﺓ ،ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺑﺎﻟﺰﺍﻧﻮ-ﻓﺸﺘﺮﺍﺹ ،ﻫﺬﻩ ﺍﳌﺘﺘﺎﻟﻴﺔ ﲤﻠﻚ ﻣﺘﺘﺎﻟﻴﺔ ﺟﺰﺋﻴﺔ ﲟﺎ ﺃﻥ ، n ≥ 1 , a ≤ x′k ≤ bﻓﺈﻧﻪ: )* *( ∃ξ ∈ [a , b ] / ξ = lim xk′ ∞→ n ) n ≥1 (xk′ﻣﺘﻘﺎﺭﺑﺔ. n n n ﻋﻨﺪﻧﺎ ﺍﳌﺘﺮﺍﺟﺤﺔ 65 PDF created with pdfFactory trial version www.pdffactory.com )* * *( x′k′n − ξ = xk′′n − x′kn + x′kn − ξ ≤ xk′′n − x′kn + xk′ n − ξ ﳏﻘﻘﺔ ﻣﻦ )*( ﻭ )* *( ﳓﺼﻞ ﺑﺈﺩﺧﺎﻝ ﺍﻟﻨﻬﺎﻳﺔ ﻋﻠﻰ )* * *( ،ﻋﻠﻰ: lim x′k′ = ξ ∞→n n ﲟﺎ ﺃﻥ ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ، ξﻓﺈﻧﻪ ﺣﺴﺐ ﺗﻌﺮﻳﻒ ﻗﺎﻳﻦ ﻟﻼﺳﺘﻤﺮﺍﺭ ﻳﻜﻮﻥ : ) lim f (x′k′ ) = lim f (x′k ) = f (ξ ∞→ n ∞→ n f n ﻫﺬﺍ ﻳﻌﲏ )) ( ) ( ( ﺃﻥ lim f x′k′n − f x′kn = 0 ∞→ n n ،ﻭﻫﻮ ﻣﻨﺎﻑ ﻟﻜﻮﻥ ) ( ) ( ∀n ≥ 1 → f xk′ n − f xk′′n ≥ ε 0 ﻫﺬﺍ ﲜﻌﻞ knﰲ ﻣﻜﺎﻥ nﰲ ﺍﻟﺼﻴﻐﺔ . (∗)′ ﻭﺑﺎﻟﺘﺎﱄ ﺍﻟﻔﺮﺽ ﻏﲑ ﺻﺤﻴﺢ ،ﺃﻱ ﺃﻥ f ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ]. [a, b ﻧﺘﻴﺠﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ fﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ]، [a, bﻓﺈﻧﻪ ﻣﻦ ﺃﺟﻞ ﻛﻞ (ε > 0 ), εﻳﻮﺟﺪ > 0 ), δ (δﲝﻴﺚ ﻳﻜﻮﻥ ﺗﺬﺑﺬﺏ ﺍﻟﺪﺍﻟﺔ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﻣﻐﻠﻮﻕ ﳏﺘﻮﻯ ﰲ ﺍﺎﻝ ] [a, bﻭﻃﻮﻟﻪ ﺃﻗﻞ ﻣﻦ ، δﺃﻗﻞ ﻣﻦ . ε ﺍﻟﺘﺬﺑﺬﺏ ﻋﻠﻰ ﻛﻞ ﺍﺎﻝ ] [a, bﻳﻌﺮﻑ ﻛﺎﻟﺘﺎﱄ w = M − mﺣﻴﺚm = inf f ( x) , M = sup f ( x) : ] x∈[a ,b ] x∈[a ,b ﺍﻟﱪﻫﺎﻥ :ﻭﺍﺿﺢ ﺃﻥ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﻣﻐﻠﻖ ﳏﺘﻮﻯ ﰲ ﺍﺎﻝ ] [a, bﺗﻜﻮﻥ fﻣﺴﺘﻤﺮﺓ . ﺗﺄﺧﺬ ﳎﺎﻝ ﻛﻴﻔﻲ ] [a 1 ,b1ﻣﻦ ] [a, bﺣﻴﺚ b1 − a 1 < δ f ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ] [a 1 ,b1ﻳﻌﲏ )∃x′ ∈ [a 1 , b1 ] / f ( x′) = m1 = inf f ( x ] x∈[a1 ,b1 )∃x′′ ∈ [a 1 , b1 ] / f ( x′′) = M 1 = sup f ( x ] x∈[a1 ,b1 ﻭﺍﺿﺢ ﺃﻥ f x′ − x′′ < δ ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ] ، [a 1 ,b1ﺃﻱ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻴﻪ ،ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ ، f (x′) − f (x′′) < εﻭﻣﻨﻪ ﻳﻜﻮﻥw = M − m : -2.5.3ﻣﻌﻴﺎﺭ ﺍﻻﺳﺘﻤﺮﺍﺭ : ﻟﺘﻜﻦ f ﻣﻌﺮﻓﺔ ﻭ ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﳎﺎﻝ Iﻣﻦ . ℜ ﺗﻌﺮﻳﻒ :ﻣﻦ ﺃﺟﻞ ﻛﻞ > 0 ), δ (δﻳﻌﺮﻑ ﻣﻌﻴﺎﺭ ﺍﺳﺘﻤﺮﺍﺭ ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ ، Iﺑﺄﻧﻪ ﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻟﻸﻋﺪﺍﺩ )f ( x′) − f ( x′′ ﺣﻴﺚ x′′, x′ﻣﻦ Iﲢﻘﻖ . x′ − x′′ ≤ δ ﻳﺮﻣﺰ ﳌﻌﻴﺎﺭ ﺍﺳﺘﻤﺮﺍﺭ ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ Iﺑﺎﻟﺮﻣﺰ ) ، w( f ; I , δﺃﻭ ) ، w( f ; δﻭﻧﻜﺘﺐ: )*( } w( f ; δ ) = sup{ f ( x′) − f ( x′′) / x′ − x′′ ≤ δ , x′, x′′ ∈ I 66 PDF created with pdfFactory trial version www.pdffactory.com ﺗﻨﺒﻴﻪ :ﰲ ﺍﻟﺼﻴﻐﺔ )∗( ﳝﻜﻦ ﺍﻻﺳﺘﻐﻨﺎﺀ ﻋﻦ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻄﻠﻘﺔ ،ﺃﻱ ﻧﻜﺘﺐ: } w( f ; δ ) = sup{( f ( x′) − f ( x′′)) / x′ − x′′ ≤ δ , x′, x′′ ∈ I ﺧﻮﺍﺹ ﻣﻌﻴﺎﺭ ﺍﻻﺳﺘﻤﺮﺍﺭ : -1ﻣﻌﻴﺎﺭ ﺍﻻﺳﺘﻤﺮﺍﺭ ﺩﻭﻣﺎﹰ ﻣﻮﺟﺐ ،ﺃﻱ. w( f ;δ ) ≥ 0 : w( f ; δ ) -2ﺩﺍﻟﺔ ﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ ﻧﺼﻒ ﺍﳌﺴﺘﻘﻴﻢ . δ > 0 ﻣﺜﺎﻝ :ﻟﺘﻜﻦ fﺩﺍﻟﺔ ﻣﻌﺮﻓﺔ ﻋﻠﻰ ﺍﺎﻝ ]، [0,1ﻛﺎﻟﺘﺎﱃ: ﺣﺴﺎﺏ ﻣﻌﻴﺎﺭ ﺍﺳﺘﻤﺮﺍﺭ ﺍﻟﺪﺍﻟﺔ f f ( x) = x 2 . } ]w( f ; δ ) = sup{( f (x′) − f ( x′′)) / x′ − x′′ ≤ δ , x′, x′′ ∈ [0,1 ﰲ ﺣﺎﻟﺔ ، δ = 1ﻭﺍﺿﺢ ﺃﻥ ﰲ ﺣﺎﻟﺔ : 0 < δ < 1ﻋﻨﺪﻧﺎ w( f ;1) = 1 0 ≤ x′′ − δ ≤ x′ ≤ x′′ < 1 ⇔ x′ − x′′ ≤ δ ﻭﻣﻨﻪ ﻳﻜﻮﻥ: 2 x′′ 2 − x′ 2 ≤ x′′ 2 − ( x′′ − δ ) = 2 x′′δ − δ 2 ≤ 2δ − δ 2 ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ: )∗( (x′ 2 − x′′ 2 ) ≤ 2δ − δ 2 w( f ; δ ) = sup{( f (x′) − f ( x′′)) / x′ − x′′ ≤ δ , x′, x′′ ∈ [0,1] } = sup x′− x′′ ≤δ ﻻﺣﻆ ﰲ ﺍﳊﺎﻟﺔ ﺍﳋﺎﺻﺔ ﻋﻨﺪﻣﺎ ، x′ = 1 − δ , x′′ = 1ﻳﻜﻮﻥ: )* *( (x′′2 − x′2 ) = 1 − (1 − δ )2 = 2δ − δ 2 ﻣﻦ )*( (* *) ,ﻳﻜﻮﻥ: ﺍﻟﱪﻫﺎﻥ : x′′− x′ ≤δ w( f , δ ) = 2δ − δ 2 ﻧﻈﺮﻳﺔ :ﺗﻜﻮﻥ fﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ﺍﺎﻝ ، Iﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻧﺖ : f w( f , δ ) = sup lim w( f , δ ) = 0 δ → +0 ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ،ﺃﻱ : ∀ε > 0, ∃δ ε > 0, (∀x′, x′′ ∈ I / x′ − x′′ < δ ε ) → f ( x′) − f (x′′) < ε )(1 ﺍﻟﺼﻴﻐﺔ ) (1ﳝﻜﻦ ﻛﺘﺎﺑﺘﻬﺎ ﻛﺎﻟﺘﺎﱄ : )(2 ε 2 < )∀ε > 0, ∃δ ε > 0 / (∀x′, x′′ ∈ I / x′ − x′′ < δ ε ) → f ( x′) − f ( x′′ ﻣﻦ ) (2ﻧﺴﺘﻨﺘﺞ ﺃﻧﻪ ﻣﻦ ﺃﺟﻞ ﻛﻞ ، δﺣﻴﺚ 0 < δ < δ εﻳﺘﺤﻘﻖ ﻣﺎ ﻳﻠﻲ: ﺃﻱ ﺃﻥ: ε <ε 2 ≤ } , x′, x′′ ∈ I w( f , δ ) = sup{ f ( x′) − f (x′′) / x′ − x′′ ≤ δ 67 PDF created with pdfFactory trial version www.pdffactory.com ∀ε > 0, ∃δ ε > 0 / ∀δ < δ ε , (δ > 0 ) → w( f , δ ) < ε ﻭﺑﺎﻟﺘﺎﱄ : lim w( f , δ ) = 0 ]⇒[ ﻟﺘﻜﻦ δ → +0 lim w( f , δ ) = 0 δ → +0 ،ﺃﻱ: ∀ε > 0, ∃δ ε > 0 / ∀δ < δ ε , (δ > 0 ) → w( f , δ ) < ε ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ: ∀x′, x′′ ∈ I / x′ − x′′ ≤ δ < δ ε → f ( x′) − f ( x′′) < ε ﻭﻣﻨﻪ ﻧﺴﺘﻨﺘﺞ : ∀ε > 0, ∃δ ε > 0 / (∀x′, x′′ ∈ I / x′ − x′′ < δ ε ) → f ( x′) − f ( x′′) < ε ﻭﺑﺎﻟﺘﺎﱄ fﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ . I ﻣﺜﺎﻝ : ﺃ -ﻋﺮﻓﻨﺎ ﰲ ﺍﳌﺜﺎﻝ ﻓﻘﺮﺓ ، 2.5.3ﺃﻥ ، w( f , δ ) = 2δ − δ 2ﺣﻴﺚ f (x) = x2ﻣﺄﺧﻮﺫﺓ ﻋﻠﻰ ﺍﺎﻝ ]. [0,1 . δlimﻭﺑﺎﻟﺘﺎﱄ ﺍﻟﺪﺍﻟﺔ f (x) = x 2ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ]. [0,1 ﻭﺍﺿﺢ ﺃﻥ w( f , δ ) = 0 → +0 ﺏ -ﻧﺄﺧﺬ ﺍﻟﺪﺍﻟﺔ f (x) = x2ﻋﻠﻰ ﺍﺎﻝ [∞. ]− ∞,+ ﺗﺄﻛﺪ ﻣﻦ ﺃﻥ ∞. − ∞ < x < +∞ , w( f , δ ) = + ، δlimﺃﻱ ﺍﻟﺪﺍﻟﺔ fﻟﻴﺴﺖ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ [∞. ]− ∞,+ ﻭﻣﻨﻪ ﻧﺴﺘﻨﺘﺞ ﺃﻥ ∞w( f , δ ) = + → +0 -6.3ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ : ﻣﻔﻬﻮﻡ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ : ﻟﺘﻜﻦ f ﺩﺍﻟﺔ ﻋﺪﺩﻳﺔ ،ﺃﻱ x ∈ D(ℜ) ⊂ ℜ ، y = f (x) ,ﺣﻴﺚ ﻣﻦ ﺃﺟﻞ ﻛﻞ x0 ﻣﻦ ) D( fﻳﻮﺟﺪ y0ﻭﺣﻴﺪ ﳛﻘﻖ ) y0 = f ( x0 ) ∈ Ε( f ﻻﺣﻆ ﺃﻧﻪ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ﺍﳌﻌﺎﺩﻟﺔ ، f ( x) = y0ﺣﻴﺚ ) y0 ∈ Ε( f ،ﲤﻠﻚ ﺃﻛﺜﺮ ﻣﻦ ﺣﻞ. ﻣﺜﺎﻝ : ﺃ -ﻣﻦ ﺃﺟﻞ ( y0 > 0) ، y0ﺛﺎﺑﺖ ﻳﻜﻮﻥ ﻛﻞ ﻣﻦ x2 = − y0 ، x1 = y0ﺣﻼ ﻟﻠﻤﻌﺎﺩﻟﺔ ، f (x) = y0ﺣﻴﺚ . f (x) = x2 ﻻﺣﻆ ﻟﻮ ﻧﺄﺧﺬ ﺍﻟﺪﺍﻟﺔ f (x) = x2ﰲ ﺍﺎﻝ [ ، ]− ∞,0ﺃﻭ ﺍﺎﻝ [∞ [0,+ﻳﻜﻮﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ f (x) = y0ﺣﻞ ﻭﺣﻴﺪ ﻫﻮ ، y0ﺃﻭ − y0ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ. ﺏ -ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ ، f ( x) = x + 1ﺣﻴﺚ D( f ) = ℜ ﻭﺍﺿﺢ ﺃﻧﻪ ﻣﻦ ﺃﺟﻞ ﻛﻞ y0ﻳﻮﺟﺪ x0ﻭﺣﻴﺪ،ﺣﻴﺚ . (x0 = y0 − 1) ، f (x0 ) = y0 68 PDF created with pdfFactory trial version www.pdffactory.com ﺗﻌﺮﻳﻒ : ﺃ -ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﱵ ﻳﻜﻮﻥ ﻓﻴﻬﺎ ﻟﻠﻤﻌﺎﺩﻟﺔ y0 ∈ Ε( f ) ، f (x) = y0ﺃﻛﺜﺮ ﻣﻦ ﺣﻞ ،ﻳﺴﻤﻲ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﺬﻱ ﻳﺮﻓﻖ ﺑﻜﻞ y ﻣﻦ ) x ، Ε( fﻣﻦ ) D( fﺑﺎﻟﺼﻮﺭﺓ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ، fﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ، fﻭﻧﻜﺘﺐ: ) f : Ε( f ) → D ( f y → f ( y) = x ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ fﺗﺴﻤﻰ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ﻟﻠﺪﺍﻟﺔ . f ﺏ -ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﱵ ﻳﻜﻮﻥ ﻓﻴﻬﺎ ﻟﻠﻤﻌﺎﺩﻟﺔ y0 ∈ Ε( f ) ، f (x) = y0ﺣﻞ ﻭﺣﻴﺪ ،ﻳﺴﻤﻰ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﺬﻱ ﻳﺮﻓﻖ ﺑﻜﻞ yﻣﻦ ) x ، Ε( fﻭﺣﻴﺪ ﻣﻦ ) D( fﺑﺎﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ، fﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ . f −1 ) f −1 : Ε ( f ) → D ( f y → f −1 ( y) = x ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﰲ ﺍﻷﺻﻞ،ﺗﺴﻤﻰ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻭﺣﻴﺪﺓ ﺍﻟﻘﻴﻤﺔ ﻟﻠﺪﺍﻟﺔ . f ﺧﺼﺎﺋﺺ : fﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ . f −1 ﺃ- ) D ( f −1 ) = Ε ( f ) , Ε ( f −1 ) = D ( f ﺏ- ﺝ- f ( f −1 ( x)) = x ، ∀x ∈ D( f ) → f −1 ( f ( x)) = x ﺩ -ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ f −1ﻣﺘﻨﺎﻇﺮ ﻣﻊ ﺑﻴﺎﻥ fﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻨﺼﻒ ﺍﻷﻭﻝ. ﻧﺘﻴﺠﺔ :ﻣﻦ ﺍﻟﺘﻌﺮﻳﻒ ﺏ -ﻟﻀﻤﺎﻥ ﻭﺟﻮﺩ ﺍﻟﺪﺍﻟﺔ ﻧﻈﺮﻳﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ f −1 f : D ( f ) → Ε( f ) ، f → ) ∀x ∈ Ε( f ،ﻧﺸﺘﺮﻁ ﺃﻥ ﺗﻜﻮﻥ fﺭﺗﻴﺒﺔ ﲤﺎﻣﺎﹰ ﻋﻠﻰ ) . D( f ﺭﺗﻴﺒﺔ ﲤﺎﻣﺎﹰ ﻭﻣﺴﺘﻤﺮﺓ ،ﻓﺈﻧﻪ ﺗﻮﺟﺪ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻌﻜﺴﻴﺔ ، f −1 ) ، f −1 : Ε( f ) → D( fﻭﺗﻜﻮﻥ ﺭﺗﻴﺒﺔ ﲤﺎﻣﺎﹰ)،ﺍﻟﺮﺗﺎﺑﺔ ﻣﻦ ﻧﻔﺲ ﺭﺗﺎﺑﺔ ،( fﻭﻣﺴﺘﻤﺮﺓ. ﺍﻟﱪﻫﺎﻥ :ﻧﺄﺧﺬ ﺍﳊﺎﻟﺔ ﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ fﻣﺘﺰﺍﻳﺪﺓ. ﺍﻟﺪﺍﻟﺔ f −1ﻣﻮﺟﻮﺩﺓ ﺣﺴﺐ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺴﺎﺑﻘﺔ . ﻧﱪﻫﻦ ﺃﻥ ) f −1 : Ε( f ) → D( fﻣﺘﺰﺍﻳﺪﺓ ﺃﻳﻀﺎﹰ ،ﺃﻱ ﻧﱪﻫﻦ : )*( ﻧﻀﻊ ) f −1 ( y2 ), x1 = f −1 ( y1 ﻧﻔﺮﺽ ﺃﻥ . x1 ≥ x2 ) ∀y1 , y2 ∈ Ε( f ) , y1 < y2 ⇒ f −1 ( y1 ) < f −1 ( y2 = x2 ﻋﻨﺪﻧﺎ fﻣﺘﺰﺍﻳﺪﺓ ﻳﻌﲏ ) ، f (x1 ) ≥ f (x2ﺃﻱ ، y1 ≥ y2ﻭﻫﺬﺍ ﻳﻨﺎﰲ )∗( ،ﻭﻣﻨﻪ ، x1 < x2ﺃﻱ: ﻧﱪﻫﻦ ﺃﻥ ) f −1 : Ε( f ) → D( fﻣﺴﺘﻤﺮﺓ ،ﺃﻱ ﻣﻦ ﺃﺟﻞ ﻛﻞ y0ﻛﻴﻔﻴﺔ ﻣﻦ ) Ε( fﻳﺘﺤﻘﻖ : ) f −1 ( y2 < ) . f −1 ( y1 69 PDF created with pdfFactory trial version www.pdffactory.com ∀ε > 0, ∃δ > 0 / (∀y ∈ Ε( f ) / y − y0 < δ ) → f −1 ( y) − f −1 ( y0 ) < ε ﻋﻨﺪﻧﺎ fﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ) D( fﻫﺬﺍ ﻳﻌﲏ ﺃﻥ ) Ε( fﻋﺒﺎﺭﺓ ﻋﻦ ﳎﺎﻝ ﺎﻳﺘﻪ Mﻭ ، mﺣﻴﺚ: )m = inf f ( x), M = sup f ( x ) D( f ) D( f ﰲ ﺣﺎﻟﺔ ) D( fﳎﺎﻝ ﻣﻐﻠﻖ ﺗﻜﻮﻥ ﺃﻧﻈﺮ ﻧﻈﺮﻳﺔ ﺑﻮﻟﺰﺍﻧﻮ-ﻛﻮﺷﻲ . ] Ε( f ) = [m, M ﰲ ﺣﺎﻟﺔ ) D( fﳎﺎﻝ ﻛﻴﻔﻲ ﻳﻜﻮﻥ ) Ε( fﺃﻳﻀﺎﹰ ﳎﺎﻝ ﻛﻴﻔﻲ ﺎﻳﺘﻪ . m, M ﺍﳊﺎﻟﺔ [ ، Ε( f ) = ]m, Mﺃﻱ ﺃﻥ ) D( fﳎﺎﻝ ﻣﻔﺘﻮﺡ ، ﻻﺣﻆ ﻣﻦ ﺃﺟﻞ ﻛﻞ ) y0 ∈ Ε( fﺗﻮﺟﺪ x0ﻣﻦ ) ، D( fﺣﻴﺚ ) f ( x0 = . y0 ﺣﺴﺐ ﺧﺎﺻﻴﺔ ﺍﻻﺳﺘﻤﺮﺍﺭ ﻟـ ، ℜﻣﻦ ﺃﺟﻞ ﻛﻞ (ε > 0) , εﻳﻜﻮﻥ : ) . x0 − ε ∈ D( f ), x0 + ε ∈ D( f ﻧﻀﻊ ) y2 = f ( x0 + ε ), y1 = f ( x0 − ε ﲟﺎﺃﻥ fﻣﺘﺰﺍﻳﺪﺓ ،ﻓﺈﻥ . y1 < y0 < y2 : ﻧﺄﺧﺬ ﺍﻵﻥ δ > 0ﳛﻘﻖ δ )، y1 ≤ y0 − δ , y0 + δ ≤ y2ﻣﻮﺟﻮﺩ ﺣﺴﺐ ﺧﺎﺻﻴﺔ ﺍﻻﺳﺘﻤﺮﺍﺭ ﻟـ .( ℜ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻣﻦ ﺃﺟﻞ ﻛﻞ yﳛﻘﻖ ، y0 − δ < y < y0 + δﻳﻜﻮﻥ y1 < y < y2 : ﲟﺎ ﺃﻥ f −1ﻣﺘﺰﺍﻳﺪﺓ ﻓﺈﻥf −1 ( y1 ) < f −1 ( y) < f −1 ( y2 ) : ﲟﺎ ﺃﻥ f −1 ( y1 ) = x0 − ε = f −1 ( y0 ) − ε f −1 ( y 0 ) + ε , = ، f −1 ( y2 ) = x0 + εﻓﺈﻥ : f −1 ( y0 ) − ε < f −1 ( y) < f −1 ( y0 ) + ε ﻭﻫﺬﺍ ﻣﻦ ﺍﺟﻞ ﻛﻞ yﲢﻘﻖ y0 − δ < y < y0 + δ .ﺃﻱ ﺃﻥ: ∀ε > 0 , ∃δ > 0 / (∀ ∈ Ε( f ) / y − y0 < δ ) → f −1 ( y) − f −1 ( y0 ) < ε ﲟﺎ ﺃﻥ y0ﻛﻴﻔﻴﺔ ﻣﻦ ) ، Ε( fﻓﺈﻥ f −1ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ) . Ε( f ﰲ ﺣﺎﻟﺔ ﻭﺟﻮﺩ ﻋﻠﻰ ﺍﻷﻗﻞ mﺃﻭ Mﰲ ) ، Ε( fﻳﻜﻔﻲ ﺃﻥ ﻧﱪﻫﻦ ﺃﻥ ﻫﺬﺍﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ. f −1 ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﳝﲔ ، mﻭﻋﻠﻰ ﻳﺴﺎﺭ ، M ﺗﻌﺮﻳﻒ :ﺍﻟﺘﻄﺒﻴﻖ fﻣﻦ ﳎﺎﻝ Iﰲ ﳎﺎﻝ Jﻣﻦ ، ℜﻧﻘﻮﻝ ﺇﻧﻪ ﻫﻮﻣﻴﻮﻣﻮﺭﻓﻴﺰﻡ ،ﺇﺫﺍ ﲢﻘﻖ ﻣﺎ ﻳﻠﻲ : ﺃ f -ﺗﻘﺎﺑﻞ ﺏ f -ﻭ f −1ﻣﺴﺘﻤﺮﺍﻥ. 70 PDF created with pdfFactory trial version www.pdffactory.com ﻧﺘﻴﺠﺔ : ﺃ -ﺇﺫﺍ ﻛﺎﻧﺖ fﻫﻮﻣﻴﻮﻣﻮﺭﻓﻴﺰﻡ ،ﻓﺈﻥ f −1ﻛﺬﻟﻚ. ﺏ -ﺇﺫﺍ ﻛﺎﻧﺖ fﺭﺗﻴﺒﺔ ﲤﺎﻣﺎﹰ ﻭﻣﺴﺘﻤﺮﺓ ،ﻓﺈﻥ fﻫﻮﻣﻴﻮﻣﻮﺭﻓﻴﺰﻡ ﻣﻦ ) D( fﻋﻠﻰ ) . Ε( f wﳎﻤﻮﻋﺘﺎﻥ ﺑﻴﻨﻬﻤﺎ ﻫﻮﻣﻴﻮﻣﻮﺭﻓﻴﺰﻡ ﻧﺴﻤﻴﻬﻤﺎ ﻫﻮﻣﻴﻮﻣﻮﺭﻓﻴﲔ. -7.3ﺍﻟﺪﻭﺍﻝ ﺍﻟﺒﺴﻴﻄﺔ ﻭﺩﻭﺍﳍﺎ ﺍﻟﻌﻜﺴﻴﺔ : -1.7.3ﺍﻟﺪﻭﺍﻝ ﺍﻵﺳﻴﺔ : ﺗﻌﺮﻳﻒ :ﻣﻦ ﺃﺟﻞ ﻛﻞ (a > 0) ، aﻣﻌﻄﻰ ﺍﻟﺪﺍﻟﺔ f (x) = a xﺍﳌﻌﺮﻓﺔ ﻋﻠﻰ ﻛﻞ ℜﺗﺴﻤﻰ ﺩﺍﻟﺔ ﺁﺳﻴﺔ ﺫﺍﺕ ﺍﻷﺳﺎﺱ . a ﰲ ﺣﺎﻟﺔ a =1 ﺗﻜﻮﻥ . f (x) = 1 ﺧﺼﺎﺋﺺ : ﺃ، (a < 1) ، a > 1 -ﺍﻟﺪﺍﻟﺔ fﻣﺘﺰﺍﻳﺪﺓ )،ﻣﺘﻨﺎﻗﺼﺔ(. ﺏ، (a x )y = a x⋅ y -ﻭ . ∀x, y ∈ ℜ, a x a y = a x+ y ﺝ f (x) = a x -ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﻛﻞ . ℜ ﻧﺘﺎﺋﺞ : -1 -2 a > 0, ∀x ∈ ℜ → a x > 0 a > 0 , b > 0, ∀x ∈ ℜ → (ab ) = a xb x x -2.7.3ﺍﻟﺪﻭﺍﻝ ﺍﻟﻠﻮﻏﺎﺭﲤﻴﺔ : ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ﰲ ﺣﺎﻟﺔ a > 0ﺍﻟﺪﺍﻟﺔ ﺍﻵﺳﻴﺔ f (x) = a xﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﻛﻞ ℜﻭﳎﻤﻮﻋﺔ ﻗﻴﻤﻬﺎ ﻫﻲ [∞، ]0,+ﻭﺑﺎﻟﺘﺎﱄ ﻋﻠﻰ ﺍﺎﻝ [∞ ]0,+ﺗﻌﺮﻑ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ﺍﻵﺳﻴﺔ ﻭﺗﻜﻮﻥ ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ . ﺗﺴﻤﻰ ﻫﺬﻩ ﺍﻟﺪﺍﻟﺔ ﺑﺎﻟﺪﺍﻟﺔ ﺍﻟﻠﻮﻏﺎﺭﲤﻴﺔ ﺫﺍﺕ ﺍﻷﺳﺎﺱ ، a ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ y = log a x ﰲ ﺣﺎﻟﺔ ، 0 < a < 1ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ y = log a xﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ . ﺧﺼﺎﺋﺺ : ﺃ- ﺏ- x > 0 , y > 0 , log a xy = log a x + log a y x > 0 , α ∈ ℜ , log a xα = α log a x 71 PDF created with pdfFactory trial version www.pdffactory.com ﺝ- , a log a x = x log b x log b a ﺩ- ﺣﺎﻟﺔ ﺧﺎﺻﺔ :ﺣﺎﻟﺔ a = e x>0 = x > 0 , b > 0 , log a x ﺗﺴﻤﻰ ﺍﻟﺪﺍﻟﺔ log e x ﺑﺎﻟﺪﺍﻟﺔ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻢ ﺍﻟﻨﻴﱪﻱ ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ . ln x -3.7.3ﺍﻟﺪﺍﻟﺔ ﺍﻟﻘﻮﺓ : ﺗﻌﺮﻳﻒ :ﻣﻦ ﺃﺟﻞ ﻛﻞ ﻋﺪﺩ αﺍﻟﺪﺍﻟﺔ f (x) = xαﺍﳌﻌﺮﻓﺔ ﻣﻦ ﺃﺟﻞ x>0 ﺗﺴﻤﻰ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻘﻮﺓ ﺫﺍﺕ ﺍﻷﺱ . α ﻣﻼﺣﻈﺔ α = 0 :ﺗﻜﻮﻥ . f (x) = 1 ﺧﺼﺎﺋﺺ : ﺃ α < 0 -ﺍﻟﺪﺍﻟﺔ ﺏ α > 0 -ﺍﻟﺪﺍﻟﺔ f f ﻣﺘﻨﺎﻗﺼﺔ . ﻣﺘﺰﺍﻳﺪﺓ . ﺝ f -ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ [∞. ]0,+ ﺩ ، x = 0 ، α > 0 -ﺗﻜﻮﻥ . f (x) = 0 -4.7.3ﺍﻟﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ ﻭﺩﻭﺍﳍﺎ ﺍﻟﻌﻜﺴﻴﺔ : ﻟﺘﻜﻦ x 2 + y 2 = r 2ﻣﻌﺎﺩﻟﺔ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﱵ ﻣﺮﻛﺰﻫﺎ ) (0,0ﻭﻧﺼﻒ ﻗﻄﺮﻫﺎ ، (r > 0 ), rﺍﺳﺘﻨﺎﺩﺍ ﺇﱃ ﺍﻟﺸﻜﻞ ﺍﺎﻭﺭ،ﺗﻌﺮﻑ ﺍﻟﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ ﻛﺎﻟﺘﺎﱄ : η r ξ = f ( x) = cos x r η sin x = = f ( x) = tgx ξ cos x ξ cos x = = f ( x) = ctgx η sin x r 1 = = f ( x) = sec x ξ cos x r 1 = = f ( x) = cos ec η sin x = f ( x) = sin x ﰲ ﺣﺎﻟﺔ r = 1ﺗﻜﻮﻥ : cos x = ξ = OB , sin x = η = BC η BC = = AE ξ OB ﺗﻨﺒﻴﻪ x :ﻻ ﺗﻔﻬﻢ ﻓﻘﻂ ﻋﻠﻰ ﺃﺎ = tgx ﺍﻟﺰﺍﻭﻳﺔ AOC , ξ OB = = MN η BC = ctg ﺑﻞ ﻧﻔﻬﻢ ﺃﻳﻀﺎﹰ ﺿﻌﻒ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ ، OCAﺫﻟﻚ ﻷﻥ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ 72 PDF created with pdfFactory trial version www.pdffactory.com . S = 1 AC ⋅ r : ﺗﻌﻄﻰ ﺑﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺎﻟﻴﺔ 2 . S = 1 r 2 x ﻭﺑﺎﻟﺘﺎﱄ ﻳﻜﻮﻥ 2 r ⋅ x = AC : ﻫﻲx ﻭﺍﻟﺰﺍﻭﻳﺔ AC S ﻣﻌﻠﻮﻡ ﺃﻥ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﻟﻘﻮﺱ . x = 2.S ﻳﻜﻮﻥ،()ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ، r = 1 ﻧﻀﻊ : ﺃﻫﻢ ﺧﺼﺎﺋﺺ ﺍﻟﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ sin x π π x ∈ − , , x ≠ 0 , cos x < <1 x 2 2 -1 sin ( x ± y) = sin x cos y ± cos x sin y -2 -3 cos( x ± y) = cos x cos y m sin x sin y tgx ± tgy ctgxctgy m 1 tg ( x ± y) = , ctg ( x ± y) = ctgy ± ctgx 1 m tgxtgy -4 ∀x ∈ ℜ, sin x ≤ x : ﻫﻨﺎﻙ ﻋﺪﺓ ﺧﺼﺎﺋﺺ ﺃﺧﺮﻯ ﳒﻤﻠﻬﺎ ﰲ ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ-5 = f ( x) ctgx tgx cos x sin x − ∞ < x < +∞ − ∞ < x < +∞ π x ≠ + kπ 2 − ∞ < x < +∞ − ∞ < x < +∞ D( f ) − 1 ≤ f ( x) ≤ 1 Ε( f ) 2π π x = + kπ 2 ﻧﻘﺎﻁ ﺍﻟﻘﻴﻢ ﺍﻟﻘﺼﻮﻯ x = kπ ﻧﻘﺎﻁ ﺍﻹﻧﻌﻄﺎﻑ x ≠ kπ − ∞ < f ( x) < +∞ π x = + kπ 2 − ∞ < f ( x) < +∞ x = kπ − 1 ≤ f ( x) ≤ 1 π x = + kπ 2 π π 2π ﻻ ﻻ x = kπ x= π + kπ 2 x = kπ x= π + kπ 2 x = kπ f ﺃﺻﻔﺎﺭ ﺍﻟﺪﻭﺭ ﺯﻭﺟﻴﺔ ﻓﺮﺩﻳﺔ ﺯﻭﺟﻴﺔ ﻓﺮﺩﻳﺔ ﺍﻟﻨﻮﻋﻴﺔ ﻻ ﻻ ﻻ ﻻ ﺍﻟﺮﺗﺎﺑﺔ ﻻ ﻻ ﻧﻌﻢ ﻧﻌﻢ ﺍﶈﺪﻭﺩﻳﺔ ﻧﻌﻢ ﻧﻌﻢ ﻧﻌﻢ ﻧﻌﻢ ﺍﻻﺳﺘﻤﺮﺍﺭﻳﺔ 73 PDF created with pdfFactory trial version www.pdffactory.com ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ : -1ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ﻋﻨﺪﻧﺎ D( f ) = ℜ f ( x) = sin x Ε( f ) = [− 1,1] , ﻻﺣﻆ ﻣﻦ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ﻳﻨﺘﺞ ﺃﻥ ﻟﻜﻞ y0ﻣﻦ ) Ε( fﻳﻜﻮﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ، f (x) = y0ﻣﺎ ﻻﺎﻳﺔ ﻣﻦ ﺍﳊﻠﻮﻝ ،ﻭﺑﺎﻟﺘﺎﱄ ﻧﻘﻮﻝ ﺇﻥ ﻟﻠﺪﺍﻟﺔ fﻻ ﺗﻮﺟﺪ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﺗﻌﺮﻳﻔﻬﺎ ،ﺑﻞ ﻧﻘﻮﻝ ﺇﻥ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ﺃﻭ ﻛﻤﺎ ﲰﻴﻨﻬﺎ ﺳﺎﺑﻘﺎﹰ 74 PDF created with pdfFactory trial version www.pdffactory.com ﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﺗﻌﺮﻳﻔﻬﺎ ،ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ Arc sin y ،ﻭﻧﻜﺘﺐ ، x = f ( y) = Arc sin yﻭﻧﻘﺮﺃ xﻫﻮ ﺍﻟﻘﻮﺱ ﺍﻟﺬﻱ ﺟﻴﺒﻪ . y ﻻﺣﻆ ﺣﺴﺐ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ، f (x) = sin xﺍﻟﺪﺍﻟﺔ ﻣﺘﺰﺍﻳﺪﺓ ﻋﻠﻰ ﺍﺎﻻﺕ ﻣﻦ ﺍﻟﻨﻮﻉ ﻣﺴﺘﻤﺮﺓ،ﻭﰲ ﻛﻞ ﳎﺎﻝ ﻣﻦ π π ﺍﻟﻨﻮﻉ 2kπ + 2 , (2k + 1)π + 2 = J k π π 2kπ − 2 ,2kπ + 2 = I k ﻭﺃﻳﻀﺎﹰ ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ ﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ،ﻭﺑﺎﻟﺘﺎﱄ ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﻓﻘﺮﺓ ، 6.3ﻳﻜﻮﻥ ﻟﻠﺪﺍﻟﺔ f (x) = sin xﻋﻠﻰ ﺍﺎﻻﺕ I kﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ f −1ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ) ، Ε( fﻭﻋﻠﻰ ﺍﺎﻻﺕ J kﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ f −1ﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ) ، Ε( fﻧﺮﻣﺰ ﻟﻠﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ sin xﺑﺎﻟﺮﻣﺰ ، x = arcsin y ﻭﻧﻘﺮﺃ xﻫﻮ ﺍﻟﻘﻮﺱ ﺍﻟﺬﻱ ﺟﻴﺒﻪ ، yﻭﻧﻜﺘﺐ . x = f −1 ( y) = arcsin y ﻣﻦ ﺃﺟﻞ k = 0 f −1 ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻫﻲ ﺍﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﺪﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ . f ﺧﺼﺎﺋﺺ : ﺃ- ﺏ- ﺝ- ﺭﺳﻢ ﻋﻠﻰ ﺍﺎﻝ I 0 ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ، f −1 ( y) = arcsin yﺗﺴﻤﻰ ﺍﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻘﻮﺱ ﺍﳉﻴﺐ،ﺃﻭ ﻧﻘﻮﻝ ﺇﻥ ]sin (arcsin y) = y , y ∈ [− 1,1 π π arcsin (sin x) = x , x ∈ − , 2 2 ]arcsin (− y) = − arcsin y , y ∈ [− 1,1 ﺍﻟﺪﺍﻟﺘﲔ Arc sin y arcsin y, : ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ﺍﳌﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ، f ( y) = Arc sin yﻫﻮ ﻧﻈﲑ ﻟﺒﻴﺎﻥ . x ∈ D( f ) , f (x) = sin x ﻟﻜﻦ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ، f −1 ( y) = arcsin yﻫﻮ ﻧﻈﲑ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ π π x ∈ − , , f ( x) = sin x 2 2 ) ﺍﻟﺘﻨﺎﻇﺮ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻨﺼﻒ ﺍﻷﻭﻝ (. ﺑﻴﺎﻥ π π ) f −1 ( yﺣﻴﺚ x ∈ − , 2 2 ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ . f ( y) = Arc sin y ﻭﺍﺿﺢ ﺃﻥ: ﻳﺴﻤىﺎﻟﻔﺮﻉ ﺍﻟﺮﺋﻴﺴﻲ ﻣﻦ π π ≤ ≤ arcsin y 2 2 , k = 0,±1,±2........... ∀y ∈ [− 1,1] → − ∀y ∈ [− 1,1] → Arc sin y = arcsin y + 2kπ 75 PDF created with pdfFactory trial version www.pdffactory.com ]→ Arc sin y = (2k + 1)π − arcsin y , k = 0,±1,±2........... ∀y ∈ [− 1,1 ﺍﻟﺘﻔﺴﲑ ﺍﳍﻨﺪﺳﻲ : ﺍﻧﻈﺮ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ ﻣﻦ ﺃﺟﻞ ﻛﻞ ] y0 ∈ [− 1,1ﻧﺒﺤﺚ ﻋﻦ ﻛﻞ ﺍﻷﻗﻮﺍﺱ)،ﺍﻟﺰﺍﻭﻳﺔ(،ﺍﻟﱵ ﺗﻘﺒﻞ y0ﺟﻴﺒﺎﹰ ﳍﺎ،ﻧﻼﺣﻆ ﻣﻦ ﺍﻟﺸﻜﻞ ﺃﻥ ﻛﻞ ﺍﻷﻗﻮﺍﺱ ﺍﻟﱵ ﻣﺒﺪﺅﻫﺎ Aﻭﺎﻳﺘﻬﺎ ﰲ ﺇﺣﺪﻯ ﺍﻟﻨﻘﻄﻴﺘﲔ Mﺃﻭ M ′ﳍﺎ ﺟﻴﺐ ﻳﺴﺎﻭﻱ . y0 ﺇﺫﺍ ﻛﺎﻥ aﺃﺻﻐﺮ ﺍﻷﻗﻮﺍﺱ ﺍﻟﱵ ﺟﻴﺒﻬﺎ ، y0ﻓﺈﻧﻪ ﻳﻜﻮﻥ : AM = 2kπ + a AM ′ = (2k + 1)π − a , ﻭﻣﻨﻪ ﻳﻮﺟﺪ ﻋﺪﺩ ﻏﲑ ﻣﻨﺘﻪ ﻣﻦ ﺍﻷﻗﻮﺍﺱ ﺗﻘﺒﻞ y0ﺟﻴﺒﺎ ﳍﺎ،ﻭﺑﺎﻟﺘﺎﱄ ﻧﻜﻮﻥ ﻗﺪ ﻋﺮﻓﻨﺎ ﺩﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ﻭﻫﻲ ﺍﻟﱵ ﻋﺮﻓﺖ ﻗﺒﻞ ﻗﻠﻴﻞ ﺃﻱ. f ( y) = Arc sin y : ﻻﺣﻆ ﻟﻮ ﺃﺧﺬﻧﺎ ﻓﻘﻂ ﺍﻷﻗﻮﺍﺱ ﺍﻟﻮﺍﻗﻌﺔ ﰲ ﻭﻫﻮ ﺍﻟﻘﻮﺱ AM . π ﺍﺎﻝ 2 , 2kπ + ، I k = 2kπ − πﻓﺈﻧﻪ ﻳﻮﺟﺪ ﻗﻮﺱ ﻭﺍﺣﺪ ﻳﻘﺒﻞ y0ﺟﻴﺒﺎ ﻟﻪ، 2 ﻭﺇﺫﺍ ﺃﺧﺬﻧﺎ ﻓﻘﻂ ﺍﻷﻗﻮﺍﺱ ﺍﻟﻮﺍﻗﻌﺔ ﰲ ﺍﺎﻝ ، J k = 2kπ + π , (2k + 1)π + π ﻓﺈﻧﻪ ﻳﻮﺟﺪ ﻗﻮﺱ ﻭﺍﺣﺪ ﻳﻘﺒﻞ y0ﺟﻴﺒﺎ ﻟﻪ، 2 ﻭﻫﻮ ﺍﻟﻘﻮﺱ . AM ′ ﻭﺑﺎﻟﺘﺎﱄ ﺗﻜﻮﻥ ﺩﺍﺧﻞ ﺍﺎﻻﺕ I kﺃﻭ J kﺍﻟﺪﺍﻟﺔ 2 f (x) = sin xﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻭﻫﻲ: f −1 ( y) = arcsin y -2ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ y = f ( x) = cos x D( f ) = ℜ Ε( f ) = [− 1,1], ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ ﻧﻼﺣﻆ ﺃﻧﻪ ﻣﻦ ﺃﺟﻞ ﻛﻞ y0 ﻣﻦ ] ، [− 1,1ﻳﻜﻮﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ f (x) = y0ﻣﺎ ﻻﺎﻳﺔ ﻣﻦ ﺍﳊﻠﻮﻝ. ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺪﺍﻟﺔ ، f (x) = sin xﳒﺪ ﻟﻠﺪﺍﻟﺔ f (x) = cos xﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ﺃﻭ ﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﺗﻌﺮﻳﻔﻬﺎ ،ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ، x = f ( y) = Arc cos yﻭﻧﻘﺮﺃ xﺍﻟﻘﻮﺱ ﺍﻟﺬﻱ ﺟﻴﺐ ﲤﺎﻣﻪ . y ﻋﻠﻰ ﺍﺎﻻﺕ ] I k = [2kπ , 2kπ + πﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ ،ﻭﻋﻠﻰ ﺍﺎﻻﺕ ] J k = [2kπ + 1 , 2kπ + π ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ . f −1 ( y) = arccos y ﻳﺮﻣﺰ ﻟﻠﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ، y = f (x) = cos xﺑﺎﻟﺮﻣﺰ ﰲ ﺍﳊﺎﻟﺔ ﺍﳋﺎﺻﺔ ، k = 0ﻋﻠﻰ I 0ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ، cos xﺃﻱ ﺍﻟﺪﺍﻟﺔ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻘﻮﺱ ﲤﺎﻡ ﺍﳉﻴﺐ ،ﺃﻱ ﻟﻠﺪﺍﻟﺔ . f ( y) = x = Arc cos y ﺧﺼﺎﺋﺺ : ﺃ- ]y ∈ [− 1,1 cos(arccos y) = y , =.x x ∈ [0, π ] , f −1 ( y) = arccos y ﺗﺴﻤﻰ ﺍﳉﺰﺀ . 76 PDF created with pdfFactory trial version www.pdffactory.com ﺏ- ﺝ- ﺩ- ] arccos(cos x) = x , x ∈ [0, π ]arccos(− y) = π − arccos y , y ∈ [− 1,1 π ], y ∈ [− 1,1 2 ﺭﺳﻢ ﺍﻟﺪﺍﻟﺘﲔ = arcsin y + arccos y arccos y , Arc cos y : ﺭﺳﻢ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ) f ( yﻫﻮ ﻧﻈﲑ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ) f ( xﻋﻠﻰ ﻛﻞ ) ، D( fﻭ ﺭﺳﻢ ﺑﻴﺎﻥ f −1 ( y) = arccos y ﻫﻮ ﻧﻈﲑ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ x ∈ [0, π ], f (x) = cos xﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻨﺼﻒ ﺍﻷﻭﻝ ،ﻭﻳﺴﻤﻰ ﺍﻟﻔﺮﻉ ﺍﻟﺮﺋﻴﺴﻴﻠﺒﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ . f ( y) = Arc cos y ﺍﻟﺘﻔﺴﲑ ﺍﳍﻨﺪﺳﻲ : ﻧﺄﺧﺬ ﻋﻠﻰ ﳏﻮﺭ ﲤﺎﻡ ﺍﳉﻴﻮﺏ ﰲ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻧﻘﻄﺔ . y0 ﻧﺒﺤﺚ ﻋﻦ ﺍﻷﻗﻮﺍﺱ ﺍﻟﱵ ﺟﻴﺐ ﲤﺎﻣﻬﺎ . y0 ﺣﺴﺐ ﺍﻟﺸﻜﻞ،ﻧﻼﺣﻆ ﺃﻥ ﻛﻞ ﺍﻷﻗﻮﺍﺱ ﺍﻟﱵ ﻣﺒﺪﺅﻫﺎ ﻭﺎﻳﺘﻬﺎ Mﺃﻭ M ′ﻳﻜﻮﻥ ﺟﻴﺐ ﲤﺎﻣﻬﺎ . y0 ﺇﺫﺍ ﻛﺎﻥ aﺃﺻﻐﺮ ﺍﻷﻗﻮﺍﺱ ﺍﻟﱵ ﺟﻴﺐ ﲤﺎﻣﻬﺎ ، y0ﻓﺈﻥ ﻛﻞ ﺍﻷﻗﻮﺍﺱ AM = 2kπ − a , AM = 2kπ + aﺟﻴﺐ ﲤﺎﻣﻬﺎ ، y0ﻭﺑﺎﻟﺘﺎﱄ ﻧﻜﻮﻥ ﻗﺪ ﻋﺮﻓﻨﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ،ﺃﻭ ﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ﺍﻟﻘﻴﻤﺔ . x = Arc cos y ﰲ ﺍﳊﺎﻟﺔ ﺍﳋﺎﺻﺔ،ﺇﺫﺍ ﺃﺧﺬﻧﺎ ﻓﻘﻂ ﺍﻷﻗﻮﺍﺱ ﺍﳌﻮﺟﻮﺩﺓ ﺩﺍﺧﻞ ﺍﺎﻻﺕ ] ، [2kπ , 2kπ + πﺃﻭ ] ، [2kπ + π , 4kπﻓﺈﻧﻪ ﻟﻜﻞ y = cos x y0 ،ﻭﻫﻲ ﺍﻟﺪﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ ﻟﻠﺪﺍﻟﺔ y = cos xﻭﻫﻲ f −1 ( y) = arccos y ﻳﻘﺎﺑﻠﻬﺎ ﻗﻮﺱ ﻭﺍﺣﺪ،ﻭﻣﻨﻪ ﻧﻜﻮﻥ ﻗﺪ ﻋﺮﻓﻨﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ -3ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ y = f ( x) = tgx =.x π D( f ) = ℜ − + kπ , Ε( f ) = ℜ 2 ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ ﻧﻼﺣﻆ ﺃﻧﻪ ﻣﻦ ﺃﺟﻞ ﻛﻞ y0ﻣﻦ ، ℜﻟﻠﻤﻌﺎﺩﻟﺔ y0 = tgxﻣﺎ ﻻﺎﻳﺔ ﻣﻦ ﺍﳊﻠﻮﻝ . ﻭﻣﻨﻪ ﺍﻟﺪﺍﻟﺔ y = tgxﻻ ﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻋﻠﻰ ﳎﺎﻝ ﺗﻌﺮﻳﻔﻬﺎ،ﺑﻞ ﺗﻘﺒﻞ ﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ ،ﻳﺮﻣﺰﳍﺎ ﺑﺎﻟﺮﻣﺰ x = f ( y) = Arctgy ﻧﻼﺣﻆ ﺃﻥ ﺍﻟﺪﺍﻟﺔ y = tgx ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﻣﻦ ﺍﻟﻨﻮﻉ ، − π + kπ , π + kπ ﺗﻜﻮﻥ ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ،ﻭﺑﺎﻟﺘﺎﱄ ﻓﻬﻲ ﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ،ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ﰲ ﺍﳊﺎﻟﺔ k = 0ﻋﻠﻰ f −1 ( y) = arctgy 2 =.x 2 π ﺍﺎﻝ 2 2 , − πﺍﻟﺪﺍﻟﺔ ، x = arctgyﺗﺴﻤﻰ ﺍﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﺼﻮﺭﺓ ﺍﻟﻌﻜﺴﻴﺔ . f ( y) = Arctgy 77 PDF created with pdfFactory trial version www.pdffactory.com ﺧﺼﺎﺋﺺ ﻭﺭﺳﻢ ﺍﻟﺒﻴﺎﻥ : tg (arctgy) = y ﺃ- , y∈ℜ ﺏ- π π x∈ − , 2 2 ﺩ- π π < < arctgy 2 2 ﺝ- arctg (tgx) = x , arctg (− y) = −arctgy − ﺑﻴﺎﻥ f −1ﻳﺴﻤﻰ ﺍﻟﻔﺮﻉ ﺍﻟﺮﺋﻴﺴﻲ ﻣﻦ ﺑﻴﺎﻥ . f -4ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ y = ctgx }ℜ = Ε( f ) , D( f ) = ℜ−{kπ ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﺎﻭﺭ ﻭﺍﺿﺢ ﺃﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ y0 = ctgx , y0 ∈ ℜﻋﺪﺩ ﻻﺎﺋﻲ ﻣﻦ ﺍﳊﻠﻮﻝ، ﻭﺑﺎﻟﺘﺎﱄ ﻟﻠﺪﺍﻟﺔ y = ctgxﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ ،ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ . x = f ( y) = Arcctgy ﻧﻼﺣﻆ ﺃﻥ ﻋﻠﻰ ﺍﺎﻻﺕ ﻣﻦ ﺍﻟﻨﻮﻉ [ ، ]kπ , kπ + π ﺍﻟﺪﺍﻟﺔ y = ctgxﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ،ﻭﺑﺎﻟﺘﺎﱄ ﻓﻬﻲ ﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ،ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ x = f −1 ( y) = arcctgy ﰲ ﺍﳊﺎﻟﺔ ﺍﳋﺎﺻﺔ ﻋﻠﻰ ﺍﺎﻝ [ ]0, πﺍﻟﺪﺍﻟﺔ f −1 ( y) = arcctgyﺗﺴﻤىﺎﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﺪﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ) ، f ( yﻭﻳﻜﻮﻥ ﻋﻨﺪﻫﺎ : Arcctgy = arcctgy + kπ ﺑﻴﺎﻥ f −1 ﻳﺴﻤﻰ ﺍﻟﻔﺮﻉ ﺍﻟﺮﺋﻴﺴﻲ ﻣﻦ ﺑﻴﺎﻥ . f ﻣﻼﺣﻈﺔ : ﻛﻞ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ ﺇﺫﺍ ﺫﻛﺮﺕ ﻣﻨﻔﺼﻠﺔ ﻋﻦ ﺩﻭﺍﳍﺎ ﺍﻷﺻﻠﻴﺔ ،ﻓﺈﻧﻨﺎ ﻧﺒﺪﻝ ﻓﻴﻬﺎ ﺍﳌﺘﻐﲑ yﺑﺎﳌﺘﻐﲑ ، xﺃﻱ ﻧﻜﺘﺐ y = arcsin x y = arccos x, y = arctgx, y = arcctgx, wﳒﻤﻞ ﺃﻫﻢ ﺧﺼﺎﺋﺺ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ ﰲ ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ: 78 PDF created with pdfFactory trial version www.pdffactory.com )f ( x ) D( f ) Ε( f y = arcsin x y = arccos x y = arcctgx y = arcctgx −1 ≤ x ≤ 1 π π ≤− ≤ y 2 2 −1 ≤ x ≤ 1 ℜ ℜ 0≤ y≤π π π ≤≤ y 2 2 0≤ y≤π − ﺍﻟﺮﺗﺎﺑﺔ ﻣﺘﺰﺍﻳﺪﺓ ﻣﺘﻨﺎﻗﺼﺔ ﻣﺘﺰﺍﻳﺪﺓ ﻣﺘﻨﺎﻗﺼﺔ ﻧﻘﻂ ﺍﻻﻧﻌﻄﺎﻑ )(0,0 π 0, 2 )(0,0 π 0, 2 ∞x → −∞ , x → + \ \ π π , 2 2 − π , 0 -8.3ﺍﻟﺪﻭﺍﻝ ﺍﻟﺰﺍﺋﺪﻳﺔ)،ﺍﻟﻘﻄﻌﻴﺔ(،ﻭﺩﻭﺍﳍﺎ ﺍﻟﻌﻜﺴﻴﺔ : ﻟﺘﻜﻦ x2 − y2 = 1ﻣﻌﺎﺩﻟﺔ ﻗﻄﻊ ﺯﺍﺋﺪ ﻣﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﲔ ﻭ mﻧﻘﻄﺔ ﻣﺘﺤﺮﻛﺔ ﻋﻠﻰ ﻓﺮﻉ ﺍﻟﻘﻄﻊ ﺍﻟﺰﺍﺋﺪﺓ. ﻧﺮﻣﺰ ﺑﺎﻟﺮﻣﺰ tﺇﱃ ﺿﻌﻒ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ ﺍﻟﺬﻱ ﳝﺴﺤﻪ ﺍﻟﺸﻌﺎﻉ omﻋﻨﺪﻣﺎ ﺗﺘﺤﺮﻙ ﺍﻟﻨﻘﻄﺔ mﻣﻦ ﺍﻟﻮﺿﻊ Aﺇﱃ ﺍﻟﻮﺿﻊ . M ) ﻧﻌﺘﱪ ﺍﳌﺴﺎﺣﺔ ﻣﻮﺟﺒﺔ ﺇﺫﺍ ﲢﺮﻙ ﺍﻟﺸﻌﺎﻉ omﺑﻨﻔﺲ ﺍﻻﲡﺎﻩ ﺍﳌﻮﺟﺐ ﻟﻠﺰﺍﻭﻳﺔ ﻭﺍﻟﻌﻜﺲ (. ﺗﻌﺎﺭﻳﻒ : ﺃ -ﻳﻌﺮﻑ ﲤﺎﻡ ﺍﳉﻴﺐ ﺍﻟﺰﺍﺋﺪﻱ ﻟﻠﻤﺘﻐﲑ ، tﺑﺄﻧﻪ ﻓﺎﺻﻠﺔ ﺍﻟﻨﻘﻄﺔ ، Mﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ، ch tﻭﻧﻜﺘﺐ OB = x = ch t ﺏ -ﻳﻌﺮﻑ ﺍﳉﻴﺐ ﺍﻟﺰﺍﺋﺪﻱ ﻟﻠﻤﺘﻐﲑ tﺑﺄﻧﻪ ﺗﺮﺗﻴﺐ ﺍﻟﻨﻘﻄﺔ ، Mﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ، sh tﻭﻧﻜﺘﺐ BM = y = sh t ﺝ -ﻳﻌﺮﻑ ﺍﻟﻈﻞ ﺍﻟﺰﺍﺋﺪﻱ ﻟﻠﻤﺘﻐﲑ ، tﺑﺄﻧﻪ ﺍﳌﻴﻞ ﺍﻟﺰﺍﻭﻱ ﻟﻠﺸﻌﺎﻉ ، OMﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ، th tﻭﻧﻜﺘﺐ ﺩ -ﻳﻌﺮﻑ ﺍﻟﺘﻈﻞ ﺍﻟﺰﺍﺋﺪﻱ ﻋﻠﻰ ﺃﻧﻪ ﻣﻘﻠﻮﺏ ﺍﻟﻈﻞ ﺍﻟﺰﺍﺋﺪﻱ،ﻭ ﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ cth tﻭﻧﻜﺘﺐ: ch t sh t sh t ch t = AC = th t = PN = cth t ﻗﻴﻢ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺰﺍﺋﺪﻳﺔ : ﻋﻨﺪﻧﺎ t = 2Sﺣﻴﺚ Sﻫﻲ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ OAMﺍﻟﺬﻱ ﳝﺴﺤﻪ ﺍﻟﺸﻌﺎﻉ OMﻋﻨﺪﻣﺎ ﺗﺘﺤﺮﻙ ﺍﻟﻨﻘﻄﺔ mﻣﻦ Aﺇﱃ . M Sﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻦ ﻣﺴﺎﺣﺔ ﺍﳌﺜﻠﺚ OMBﻧﺎﻗﺺ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ . AMB ﻣﺴﺎﺣﺔ ﺍﳌﺜﻠﺚ ﻫﻲ 1 1 OB ⋅ BM = xy 2 2 = OMB ﺣﻴﺚ y, xﻫﻲ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺍﻟﻨﻘﻄﺔ . M 79 PDF created with pdfFactory trial version www.pdffactory.com ﺎ ﻋﺒﺎﺭﺓ ﻋﻦ ﺍﳌﺴﺎﺣﺔ ﺍﻟﱵ ﳛﺼﺮﻫﺎ ﻓﺮﻉ ﺍﻟﻘﻄﻊ ﺍﻟﺰﺍﺋﺪ ﻭﺍﻟﻘﻄﻌﺔﻷ، ﳓﺴﺒﻬﺎ ﺑﻮﺍﺳﻄﺔ ﺍﻟﺘﻜﺎﻣﻞ ﺍﶈﺪﻭﺩAMB ﺍﳌﺴﺎﺣﺔ ( y = x 2 + 1 )ﻣﻌﺎﺩﻟﺔ ﺍﻟﻔﺮﻉ ﻫﻲ، ﻭﳏﻮﺭ ﺍﻟﻔﻮﺍﺻﻞBM ﺍﳌﺴﺘﻘﻴﻤﺔ x x 1 1 AMB = ∫ ydx = ∫ x 2 + 1 : ﻧﺴﺘﻌﻤﻞ ﺍﻟﺘﻜﺎﻣﻞ ﺑﺎﻟﺘﺠﺰﺋﺔ ﻧﻀﻊ xdx v = x , du = x x −1 x x ∫ ⇐ dv = dx , u = x 2 − 1 2 1 1 x ∫ 1 x2 x2 − 1 x dx = ∫ (x ∫ 1 x2 − 1 1 ) −1 +1 x x dx = ∫ x − 1dx + ∫ 2 1 1 x x 1 x dx 2 ∫ x 2 − 1dx = xy − ∫ 1 x2 − 1 1 x ∫ x2 − 1 1 x 2 − 1dx = xy − ∫ x 2 − 1dx − ∫ x x2 dx = xy − ∫ dx ﺍﻟﺘﻜﺎﻣﻞ x2 − 1 1 x 2 x x2 x 2 − 1dx = x x 2 − 1 − ∫ ( 1 dx x2 − 1 dx x2 − 1 = xy − ln x + x 2 − 1 ) x 1 xy 1 − ln ( x + y) 2 2 x 2 − 1dx = 1 (1) (2) x2 − y 2 = 1 x + y = et : ﳒﺪ، x − y = e −t , :ﺃﻱ ﺃﻥ ﰲ ﺍﻟﻨﻬﺎﻳﺔ ﳒﺪ ﻣﻦ ﺟﻬﺔ ﺃﺧﺮﻯ ﻋﻨﺪﻧﺎ ( ﳓﺼﻞ ﻋﻠﻰ1) ( ﻋﻠﻰ2) ﺑﻘﺴﻤﺔ x − y = e −t e t + e −t x= 2 :ﻭﻣﻨﻪ :ﻭﺑﺎﻟﺘﺎﱄ 1 1 1 t = 2 S = 2 xy − xy + ln ( x + y) = ln( x + y) 2 2 2 x + y = et : ﺃﻱ ﲝﻞ ﺍﳉﻤﻠﺔ e t − e −t y= 2 : ﻭﺑﺎﻟﺘﺎﱄ ﻳﻜﻮﻥ sh t = e t − e −t e t + e −t , ch t = , 2 2 th t = e t − e −t e t + e −t , cth t = e t + e −t e t − e −t 80 PDF created with pdfFactory trial version www.pdffactory.com ﻣﻼﺣﻈﺔ :ﺇﺫﺍ ﺍﻋﺘﱪﻧﺎ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺰﺍﺋﺪﻳﺔ ﺩﻭﺍﻝ ﰲ ﺍﳌﺘﻐﲑ ، xﻓﺈﺎ ﺗﻜﺘﺐ ﻛﺎﻟﺘﺎﱄ : y = ch x y = th x , y = sh x , y = cth x , ﺧﻮﺍﺹ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺰﺍﺋﺪﻳﺔ :ﳒﻤﻞ ﺃﻫﻢ ﺍﳋﻮﺍﺹ ﰲ ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ : )f ( x y = sh x y = ch x y = th x ) D( f ∞− ∞ < x < + ∞− ∞ < x < + ∞− ∞ < x < + ) Ε( f ∞− ∞ < y < + ∞1 ≤ y < + −1 < y < 1 ﺃﺻﻔﺎﺭ x=0 ﻻ x=0 ﺍﳋﻄﻮﻁ ﺍﳌﻘﺎﺭﺑﺔ ﻻ ﻻ y = ±1 ∞x → ± ∞± ∞+ ±1 ﺍﻟﺮﺗﺎﺑﺔ ﻣﺘﺰﺍﻳﺪﺓ ﻧﻘﺎﻁ ﺍﻟﻘﻴﻢ ﺍﻟﻘﺼﻮﻯ ﻻ [ ]− ∞,0ﻣﺘﻨﺎﻗﺼﺔ [∞ ]0,+ﻣﺘﺰﺍﻳﺪﺓ ﺻﻔﺮ x=0 ﻧﻘﻂ ﺍﻻﻧﻌﻄﺎﻑ x=0 ﻻ ﺍﻟﻔﺮﺩﻱ ﻭﺍﻟﺰﻭﺟﻲ ﻓﺮﺩﻳﺔ ﺯﻭﺟﻴﺔ y = cth x x≠0 ∞− ∞ < x < + − ∞ < y < −1 ∞+ 1 < y < + ﻻ x=0 ﺃﻭ y = ±1 ±1 ﻣﺘﺰﺍﻳﺪﺓ [ ]− ∞,0ﻣﺘﻨﺎﻗﺼﺔ [∞ ]0,+ﻣﺘﻨﺎﻗﺼﺔ ﻻ ﻻ x=0 ﻻ ﻓﺮﺩﻳﺔ ﺯﻭﺟﻴﺔ ch ( x ± y) = ch x ch y ± sh x sh y sh ( x ± y) = sh x ch y ± ch x sh y ﺍﻟﺮﺳﻢ : ch 2 x − sh 2 x = 1 81 PDF created with pdfFactory trial version www.pdffactory.com ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﻭﺍﻝ ﺍﻟﺰﺍﺋﺪﻳﺔ : -1ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ y = f ( x) = sh x D ( f ) = ℜ , Ε( f ) = ℜ ﺍﻟﺪﺍﻟﺔ fﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ) ، D( fﻭﻣﻨﻪ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﻦ ) Ε( fﰲ ) ، D( fﺗﻜﻮﻥ ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ،ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ . x = f −1 ( y) = arsh y "، " arﻫﻲ ﺍﳊﺮﻭﻑ ﺍﻷﻭﱃ ﻣﻦ ﺍﻟﻜﻠﻤﺔ ﺍﻹﳒﻠﻴﺰﻳﺔ " " areaﺗﻌﲏ ﻣﺴﺎﺣﺔ ﻭﻧﻘﺮﺃ xﻫﻲ ﺃﺭﻳﺎ ﺍﳉﻴﺐ ﺍﻟﺰﺍﺋﺪﻱ ﻟـ ، yﺃﻭ xﻫﻲ ﺍﳌﺴﺎﺣﺔ ﺍﻟﱵ ﺟﻴﺒﻬﺎ ﺍﻟﺰﺍﺋﺪﻱ . y ﻋﻨﺪﻧﺎ : e x − e− x 2 = y = sh x 1 1 ﺑﻮﺿﻊ z = e xﻳﻜﻮﻥ ، = e − xﻭﻣﻨﻪ z z ﺣﻠﻮﻝ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺴﺎﺑﻘﺔ ﲟﺎ ﺃﻥ e x > 0ﻓﺈﻥ ﻫﻲ y 2 + 1 ، 2 y = z −ﺃﻱ . z 2 − 2 yz − 1 = 0 : z= y± e x = y + y2 + 1 ،ﺃﻱ: y2 + 1 ،ﻭﻣﻨﻪ ﻳﻜﻮﻥ: ) .ex = y ± ( arsh y = x = ln y + 1 + y 2 -2ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ y = f ( x) = ch x Ε( f ) = [1,+∞[ , D( f ) = ℜ ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ ﻭﺍﺿﺢ ﺃﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ y0 ∈ Ε( f ) , y0 = ch x ﺃﻛﺜﺮ ﻣﻦ ﺣﻞ . ﻭﺑﺎﻟﺘﺎﱄ ﻟﻠﺪﺍﻟﺔ fﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﺗﻌﺮﻳﻔﻬﺎ ،ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ . x = f ( y) = Arch y ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ ﺍﺎﻝ [∞ [0,+ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ،ﻭﺑﺎﻟﺘﺎﱄ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ،ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ . x = arch + y ﻭﻋﻠﻰ ﺍﺎﻝ [ ]− ∞,0ﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ ،ﻭﺑﺎﻟﺘﺎﱄ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ،ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ x = arch − y ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ x = f −1 ( y) = arch + y ﻋﻨﺪﻧﺎ : e x + e−x 2 ،ﺗﺴﻤﻰ ﺍﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﺼﻮﺭﺓ ﺍﻟﻌﻜﺴﻴﺔ . f = y = ch x ﺑﻮﺿﻊ ، z = e xﳓﺼﻞ ﻋﻠﻰ ﺍﳌﻌﺎﺩﻟﺔ z 2 − 2 yz + 1 = 0 ﲝﻠﻬﺎ ﳒﺪ ، z = e = y ± y − 1ﺃﻱ ﺃﻥ) : ﻭﺑﺎﻟﺘﺎﱄ ﻳﻜﻮﻥx = ln (y + y − 1 ) , x = ln (y − y − 1 ) : 1 ) = − ln (y + y − 1 x = ln ﻻﺣﻆ ﺃﻥ: y + y −1 )x = arch y = ln (y + y − 1 , x≥0 ﻭﻣﻨﻪ 2 y2 − 1 x 2 . x = ln (y ± 2 1 2 2 2 2 2 + 82 PDF created with pdfFactory trial version www.pdffactory.com ( x = arch − y = − ln y − y2 − 1 ) , x≤0 f ( x) = y = th x ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ-3 Ε( f ) = ]− 1,1[ , D( f ) = ℜ ﻧﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ، Ε( f ) ﻭﺑﺎﻟﺘﺎﱄ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ، D( f ) ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ﻋﻠﻰf ﺍﻟﺪﺍﻟﺔ x = f −1 ( y) = arth y y = th x = ( e x − e−x e x + e−x ) y e x + e − x = e x − e − x ⇒ e x (1 − y) = e − x (1 + y) ⇒ e 2 x = ex = 1+ y 1 1+ y ⇒ x = arth y = ln 1− y 2 1− y :ﻋﻨﺪﻧﺎ y <1 , :ﻭﻣﻨﻪ ﻳﻜﻮﻥ 1+ y ⇒ 1− y y < 1 , f ( x) = y = cth x ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ-4 Ε( f ) = ]− ∞,−1[ U ]1,+∞[ , D( f ) = ℜ − {0} ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ، Ε( f ) ﻭﺑﺎﻟﺘﺎﱄ ﺗﻮﺟﺪ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ، D( f ) ﻣﺘﻨﺎﻗﺼﺔ ﻋﻠﻰf ﺍﻟﺪﺍﻟﺔ x = f −1 ( y) = arcth y y = cthx = e x + e −x e x − e −x e x ( y − 1) = e − x ( y + 1) ⇒ e 2 x = y +1 ⇒ ex = y −1 1 y + 1 x = arcth y = ln 2 y − 1 , ( ) y = arsh x = ln x + 1 + x 2 1 1+ x , x <1 arth x = ln 2 1− x :ﻋﻨﺪﻧﺎ y >1 , :ﻭﻣﻨﻪ ﻳﻜﻮﻥ y +1 ⇒ y −1 y > 1 : ﰲ ﻋﺒﺎﺭﺓ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ﻳﻜﻮﻥx ﺑـy ﻧﺴﺘﺒﺪﻝ: ﻣﻼﺣﻈﺔ , ( ) Arch x = ± ln x + x 2 − 1 1 x + 1 , arcth x = ln 2 x − 1 ( arch x ± arch y = arch (xy ± x ≥1 , x >1 , ) (x − 1)(y − 1)) arsh x ± arsh y = arsh x 1 + y2 ± y 1 + x2 83 PDF created with pdfFactory trial version www.pdffactory.com 2 2 : ﺧﺼﺎﺋﺺ -1 -2 . arch − x ﺃﻭ، arch + x ﺗﻌﲏ arch x ﺣﻴﺚ x± y arth x ± arth y = arth 1 ± xy 1 ± xy arcth x ± arcth y = arcth x± y y = arcth x − ∞ < x < −1 + 1 < x < +∞ − ∞ < y < +∞ y≠0 x=0 y = 0, x = ±1 x = ±1 x → ±∞, f ﻻ ﻓﺮﺩﻳﺔ →0 1 ≤ x < +∞ 1 ≤ x < +∞ 0 ≤ y < +∞ −∞ < y≤ 0 x =1 x =1 − ∞ < y < +∞ ﻻ − ∞ < x < +∞ D( f ) − ∞ < y < +∞ Ε( f ) x=0 ﻻ ﻻ x → ±∞, f −1 → +∞ lim f −1 ( x) = ±∞ x → ±∞, f −1 → −∞ x→ ±∞ x=0 ﻻ x=0 ﻓﺮﺩﻳﺔ ﻻ ﻓﺮﺩﻳﺔ x = arcth y, x = arth y, 84 PDF created with pdfFactory trial version www.pdffactory.com -4 y = arsh x y = arch − x − 1 < x < +1 ﻻ −1 y = arch + x y = arth x -3 x = arsh y, x = arch y f ﺃﺻﻔﺎﺭ ﺧﻂ ﻣﻘﺎﺭﺏ ∞ ﺍﻟﺴﻠﻮﻙ ﰲ ﻧﻘﺎﻁ ﺍﻻﻧﻌﻄﺎﻑ ﺯﻭﺟﻲ ﻓﺮﺩﻱ : ﺭﺳﻢ ﺍﻟﺪﻭﺍﻝ -9.3ﻣﻘﺎﺭﻧﺔ ﺍﻟﺪﻭﺍﻝ ﰲ ﺟﻮﺍﺭ ﻧﻘﻄﺔ ﺭﻣﺰ ﺍﻻﻧﺪﻭ ""0" ، "º -1.9.3ﺍﻟﺪﻭﺍﻝ ﺍﳌﺘﻜﺎﻓﺌﺔ : ﺗﻌﺮﻳﻒ :ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺘﲔ g, f ﻣﺘﻜﺎﻓﺌﺘﺎﻥ ﻋﻨﺪﻣﺎ ، x → aﺇﺫﺍ ﻛﺎﻧﺖ ﻛﻞ ﻣﻦ g, f ﻣﻌﺮﻓﺘﲔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ ، Vδ (a ) , aﻭﺇﺫﺍ ﻭﺟﺪﺕ ﺩﺍﻟﺔ hﻣﻌﺮﻓﺔ ﰲ ) ، Vδ (aﲝﻴﺚ : • • h( x) = 1 lim x→ a )f ( x) = g ( x)h( x , ﻭﻧﻜﺘﺐ ) f (x) ≈ g (xﻋﻨﺪﻣﺎ x → aﺃﻭ f ≈ gﻋﻨﺪﻣﺎ x → a ﻣﺜﺎﻝ : ﺃ- f ( x) = sin x g, f ﻣﺘﻜﺎﻓﺌﺘﺎﻥ ﻋﻨﺪﻣﺎ ، x → 0ﻷﻥ ﻣﻊ ﺍﻟﻌﻠﻢ ﺃﻥ ﺏ- g ( x) = x , sin x )= g ( x)h(x x f ( x) = sin x = x lim h( x) = lim sin x =1 x→0 x x4 x2 + x = )f (x , x→0 g ( x) = x2 x2 f ( x) = x 2 )= g ( x)h( x x +1 ﻣﺘﻜﺎﻓﺌﺘﺎﻥ ﻋﻨﺪﻣﺎ ∞ → ، xﻷﻥ 2 ﺧﺼﺎﺋﺺ : ،ﻭ x2 =1 lim h( x) = lim 2 ∞→x x→∞ x + 1 ﺃ -ﺍﻟﻌﻼﻗﺔ "≈" ﻋﻼﻗﺔ ﺗﻜﺎﻓﺆ . ﺏ f1 ≈ g1 , f ≈ g ) -ﻋﻨﺪﻣﺎ ff1 ≈ gg1 ) ⇐ (x → aﻋﻨﺪﻣﺎ (x → a ﻧﻈﺮﻳﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ f ≈ f1 g ≈ g 1ﻋﻨﺪﻣﺎ ، x → 0ﻓﺈﻧﻪ ﻣﻦ ﻭﺟﻮﺩ ﺎﻳﺔ , ﻭﺟﻮﺩ ﺎﻳﺔ ﺍﻟﻨﺴﺒﺔ ) f (xﻋﻨﺪﻣﺎ )g ( x ﺍﻟﱪﻫﺎﻥ : x→0 ) )lim h ( x) = 1 lim h1 ( x) = 1 x→ a 2 ﲟﺎ ﺃﻥ )f1 ( x )g1 ( x ﻛﻞ ﻣﻦ lim x→ a g1 , f1 , h1 x→ a / ﻋﻨﺪﻣﺎ ، x → 0ﻧﺴﺘﻨﺘﺞ .ﻭﻳﻜﻮﻥ ﻋﻨﺪﻫﺎ : )f ( x )f ( x = lim 1 x → a )g ( x )g1 ( x / )f1 (x ﺍﻟﻨﺴﺒﺔ )g1 ( x ، lim x→ a ( )(g ≈ g ) ⇔ (g (x) = g (x)h (x )≈ f1 ) ⇔ f ( x) = f1 ( x)h1 ( x 2 1 (f 1 ، limﻓﺈﻧﻪ ﻣﻦ ﺧﺼﺎﺋﺺ ﺎﻳﺎﺕ ﺍﻟﺪﻭﺍﻝ،ﻧﺴﺘﻨﺘﺞ ﻭﺟﻮﺩ (δ > 0), δﲝﻴﺚ ﺗﻜﻮﻥ ﻣﻮﺟﻮﺩﺓ ﻭ h1 ( x) = 1 x→ a ﻣﻌﺮﻓﺔ ،ﻭ g 1 ( x) ≠ 0 , h1 ( x) ≠ 0 • ﰲ ﺍﳉﻮﺍﺭ ) . Vδ (a 85 PDF created with pdfFactory trial version www.pdffactory.com • ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ ﺍﻟﺪﺍﻟﺔ ) g (xﺣﻴﺚ )، g (x) = g1 (x)h1 (xﺗﻜﻮﻥ ﻣﻌﺮﻓﺔ ﰲ ﺍﳉﻮﺍﺭ ) Vδ (aﻭﲢﻘﻖ . g (x) ≠ 0 )f ( x) h1 ( x) f1 ( x = ﻭﺑﺎﻟﺘﺎﱄ ﳝﻜﻦ ﺃﻥ ﻧﻜﺘﺐ: )g ( x) h2 ( x) f1 ( x ﻭﻣﻨﻪ ﻳﻜﻮﻥ: )f ( x )f ( x lim = lim 1 )x→ a g ( x )x→ a g ( x 1 ﻣﺜﺎﻝ :ﺣﺴﺎﺏ ) ( arcsin x e x − 1 lim x→0 cos x − cos 3 x ﻋﻨﺪﻧﺎ ، sin x ≈ xﻭ ﻫﺬﺍ ﻳﻌﲏ ﺣﺴﺐ ﺍﳋﺎﺻﻴﺔ –ﺏ -ﺃﻥ : ،ﻋﻨﺪﻣﺎ ). (x → 0 e x − 1 ≈ x , arcsin x ≈ x ) ( arcsin x e x − 1 ≈ x2 x→0 sin 2 x ≈ 2 x ﻋﻨﺪﻧﺎ ﻭﻣﻨﻪ ﻳﻜﻮﻥ: cos x − cos 3 x = 2 sin x sin 2 x x→0 ﻭﺑﺎﻟﺘﺎﱄ ﺗﻜﻮﻥ: cos x − cos 3 x ≈ 4 x2 ) ( arcsin x e x − 1 x2 1 lim = = lim 2 x→0 cos x − cos 3 x x→0 4 x 4 -2.9.3ﻣﻔﻬﻮﻡ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻼﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﺑﺎﻟﻨﺴﺒﺔ ﻟﺪﺍﻟﺔ ﺃﺧﺮﻯ : ﺭﻣﺰ ﻻﻧﺪﻭ ") "°ﺍﻟﺼﻔﺮ ﺍﻟﺼﻐﲑ( : ﺗﻌﺮﻳﻒ :ﺇﺫﺍ ﻋﺮﻓﺖ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ aﺍﻟﺪﻭﺍﻝ f , g , αﲝﻴﺚ f ( x) = g ( x)α ( x) , lim α ( x) = 0 x→a ﻓﺈﻧﻨﺎ ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ fﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺪﺍﻟﺔ ، gﺃﻭ ﺍﻟﺪﺍﻟﺔ fﻗﺎﺑﻠﺔ ﻟﻺﳘﺎﻝ ﺃﻣﺎﻡ ﺍﻟﺪﺍﻟﺔ gﻋﻨﺪﻣﺎ ، x → 0 ﻭﻧﻜﺘﺐ : x→a f ( x) = o( g ( x)) , ﺃﻭ ) f = o( g ﻣﻼﺣﻈﺔ : ﺃ -ﰲ ﺣﺎﻟﺔ ، g ≡ 1ﺃﻱ ) ، x → 0 , f = o(1ﺗﻜﻮﻥ fﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ. ﺏ -ﰲ ﺣﺎﻟﺔ g ≡ 0ﺍﻟﻌﻼﻗﺔ ) ، f = o(gﺗﻌﻦ. lim o (g ) = 0 : g ﺝ- g, f x→ 0 ﻟﻴﺲ ﺣﺘﻤﺎ ﻻ ﻣﺘﻨﺎﻫﻴﺘﲔ ﰲ ﺍﻟﺼﻐﺮ. 86 PDF created with pdfFactory trial version www.pdffactory.com ﻣﺜﺎﻝ :1ﻟﺘﻜﻦ f ( x) = x 2 g ( x) = x 4 , ﻭﺍﺿﺢ ﺃﻥ ) f = o(gﻋﻨﺪﻣﺎ ∞ → . x ﻟﻜﻦ g, fﻻ ﻣﺘﻨﺎﻫﻴﺘﺎﻥ ﰲ ﺍﻟﻜﱪ ﻋﻨﺪﻣﺎ ∞ → . x ﺗﻨﺒﻴﻪ : ﺃ -ﺇﺫﺍ ﻛﺎﻧﺖ gﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ،ﻳﻘﺎﻝ ﺇﻥ fﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﻣﻦ ﺭﺗﺒﺔ ﺃﻛﱪ ﻣﻦ ﺭﺗﺒﺔ ﺍﻟﻼ ﺗﻨﺎﻫﻲ ﰲ ﺍﻟﺼﻐﺮ . g k ، limﺛﺎﺑﺖ ،ﻧﻘﻮﻝ ﺇﻥ f , gﻻ ﻣﺘﻨﺎﻫﻴﺘﺎﻥ ﰲ ﺍﻟﺼﻐﺮ ﺏ -ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﻞ ﻣﻦ g, fﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﻭ α (x) = k x→ a ﻣﻦ ﻧﻔﺲ ﺍﻟﺪﺭﺟﺔ. ﻣﺜﺎﻝ:2 g ( x) = x f ( x) = x 2 , ﺃ -ﻟﺘﻜﻦ ﻭﺍﺿﺢ ﺃﻥ ) ، x → 0 , f = o(gﺃﻱ fﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﻣﻦ ﺩﺭﺟﺔ ﺃﻛﱪ ﻣﻦ ﺩﺭﺟﺔ ﺍﻟﻼ ﺗﻨﺎﻫﻲ ﰲ ﺍﻟﺼﻐﺮ . g ﺏ -ﻟﺘﻜﻦ g ( x) = x , f ( x) = 4 + x − 2 ﻻﺣﻆ ﺃﻥ: 4+ x−2 1 = x 2 ﻣﻼﺣﻈﺔ :ﺍﻟﻜﺘﺎﺑﺔ lim x→ 0 ) , f = o( g ،ﺃﻱ ﺛﺎﺑﺖ،ﻭﻣﻨﻪ g, fﳍﻤﺎ ﻧﻔﺲ ﺩﺭﺟﺔ ﺍﻟﻼ ﺗﻨﺎﻫﻲ ﰲ ﺍﻟﺼﻐﺮ ﻋﻨﺪﻣﺎ . x → 0 x→a ﻻ ﺗﻌﲏ ﺍﳌﺴﺎﻭﺍﺓ ﲟﻌﻨﺎﻫﺎ ﺍﳊﻘﻴﻘﻲ ،ﻷﻥ ) o ( gﻳﻌﲎ ﻗﺴﻢ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻼﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﻣﻦ ﺩﺭﺟﺔ ﺃﻛﱪ ﻣﻦ ﺩﺭﺟﺔ ﺍﻟﻼ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ )، gﻫﺬﺍ ﰲ ﺣﺎﻟﺔ gﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ (. ﺃﻣﺎ ﰲ ﺣﺎﻟﺔ gﻛﻴﻔﻴﺔ ﻓﻬﻮ ﻳﻌﲏ ﻗﺴﻢ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻘﺎﺑﻠﺔ ﻟﻺﳘﺎﻝ ﺃﻣﺎﻡ ، gﻭﺑﺎﻟﺘﺎﱄ ﺃﺻﻞ ﺍﻟﻜﺘﺎﺑﺔ ﻫﻮ, f ∈ o( g ) : ﻟﻜﻦ ﻟﺘﺴﻬﻴﻞ ﺍﳊﺴﺎﺑﺎﺕ ﻧﻜﺘﺐ ) , f = o( g x→a .x→a ﺧﺼﺎﺋﺺ ﺍﻟﺼﻔﺮ ﺍﻟﺼﻐﲑ)ﻋﻨﺪﻣﺎ :( x → a -1 -2 -3 -4 -5 -6 -7 -8 ) o (cg ) = o(g ) o ( g ) + o( g ) = o( g ) o ( g + o( g )) = o( g ) ( g n −1 o ( g ) = o g n n ∈ Ν, ) C o ( g ) = o( g ) o (o ( g )) = o( g ( ) () ( ) ) (o (g )) = o(g ) o (g = o(g ) -9 g n, m ∈ Ν, o g n o g m = o g n + m n n −1 n n n ∈ Ν, • , x ∈ Vδ (a ) , n ∈ Ν ، .g ≠ 0 87 PDF created with pdfFactory trial version www.pdffactory.com ﺭﻣﺰ ﻻﻧﺪﻭ " "0ﺍﻟﺼﻔﺮ ﺍﻟﻜﺒﲑ : ﺗﻌﺮﻳﻒ :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﻭﺍﻝ ϕ , g, fﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ • ﻟﻠﻨﻘﻄﺔ ، Vδ (a ) , aﲝﻴﺚ ) f ( x) = g ( x)ϕ (xﻭ )ϕ (x • ﳏﺪﻭﺩﺓ ﻋﻠﻰ ) ، Vδ (aﺃﻱ : • ∃c > 1 / ∀x ∈ Vδ (a ) → ϕ ( x) ≤ c ﻓﺈﻧﻨﺎ ﻧﻘﻮﻝ ﺇﻥ fﺻﻔﺮ ﻛﺒﲑ ﻣﻦ gﻋﻨﺪﻣﺎ ، x → aﻭﻧﻜﺘﺐ : f (x) = 0(g (x)) , x → aﺃﻭ ﻣﺜﺎﻝ : ﺃ- , f ( x) = x 2 + 2 x 3 ) , f = 0( g x→a x → 0 , g ( x) = x 2 ﻭﺍﺿﺢ ﺃﻥ: )/ ϕ ( x) = (1 + 2 x ﻻﺣﻆ )f ( x) = x 2 + 2 x 3 = x 2 (1 + 2 x) = g ( x)ϕ ( x lim ϕ ( x) = 1 x→ 0 • )Vδ (0 ﻫﺬﺍ ﻳﻌﲏ ﻭﺟﻮﺩ ﺟﻮﺍﺭ ﺗﻜﻮﻥ ﻓﻴﻪ ) ϕ (xﻣﻌﺮﻓﺔ ﻭﳏﺪﻭﺩﺓ ﻭ ))f ( x) = 0( g ( x , f ( x) = x 2 + 2 x3 ﺏ- ﻭﺍﺿﺢ ﺃﻥ: ﻻﺣﻆ g, f ﻣﻌﺮﻓﺘﲔ،ﻭﻣﻨﻪ ﻳﻜﻮﻥ: x → 0, x → 0 , g ( x) = x 3 1 / ϕ ( x) = 2 + x lim ϕ ( x) = 2 1 )f ( x) = x 2 + 2 x 3 = x 3 2 + = g ( x)ϕ ( x x ∞ →x • ﺃﻱ ﺃﻥ ) ϕ (xﳏﺪﻭﺩﺓ ﰲ ﺍﳉﻮﺍﺭ ) ∞( Vδﻭ g, fﻣﻌﺮﻓﺘﲔ ﻓﻴﻪ ،ﻭﻣﻨﻪ ﻳﻜﻮﻥ: ))x → ∞ , f ( x) = 0( g ( x ﻣﻼﺣﻈﺔ : ﺃ -ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﻭﺍﻝ ϕ , g, fﻣﻌﺮﻓﺔ ﻋﻠﻰ ﺍﺎﻝ ، Iﻭ ϕﳏﺪﻭﺩﺓ ﻋﻠﻴﻪ ،ﻓﺈﻥ ﺏ -ﺍﻟﻜﺘﺎﺑﺔ ) x ∈ I , f (x) = 0(1ﺗﻌﲏ ﺃﻥ ﺍﻟﺪﺍﻟﺔ fﳏﺪﻭﺩﺓ ﻋﻠﻰ . I ) x ∈ I , f = 0( g -3.9.3ﻣﻌﻴﺎﺭ ﺍﻟﺪﻭﺍﻝ ﺍﳌﺘﻜﺎﻓﺌﺔ : ﻧﻈﺮﻳﺔ :ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺘﺎﻥ g, f ﻣﺘﻜﺎﻓﺌﺘﲔ ﻋﻨﺪﻣﺎ ، x → aﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻥ )), f ( x) = g ( x) + o( g ( x x → x0 ﺃﻭ ))g ( x) = f (x) + o( f ( x 88 PDF created with pdfFactory trial version www.pdffactory.com ( x → a ﻋﻨﺪﻣﺎf ﺗﺴﻤﻰ ﺍﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﺪﺍﻟﺔg )ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ x→a : ﺃﻱ ﺃﻥ، x → a , f ≈ g ]⇐[ ﻧﻔﺮﺽ ﺃﻥ: ﺍﻟﱪﻫﺎﻥ , f ( x) = g ( x)h( x) / lim h(x) = 1 x→ a :ﻋﻨﺪﻧﺎ f ( x) − g ( x) = g ( x)h( x) − g ( x) = g ( x)(h( x) − 1) = g ( x)α ( x) / α ( x) = h( x) − 1 x→ 0 →1 f ( x) − g ( x) = o( g ( x)) x→a , f ( x) = g ( x) + o( g ( x)) x→a , f ( x) = g ( x) + o( g ( x)) :ﻭﻣﻨﻪ ﻳﻜﻮﻥ :ﺃﻱ ﺃﻥ : ]⇒[ ﻧﻔﺮﺽ ﺃﻥ : ﻋﻨﺪﻧﺎ o ( g ( x)) = g ( x)α (x) / α ( x) → 0 x→a :ﻭﻣﻨﻪ ﻳﻜﻮﻥ f ( x) = g ( x) + g ( x)α ( x) = g ( x)(1 + α ( x)) = g ( x)h( x) / h( x) = 1 + α ( x) x →1 →a x→a , f ≈ g :ﺃﻥ ﺃﻱ (x → 0) : ﺃﻣﺜﻠﺔ sin x = x + o( x) ⇔ sin x ≈ x tg x = x + o( x) ⇔ tg x ≈ x arcsin x = x + o( x) ⇔ arcsin x ≈ x arctg x = x + o( x) ⇔ arctg x ≈ x e x − 1 = x + o( x ) ⇔ e x − 1 ≈ x sh x = x + o( x) ⇔ sh x ≈ x ln(1 + x) = x + o( x) ⇔ ln(1 + x) ≈ x (1 + x) α − 1 = x + o( x) ⇔ (1 + x) − 1 ≈ x α -1 -2 -3 -4 -5 -6 -7 -8 :1ﻣﺜﺎﻝ ex − 3 1+ x x→0 2 arctg x − arcsin x lim 89 PDF created with pdfFactory trial version www.pdffactory.com : ﺣﺴﺎﺏ-ﺃ arctg x = x + o( x) arcsin x = x + o(x) ، ، ex − 3 1 − x = 3 x → 0 ﻋﻨﺪﻧﺎ ﳌﺎ e x −1 = x + o( x) 1+ x −1 = 1 x + o( x) 3 2 x + o( x) 3 :ﻭﻣﻨﻪ ﻳﻜﻮﻥ 2 arctg x − arcsin x = x + o( x) : ﻭﺑﺎﻟﺘﺎﱄ 2 o ( x) 2 x + o( x) + ex − 3 1+ x x =2 lim = lim 3 = lim 3 x→0 x + o( x) x→0 x→0 2 arctg x − arcsin x o ( x) 3 1+ x 1 : ﺣﺴﺎﺏ-ﺏ 2 lim cos x 2 x x→0 ( ) ﻭ، cos ln cos 2 x 1 ln 1 − sin 2 2 x lim ln cos 2 x = lim = lim x→0 x→0 x2 2 x→0 x2 1 x2 ( 1 2 1 x2 2x = e ln cos x 2 x ﻋﻨﺪﻧﺎ : ﻣﻦ ﻧﺎﺣﻴﺔ ﺛﺎﻧﻴﺔ ﺑﺴﻬﻮﻟﺔ ﳒﺪ ) ln 1 − sin 2 2 x ≈ − sin 2 2 x ≈ −(2 x) = −4 x2 ( 2 :ﻭﺑﺎﻟﺘﺎﱄ ﺗﻜﻮﻥ ) 1 ln 1 − sin 2 2 x 1 4 x2 lim = − lim = −2 2 x→0 x2 2 x→0 x2 1 lim cos x 2 x = −2 2 x→0 1 lim cos x 2 x = e x→0 2 1 2 lim ln cos x 2 x x→0 = 1 e2 ﺃﻱ ﺃﻥ : ﻓﺈﻥ، ﻣﺴﺘﻤﺮﺓe x ﲟﺎ ﺃﻥ ﺍﻟﺪﺍﻟﺔ 1 cos x x ln (1+ x) lim x→0 ch x : ﺣﺴﺎﺏ-ﺝ (cos x − 1 + 1) xln (1+ x) −1 cos x x ln (1+ x) lim lim = x→0 =e 1 x→0 ch x lim(ch x − 1 + 1) xln (1+ x) 1 1 x→0 . x→0 , t = ϕ −1 ( x) ﻋﻜﺴﻴﺔ ( ) ﻭ، ch x − 1 = x2 + o(x )ﻭ، cos x − 1 = − x2 2 x ln(1 + x) = x2 + o x2 2 2 ( ) ﺫﺍﻟﻚ ﻷﻥ + o x2 : ﺍﻟﺪﻭﺍﻝ ﺍﳌﻌﻄﺎﺓ ﺑﺸﻜﻞ ﻭﺳﻴﻄﻲ-10.3 ﳍﺎ ﺩﺍﻟﺔϕ ﻧﻔﺮﺽ ﺃﻥ ﺍﻟﺪﺍﻟﺔ، ℜ ﻣﻦI ﺩﺍﻟﺘﲔ ﻣﻌﺮﻓﺘﲔ ﻋﻠﻰ ﳎﻤﻮﻋﺔy = ψ (t ), 90 PDF created with pdfFactory trial version www.pdffactory.com x = ϕ (t ) ﻟﺘﻜﻦ ﻋﻠﻰ ﺍﻤﻮﻋﺔ ) ، ϕ (Iﻭﻣﻨﻪ ﻋﻠﻰ ﺍﻤﻮﻋﺔ ) ϕ (Iﺗﻌﺮﻑ ﺍﻟﺪﺍﻟﺔ ﺍﳌﺮﻛﺒﺔ )، y = ψ (ϕ −1 (x)) = f (xﺍﻟﱵ ﺗﺴﻤﻰ ﺍﻟﺪﺍﻟﺔ ﺍﳌﻌﻄﺎﺓ ﺑﺎﻟﺸﻜﻞ ﺍﻟﻮﺳﻴﻄﻲ ﺍﻟﺘﺎﱄ: ﻣﺜﺎﻝ : ) x = ϕ (t x = ϕ (t ) = R cos t ﺃ- . y = ψ (t ), y = ψ (t ) = R sin t , ﺍﻟﺪﺍﻟﺔ ϕﻋﻠﻰ ﺍﺎﻝ ] [0, πﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ x R 0≤t ≤π ، t = arccos ﻭﻣﻨﻪ ﻳﻜﻮﻥ: x2 x x )y = sin arccos = R 1 − cos 2 arccos = R 1 − 2 = R2 − x2 = f ( x R R R ﺃﻱ ﺃﻥ ﺍﻟﺪﺍﻟﺔ y = f ( x) = R2 − x2 ﲤﺜﻞ ﻭﺳﻴﻄﻴﺎ ﺑﺎﳌﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: 0≤t ≤π ﺏ- x = ϕ (t ) = R cos t y = R sin t y = ψ (t ) = R sin t , x = R cos t , ، π ≤ t ≤ 2π ﺍﻟﺪﺍﻟﺔ ϕﻋﻠﻰ ﺍﺎﻝ ] [π ,2πﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ . y = − R2 − x2 ﻭﺑﺎﻟﺘﺎﱄ ﻧﻘﻮﻝ ﺇﺫﺍ ﺗﻐﲑ tﰲ ﺍﺎﻝ ] ، [0,2πﻓﺈﻥ ﺍﳌﻌﺎﺩﻻﺕ y = R sin t , x = R cos tﺗﻌﺮﻑ ﺩﺍﻟﺘﲔ ﺑﻴﺎﻧﻴﻬﻤﺎ ﻫﻮ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﱵ ﻣﻌﺎﺩﻟﺘﻬﺎ . x2 + y2 = R2 ﺃﻭ ﺃﻥ ﺍﻟﺪﺍﻟﺔ x2 + y2 = R2ﲤﺜﻞ ﻭﺳﻴﻄﻴﺎ ﺑﺎﳌﻌﺎﺩﻻﺕ y = ψ (t ) = b sin t , x = ϕ (t ) = a cos t ، 0 ≤ t ≤ 2π ﺝ- x = R cos t ﺑﲔ ﺃﻥ ﻫﺬﻩ ﺍﳌﻌﺪﻻﺕ ﲤﺜﻞ ﻭﺳﻴﻄﻴﺎ ﺍﻟﻘﻄﻊ ﺍﻟﻨﺎﻗﺺ ﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ y = R sin t , x2 y 2 + =1 a b2 t ∈ [0,2π ], . 91 PDF created with pdfFactory trial version www.pdffactory.com
© Copyright 2025