الفصل الثالث-الدوال الحقيقية

‫‪ -3‬ﺍﻟﺪﻭﺍﻝ ﺍﳊﻘﻴﻘﻴﺔ ﳌﺘﻐﲑ ﺣﻘﻴﻘﻲ‬
‫ﻟﻴﻜﻦ ‪Χ‬‬
‫ﳎﻤﻮﻋﺔ ﻋﺪﺩﻳﺔ‪ ،‬ﺃﻱ‪:‬‬
‫‪Χ⊂ℜ‬‬
‫ﺗﻌﺮﻳﻒ ‪ :‬ﺇﺫﺍ ﺃﳊﻘﻨﺎ ﺑﻜﻞ ﻋﺪﺩ ‪ x‬ﻣﻦ ‪ ، Χ‬ﺑﻮﺍﺳﻄﺔ ﻗﺎﻧﻮﻥ ﻣﺎ ﻋﺪﺩﺍ ‪ y‬ﻣﻦ ‪، ℜ‬ﻓﺈﻧﻨﺎ ﻧﻘﻮﻝ ﻗﺪ ﻋﺮﻓﻨﺎ ﻋﻠﻰ ‪ Χ‬ﺩﺍﻟﺔ ﺣﻘﻴﻘﻴﺔ‬
‫ﳌﺘﻐﲑ ﺣﻘﻴﻘﻲ‪ .‬ﻳﺮﻣﺰ ﳍﺬﺍ ﺍﻟﻘﺎﻧﻮﻥ ﺑﺎﻟﺮﻣﺰ ‪ ، f‬ﻭﻧﻜﺘﺐ‪:‬‬
‫‪x∈ Χ‬‬
‫‪y = f ( x) ,‬‬
‫ﺗﻨﺒﻴﻪ ‪:‬‬
‫ﺃ‪ -‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻌﺪﺩ ‪ y‬ﻟﻴﺲ ﻭﺣﻴﺪﺍﹰ‪،‬ﻓﺈﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﺗﺴﻤﻰ ﺑﺎﻟﺪﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ‪.‬‬
‫ﺏ‪ -‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻌﺪﺩ ‪ y‬ﻭﺣﻴﺪﺍﹰ‪ ،‬ﻓﺈﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﺗﺴﻤﻰ ﺑﺎﻟﺪﺍﻟﺔ ﻭﺣﻴﺪﺓ ﺍﻟﻘﻴﻤﺔ‪.‬‬
‫ﺝ‪ -‬ﰲ ﻛﻞ ﺩﺭﺍﺳﺘﻨﺎ ﺇﺫﺍ ﻗﻠﻨﺎ ﺩﺍﻟﺔ‪،‬ﻧﻌﲏ ‪‬ﺎ ﺩﺍﻟﺔ ﻭﺣﻴﺪﺓ ﺍﻟﻘﻴﻤﺔ‪ ،‬ﺇﻻ ﺇﺫﺍ ﺃﺷﲑ ﺇﱃ ﻋﻜﺲ ﺫﻟﻚ‪.‬‬
‫‪ w‬ﺍ‪‬ﻤﻮﻋﺔ ‪ f‬ﺗﺴﻤﻰ ﳎﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ ﺍﻟﺪﺍﻟﺔ ‪، f‬ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ) ‪ ، D( f‬ﻭﺗﺴﻤﻰ ﳎﻤﻮﻋﺔ ﺍﻟﻘﻴﻢ ‪ y‬ﺍﻟﱵ ﺗﺄﺧﺬﻫﺎ ﻫﺬﻩ‬
‫ﺍﻟﺪﺍﻟﺔ ﲟﺠﻤﻮﻋﺔ ﻗﻴﻤﻬﺎ‪،‬ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ) ‪. Ε( f‬‬
‫ﻋﻨﺪﻫﺎ ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﺗﻄﺒﻴﻖ ﻣﻦ ) ‪ D( f‬ﻋﻠﻰ ) ‪. Ε( f‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ‪ Ε( f ) ⊂ Υ‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫ﺗﻄﺒﻴﻖ ﻣﻦ ) ‪ D( f‬ﰲ ‪. Υ‬‬
‫ﺃﻣﺜﻠﺔ ‪:‬‬
‫‪ -1‬ﺩﺍﻟﺔ ﺩﺭﳜﻠﻲ ‪:‬‬
‫‪D( f ) = ℜ‬‬
‫‪،‬‬
‫ﻻﺣﻆ ﺃﻥ‪:‬‬
‫‪ -2‬ﺍﻟﺪﺍﻟﺔ ﺍﻹﺷﺎﺭﺓ ‪:‬‬
‫}‪Ε( f ) = {0,1‬‬
‫‪0 , x ∉ Q‬‬
‫‪y = f ( x) = ‬‬
‫‪1 , x ∈ Q‬‬
‫‪1 , x > 0‬‬
‫‪‬‬
‫‪y = f ( x) = sgn x = 0 , x = 0‬‬
‫‪− 1 , x < 0‬‬
‫‪‬‬
‫ﻭﻧﻘﺮﺃ ‪ y‬ﺗﺴﺎﻭﻱ ﺇﺷﺎﺭﺓ‬
‫ﻻﺣﻆ ﺃﻥ‪Ε( f ) = {− 1,0,+1} ، D( f ) = ℜ :‬‬
‫‪ -3‬ﺩﺍﻟﺔ ﺍﳉﺰﺀ ﺍﻟﺼﺤﻴﺢ ‪:‬‬
‫‪x‬‬
‫]‪y = f ( x) = [x‬‬
‫ﻭﻧﻘﺮﺃ ‪ y‬ﺗﺴﺎﻭﻱ ﺍﳉﺰﺀ ﺍﻟﺼﺤﻴﺢ ﻟﻠﻌﺪﺩ‬
‫‪Ε( f ) = Ζ ، D ( f ) = ℜ‬‬
‫ﻻﺣﻆ ﺃﻥ‪:‬‬
‫‪x‬‬
‫‪.‬‬
‫‪40‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪ -4‬ﺍﻟﺪﺍﻟﺔ ﻋﺎﻣﻠﻲ ‪:‬‬
‫!‪y = f (n ) = n‬‬
‫ﻻﺣﻆ ﺃﻥ‪، D( f ) = Ν :‬‬
‫‪Ε( f ) = Ν‬‬
‫‪ -1.3‬ﺍﶈﺪﻭﺩﻳﺔ ‪:‬‬
‫ﻟﺘﻜﻦ ‪ A‬ﳎﻤﻮﻋﺔ ﻏﲑ ﺧﺎﻟﻴﺔ ﻣﻦ ) ‪، D( f‬ﻭ‬
‫‪B‬‬
‫ﺻﻮﺭﺓ ‪ A‬ﻭﻓﻖ ﺍﻟﺪﺍﻟﺔ ‪. f‬‬
‫ﺗﻌﺎﺭﻳﻒ ‪:‬‬
‫‪ -1‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﳏﺪﻭﺩﺓ ﻣﻦ ﺍﻷﺳﻔﻞ ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ‪، A‬ﺇﺫﺍ ﻭﺟﺪ ﻋﺪﺩ ‪ c1‬ﲝﻴﺚ ﻣﻬﻤﺎ ﻳﻜﻦ ‪ x‬ﻣﻦ‪ A‬ﻳﻜﻮﻥ‬
‫‪، f (x) ≥ c1‬ﺃﻱ ‪:‬‬
‫‪∃c1 ∈ ℜ / ∀x ∈ A → f ( x) ≥ c1‬‬
‫‪ -2‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﳏﺪﻭﺩﺓ ﻣﻦ ﺍﻷﻋﻠﻰ ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ‪، A‬ﺇﺫﺍ ﻭﺟﺪ ﻋﺪﺩ ‪ c 2‬ﲝﻴﺚ ﻣﻬﻤﺎ ﻳﻜﻦ ‪ x‬ﻣﻦ‪ A‬ﻳﻜﻮﻥ‬
‫‪ ، f (x) ≤ c2‬ﺃﻱ‪:‬‬
‫‪∃c 2 ∈ ℜ / ∀x ∈ A → f ( x) ≤ c 2‬‬
‫‪ -3‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﳏﺪﻭﺩﺓ ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ‪ ، A‬ﺇﺫﺍ ﻛﺎﻧﺖ ﳏﺪﻭﺩﺓ ﻣﻦ ﺍﻷﺳﻔﻞ ﻭﻣﻦ ﺍﻷﻋﻠﻰ ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ‪، A‬ﺃﻱ‪:‬‬
‫‪∃c > 0 / ∀x ∈ A → f ( x) ≤ c‬‬
‫)‪(1‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﳌﺘﺮﺍﺟﺤﺔ )‪ (1‬ﳏﻘﻘﺔ ﻣﻬﻤﺎ ﺗﻜﻦ ‪ x‬ﻣﻦ ‪، f‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﳏﺪﻭﺩﺓ ‪.‬‬
‫‪41‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪ -4‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫ﳏﺪﻭﺩﺓ ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ ‪، A‬ﺇﺫﺍ ﲢﻘﻖ ﺍﻟﺸﺮﻁ )‪، (1‬ﺃﻱ ‪:‬‬
‫‪∃c > 0 / ∀xc ∈ A → f ( xc ) > c‬‬
‫‪ -5‬ﻳﻌﺮﻑ ﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ ‪، A‬ﺑﺄﻧﻪ ﺍﳊﺪ ﺍﻷﻋﻠﻰ ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ ‪، B‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ )‪. sup f (x‬‬
‫‪x∈A‬‬
‫‪ -6‬ﻳﻌﺮﻑ ﺍﳊﺪ ﺍﻷﺩﱏ ﻟﻠﺪﺍﻟﺔ‬
‫‪f‬‬
‫‪. inf‬‬
‫ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ ‪، A‬ﺑﺄﻧﻪ ﺍﳊﺪ ﺍﻷﺩﱏ ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ ‪ ، B‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ )‪f (x‬‬
‫‪x∈A‬‬
‫‪ -7‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﺗﺄﺧﺬ ﻗﻴﻤﺔ ﻋﻈﻤﻰ ﰲ ﺍﻟﻘﻄﺔ ‪ x0‬ﻣﻦ ‪، A‬ﺇﺫﺍ ﻛﺎﻥ ‪:‬‬
‫) ‪∀x ∈ A → f ( x) ≤ f ( x0‬‬
‫‪. f (xx ) = max‬‬
‫ﻧﺮﻣﺰ ﻟﻠﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ‪ A‬ﺑﺎﻟﺮﻣﺰ )‪ ، max f ( x‬ﻭﻧﻜﺘﺐ )‪f ( x‬‬
‫‪x∈A‬‬
‫‪x∈A‬‬
‫‪. sup f (x) = max‬‬
‫ﻋﻨﺪﻫﺎ ﻳﻜﻮﻥ )‪f ( x‬‬
‫‪x∈A‬‬
‫‪x∈A‬‬
‫‪ -8‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﺗﺄﺧﺬ ﻗﻴﻤﺔ ﺻﻐﺮﻯ ﰲ ﺍﻟﻘﻄﺔ ‪ x0‬ﻣﻦ ‪، A‬ﺇﺫﺍ ﻛﺎﻥ‪:‬‬
‫) ‪∀x ∈ A → f ( x) ≥ f ( x0‬‬
‫‪. f (xx ) = min‬‬
‫ﻧﺮﻣﺰ ﻟﻠﻘﻴﻤﺔ ﺍﻟﺼﻐﺮﻯ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ ‪ A‬ﺑﺎﻟﺮﻣﺰ )‪، min f ( x‬ﻭﻧﻜﺘﺐ )‪f ( x‬‬
‫‪x∈A‬‬
‫‪x∈A‬‬
‫‪. sup f (x) = min‬‬
‫ﻋﻨﺪﻫﺎ ﻳﻜﻮﻥ )‪f ( x‬‬
‫‪x∈A‬‬
‫‪x∈A‬‬
‫‪ w‬ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻈﻤﻰ‪،‬ﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﺼﻐﺮﻯ ﻳﺴﻤﻴﺎ ﻗﻴﻤﺎﹰ ﻗﺼﻮﻯ‪.‬‬
‫‪ -2.3‬ﺍﻟﺮﺗﺎﺑﺔ ‪:‬‬
‫ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫ﺗﺴﻤﻰ ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ ‪ A‬ﻣﻦ ) ‪: D( f‬‬
‫ﺃ‪ -‬ﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ‪ ،‬ﺇﺫﺍ ﻛﺎﻥ ‪:‬‬
‫) ‪∀x1 ∈ A , ∀x2 ∈ A ; x1 ≤ x2 → f ( x1 ) ≤ f ( x2‬‬
‫ﺏ‪ -‬ﻣﺘﺰﺍﻳﺪﺓ‪ ،‬ﺇﺫﺍ ﻛﺎﻥ ‪:‬‬
‫) ‪∀x1 ∈ A , ∀x2 ∈ A ; x1 < x2 → f ( x1 ) < f ( x2‬‬
‫ﺝ‪ -‬ﻟﻴﺴﺖ ﻣﺘﺰﺍﻳﺪﺓ‪ ،‬ﺇﺫﺍ ﻛﺎﻥ ‪:‬‬
‫) ‪∀x1 ∈ A , ∀x2 ∈ A ; x1 < x2 → f ( x1 ) ≥ f ( x2‬‬
‫ﺩ‪ -‬ﻣﺘﻨﺎﻗﺼﺔ‪ ،‬ﺇﺫﺍ ﻛﺎﻥ ‪:‬‬
‫) ‪∀x1 ∈ A , ∀x2 ∈ A ; x1 < x2 → f ( x1 ) > f ( x2‬‬
‫ﻩ‪ -‬ﺭﺗﻴﺒﺔ ‪،‬ﺇﺫﺍ ﻛﺎﻧﺖ ﻟﻴﺴﺖ ﻣﺘﺰﺍﻳﺪﺓ ﺃﻭ ﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ‪.‬‬
‫ﻭ‪ -‬ﺭﺗﻴﺒﺔ ﲤﺎﻣﺎﹰ‪ ،‬ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺘﺰﺍﻳﺪﺓ ﺃﻭ ﻣﺘﻨﺎﻗﺼﺔ‪.‬‬
‫‪42‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪ w‬ﻧﻔﺲ ﺍﻟﺘﻌﺎﺭﻳﻒ ﰲ ﺣﺎﻟﺔ ) ‪. A= D( f‬‬
‫‪ -3.3‬ﺍﻟﻨﻬﺎﻳﺎﺕ ‪:‬‬
‫ﻟﺘﻜﻦ‬
‫ﺩﺍﻟﺔ ﺣﻘﻴﻘﺔ ﳌﺘﻐﲑ ﺣﻘﻴﻘﻲ ﻭ ‪ a‬ﻋﺪﺩﺍﹰ ﻣﻦ ‪. ℜ‬‬
‫‪f‬‬
‫‪ -1.3.3‬ﺗﻌﺎﺭﻳﻒ ‪:‬‬
‫•‬
‫‪ -1‬ﻳﻌﺮﻑ ‪ − ε‬ﺟﻮﺍﺭ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ ‪ ، a‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ) ‪ ، Vε (a‬ﺑﺄﻧﻪ ﳎﻤﻮﻋﺔ ﺍﻟﻨﻘﻂ ‪ x‬ﺍﳌﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫} ‪Vε (a ) = {x ∈ ℜ / x − a < ε , x ≠ a } = {x ∈ ℜ / 0 < x − a < ε‬‬
‫•‬
‫ﺃﻱ ﺃﻥ‪:‬‬
‫•‬
‫} ‪Vε (a ) = Vε (a ) − {a‬‬
‫‪ -2‬ﺍﻟﻨﻬﺎﻳﺔ ﺳﺤﺐ ﻛﻮﺷﻲ ‪ :‬ﺍﻟﻌﺪﺩ ‪ l‬ﻳﺴﻤﻰ ‪‬ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﰲ ﺍﻟﻘﻄﺔ ‪ ، a‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻨﻘﻄﺔ‬
‫‪ a‬ﺑﺈﻧﺸﺎﺀ ﳏﺘﻤﻞ ﻟـ ‪، a‬ﺃﻭ ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ ‪ . a‬ﻭﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ (ε > 0) , ε‬ﻳﻮﺟﺪ ‪(δ > 0) , δ‬‬
‫ﲝﻴﺚ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ x‬ﳛﻘﻖ ﺍﻟﺸﺮﻁ ‪ ، 0 < x − a < ε‬ﺗﺘﺤﻘﻖ ﺍﳌﺘﺮﺍﺟﺤﺔ ‪. f ( x) − l < ε‬‬
‫ﺃﻱ ‪:‬‬
‫‪(lim‬‬
‫) ‪f ( x) = l ) ⇔ (∀ε > 0, ∃δ > 0 / (∀x ∈ D( f ) / 0 < x − a < δ ) → f ( x) − l < ε‬‬
‫‪x→ a‬‬
‫ﺃﻭ‬
‫‪(lim f (x) = l) ⇔  ∀ε > 0,  ∃δ > 0 / ∀x ∈ V (a ) ⊂ D( f ) → f (x) ∈ V (l)‬‬
‫•‬
‫‪δ‬‬
‫‪ε‬‬
‫‪x→ a‬‬
‫‪ -3‬ﺍﻟﻨﻬﺎﻳﺔ ﺣﺴﺐ ﻗﺎﻳﻦ ‪ :‬ﺍﻟﻌﺪﺩ ‪ l‬ﻳﺴﻤﻰ ‪‬ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﰲ ﺍﻟﻘﻄﺔ ‪ ، a‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ‬
‫ﻟﻠﻨﻘﻄﺔ ‪. a‬ﺃﻱ ‪:‬‬
‫•‬
‫) ‪∃δ 0 > 0 / Vδ 0 (a ) ⊂ D( f‬‬
‫ﻭﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ ‪ (a n )n≥1‬ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ ‪ ، a‬ﲝﻴﺚ‪:‬‬
‫•‬
‫) ‪∀n ≥ 1 → a n ∈ Vδ 0 (a‬‬
‫ﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ‪ ( f (a n ))n ≥1‬ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ ‪. l‬‬
‫ﻧﻈﺮﻳﺔ ‪ :‬ﺗﻌﺮﻳﻒ ﺍﻟﻨﻬﺎﻳﺔ ﺣﺴﺐ ﻛﻮﺷﻲ‪ ،‬ﻳﻜﺎﻓﺊ ﺗﻌﺮﻳﻔﻬﺎ ﺣﺴﺐ ﻗﺎﻳﻦ‪.‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪:‬‬
‫]⇐[ ﻋﻨﺪﻧﺎ‬
‫‪lim f ( x) = l‬‬
‫‪x→ a‬‬
‫‪،‬ﺣﺴﺐ ﻛﻮﺷﻲ ﺗﻌﲏ ‪:‬‬
‫•‬
‫) ‪∃δ 0 > 0 / Vδ 0 (a ) ⊂ D( f‬‬
‫)*(‬
‫ﻟﺘﻜﻦ ﺍﳌﺘﺘﺎﻟﻴﺔ‬
‫•‬
‫) ‪∀ε > 0, ∃δ ∈ ]0, δ 0 ] / ∀x ∈ Vδ (a ) → f ( x) ∈ Vε (l‬‬
‫‪ (a n )n≥1‬ﻣﺘﺘﺎﻟﻴﺔ ﻛﻴﻔﻴﺔ ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻨﻘﻄﺔ ‪، a‬ﺣﻴﺚ‪:‬‬
‫‪43‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫•‬
‫) ‪∀n ≥ 1 → a n ∈ Vδ 0 (a‬‬
‫)‬
‫•‬
‫‪‬‬
‫‪‬‬
‫‪= a ⇔  ∀ε > 0 ∃nε ∈ N / ∀n ≥ nε → a n ∈ Vε (a )‬‬
‫‪‬‬
‫‪‬‬
‫‪n‬‬
‫‪(lim a‬‬
‫∞→ ‪n‬‬
‫•‬
‫ﻻﺣﻆ ﻣﻦ ﺃﺟﻞ ‪ ε = δ‬ﺣﻴﺚ ‪ δ‬ﻣﻌﺮﻓﺔ ﰲ )*( ﻳﻮﺟﺪ ‪ ، nδ‬ﲝﻴﺚ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ n ≥ nδ‬ﻳﻜﻮﻥ ) ‪. a n ∈Vε (a‬‬
‫ﻫﺬﺍ ﻳﻌﲏ ﺣﺴﺐ )*( ﺃﻥ ) ‪ ، f (a n ) ∈Vε (l‬ﻭﻣﻨﻪ ‪:‬‬
‫) ‪∀ε > 0 , ∃nε = nδ ∈ Ν / ∀n ≥ nε → f (a n ) ∈ Vε (l‬‬
‫ﺃﻱ‬
‫‪lim f (a n ) = l‬‬
‫∞→ ‪n‬‬
‫]⇒[ ‪lim f ( x) = l‬‬
‫‪x→ a‬‬
‫‪،‬ﻭﺑﺎﻟﺘﺎﱄ ﺍﻟﻌﺪﺩ ‪ l‬ﻫﻮ ‪‬ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﰲ ﺍﻟﻘﻄﺔ ‪ a‬ﺣﺴﺐ ﻗﺎﻳﻦ‪.‬‬
‫ﺣﺴﺐ ﻗﺎﻳﻦ‪.‬‬
‫ﻧﻔﺮﺽ ﺃﻥ ‪ l‬ﻟﻴﺴﺖ ‪‬ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﰲ ﺍﻟﻘﻄﺔ ‪ a‬ﺣﺴﺐ ﻛﻮﺷﻲ‪ ،‬ﺃﻱ ﺃﻥ ﺍﻟﺼﻴﻐﺔ )*( ﻏﲑ ﺻﺤﻴﺤﺔ‪،‬ﺃﻱ‪:‬‬
‫•‬
‫‪∃ε 0 > 0 , ∀δ ∈ ]0, δ 0 ] , ∃xδ ∈ V δ (a ) / f ( xδ ) − l ≥ ε 0‬‬
‫)∗ ∗(‬
‫ﻻﺣﻆ ﺍﻟﺼﻴﻐﺔ )∗ ∗( ﺻﺤﻴﺤﺔ ﻣﻦ ﺃﺟﻞ‬
‫‪δ0‬‬
‫‪n‬‬
‫= ‪δ‬‬
‫‪ ، n ≥ 1,‬ﺃﻱ ﻳﻮﺟﺪ ‪)، a δ‬ﻧﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ‬
‫‪0‬‬
‫•‬
‫‪،( a n‬ﻣﻦ ) ‪Vδ 0 (a‬‬
‫‪n‬‬
‫‪n‬‬
‫ﻣﻦ ﺃﺟﻠﻪ ﻳﺘﺤﻘﻖ‪:‬‬
‫)∗ ∗ ∗(‬
‫‪f (a n ) − l ≥ ε 0‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ (n ≥ 1 ), n‬ﻳﻜﻮﻥ ‪:‬‬
‫•‬
‫•‬
‫) ‪a n ∈ Vδ 0 (a ) ⊂ Vδ 0 (a‬‬
‫ﻭ‬
‫‪n‬‬
‫ﺍﻟﱵ‬
‫ﺗﻌﲏ ‪lim a n = a‬‬
‫∞→ ‪n‬‬
‫‪δ0‬‬
‫‪n‬‬
‫< ‪0 < an − a‬‬
‫‪.‬‬
‫ﻟﻜﻦ ﺍﳌﺘﺮﺍﺟﺤﺔ ‪ f (a n ) − l ≥ ε 0‬ﺗﻌﲏ ﺃﻥ ‪ l‬ﻟﻴﺲ ‪‬ﺎﻳﺔ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ‪، ( f (a n ))n≥1‬ﻭﻫﺬﺍ ﻣﻨﺎﰲ ﻟﻜﻮﻥ ‪ l‬ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﰲ‬
‫ﺍﻟﻘﻄﺔ ‪ a‬ﺣﺴﺐ ﻗﺎﻳﻦ ﻭﺑﺎﻟﺘﺎﱄ ﺍﻟﻔﺮﺽ ﻏﲑ ﺻﺤﻴﺒﺢ‪.‬‬
‫ﻣﺜﺎﻝ ‪:‬‬
‫ﺃ‪ -‬ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ ‪. f (x) = x‬‬
‫ﻧﺘﺄﻛﺪ ﺣﺴﺐ ﻗﺎﻳﻦ ﺃﻥ‪lim f ( x) = a :‬‬
‫‪x→ a‬‬
‫‪. a ∈ ℜ,‬‬
‫‪ f‬ﻣﻌﺮﻓﺔ ﻋﻠﻰ ﻛﻞ ‪ ℜ‬ﻭﺑﺎﻟﺘﺎﱄ ﻫﻲ ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ ‪، a‬ﻻﺣﻆ ﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ ‪ (a n )n≥1‬ﻣﻦ ﻫﺬﺍ‬
‫‪ lim‬ﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ‪ ( f (a n ))n≥1‬ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﻧﻔﺲ ﺍﻟﻨﻘﻄﺔ ‪، a‬ﻷﻥ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪(n ≥ 1 ), n‬‬
‫ﺍﳉﻮﺍﺭ ﺣﻴﺚ ‪a n = a‬‬
‫∞→ ‪n‬‬
‫‪. lim‬‬
‫ﻋﻨﺪﻧﺎ ‪ ، f (a n ) = a n‬ﻭﺑﺎﻟﺘﺎﱄ‪f ( x) = a :‬‬
‫‪x→ a‬‬
‫ﺏ‪ -‬ﺍﻟﺪﺍﻟﺔ‬
‫‪1‬‬
‫‪x‬‬
‫‪f ( x) = sin‬‬
‫ﻟﻴﺴﺖ ﳍﺎ ‪‬ﺎﻳﺔ ﰲ ﺍﻟﺼﻔﺮ‪.‬‬
‫‪44‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﻧﺄﺧﺬ ﺍﳌﺘﺘﺎﻟﻴﺘﲔ ‪، (bn )n≥1 ، (a n )n≥1‬ﺣﻴﺚ ‪:‬‬
‫‪1‬‬
‫‪nπ‬‬
‫ﻻﺣﻆ ﺃﻥ‬
‫‪2‬‬
‫‪(4n − 3)π‬‬
‫= ‪, an‬‬
‫= ‪∀n ≥ 1 , bn‬‬
‫‪lim bn = lim a n = 0‬‬
‫∞→ ‪n‬‬
‫∞→ ‪n‬‬
‫‪ ، lim‬ﺫﻟﻚ ﻷﻥ‪:‬‬
‫ﺑﻴﻨﻤﺎ ) ‪f (a n ) ≠ lim f (bn‬‬
‫∞→‪n‬‬
‫∞→‪n‬‬
‫‪ 1 ‬‬
‫‪f (a n ) = f ‬‬
‫‪ = sin π = 0 ⇒ lim f (a n ) = 0‬‬
‫∞→ ‪n‬‬
‫‪ nπ ‬‬
‫‪‬‬
‫‪‬‬
‫‪1‬‬
‫‪4n − 3‬‬
‫‪ = sin‬‬
‫‪f (bn ) = f ‬‬
‫‪π = 1 ⇒ lim f (bn ) = 1‬‬
‫∞→ ‪n‬‬
‫‪2‬‬
‫‪ (4n − 3)π ‬‬
‫ﻭ‬
‫ﻭﻣﻨﻪ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫ﻟﻴﺴﺖ ﳍﺎ ‪‬ﺎﻳﺔ ﰲ ﺍﻟﻨﻘﻄﺔ ‪. x = 0‬‬
‫ﻧﺘﻴﺠﺔ ‪:‬‬
‫ﺃ‪ -‬ﺍﻟﻨﻘﻄﺔ ‪ a‬ﻗﺪ ﻻ ﺗﻨﺘﻤﻲ ﺇﱃ ﳎﺎﻝ ﺗﻌﺮﻳﻒ ﺍﻟﺪﺍﻟﺔ‪.‬‬
‫ﺏ‪ -‬ﺎﻳﺔ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﺇﺫﺍ ﻭﺟﺪﺕ ﺗﻜﻮﻥ ﻭﺣﻴﺪﺓ‪.‬‬
‫‪ -2.3.3‬ﺃﻧﻮﺍﻉ ﺍﻟﻨﻬﺎﻳﺎﺕ ‪:‬‬
‫‪ .1‬ﺍﻟﻨﻬﺎﻳﺔ ﻣﻦ ﺍﻟﻴﻤﲔ ﻭﺍﻟﻨﻬﺎﻳﺔ ﻣﻦ ﺍﻟﻴﺴﺎﺭ ‪:‬‬
‫•‬
‫•‬
‫ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ (ε > 0), ε‬ﻳﺮﻣﺰ ﺇﱃ ﺍﻟﻨﺼﻒ ﺍﻷﳝﻦ ﻟﻠﺠﻮﺍﺭ ) ‪ Vε (a‬ﺑﺎﻟﺮﻣﺰ )‪ ، Vε (a + 0‬ﻭﺇﱃ ﻧﺼﻔﻪ ﺍﻷﻳﺴﺮ ﺑﺎﻟﺮﻣﺰ‬
‫•‬
‫)‪، Vε (a − 0‬ﺃﻱ ‪:‬‬
‫•‬
‫[ ‪Vε (a − 0) = ]a − ε , a‬‬
‫‪،‬‬
‫•‬
‫[ ‪Vε (a + 0) = ]a , a + ε‬‬
‫ﺗﻌﺎﺭﻳﻒ ‪:‬‬
‫ﺃ‪ -‬ﺣﺴﺐ ﻛﻮﺷﻲ ‪:‬‬
‫‪ -1‬ﺍﻟﻌﺪﺩ ‪ l‬ﻳﺴﻤﻰ ‪‬ﺎﻳﺔ ﻣﻦ ﺍﻟﻴﺴﺎﺭ ‪)،‬ﻳﺴﺮﻯ(‪ ،‬ﻟﻠﺪﺍﻟﺔ‬
‫‪f‬‬
‫ﰲ ﺍﻟﻘﻄﺔ ‪ ، a‬ﺇﺫﺍ ﻛﺎﻥ ‪:‬‬
‫‪∀ε > 0 , ∃δ > 0 / ∀x ∈ ]a − δ , a [ ⊂ D( f ) → f ( x) − l < ε‬‬
‫‪ -2‬ﺍﻟﻌﺪﺩ ‪ l‬ﻳﺴﻤﻰ ‪‬ﺎﻳﺔ ﻣﻦ ﺍﻟﻴﻤﲔ ‪)،‬ﳝﲎ ( ﻟﻠﺪﺍﻟﺔ‬
‫‪f‬‬
‫ﰲ ﺍﻟﻘﻄﺔ ‪ ، a‬ﺇﺫﺍ ﻛﺎﻥ ‪:‬‬
‫‪∀ε > 0 , ∃δ > 0 / ∀x ∈ ]a , a + δ [ ⊂ D( f ) → f ( x) − l < ε‬‬
‫ﺏ‪ -‬ﺣﺴﺐ ﻗﺎﻳﻦ ‪:‬‬
‫‪ -1‬ﺍﻟﻌﺪﺩ ‪ l‬ﻳﺴﻤﻰ ‪‬ﺎﻳﺔ ﻳﺴﺮﻯ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﰲ ﺍﻟﻘﻄﺔ ‪ ، a‬ﺇﺫﺍ ﻭﺟﺪ ‪ (δ ≥ 0) , δ‬ﲝﻴﺚ ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﻌﺮﻓﺔ ﰲ‬
‫•‬
‫)‪، Vδ (a − 0‬ﻭﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ ‪ (a n )n≥1‬ﻣﻦ )‪ Vδ (a − 0‬ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ‪ a‬ﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ‪( f (a n ))n≥1‬‬
‫•‬
‫ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ ‪. l‬‬
‫‪45‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪ -2‬ﺍﻟﻌﺪﺩ ‪ l‬ﻳﺴﻤﻰ ‪‬ﺎﻳﺔ ﳝﲎ ﻟﻠﺪﺍﻟﺔ‬
‫ﰲ ﺍﻟﻘﻄﺔ ‪ a‬ﺇﺫﺍ ﻭﺟﺪ ‪ (δ ≥ 0) , δ‬ﲝﻴﺚ ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫‪f‬‬
‫ﻣﻌﺮﻓﺔ ﰲ‬
‫) ‪، Vδ (a + 0‬ﻭﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ ‪ (a n )n≥1‬ﻣﻦ ) ‪ Vδ (a + 0‬ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ‪ a‬ﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ‪ ( f (a n ))n≥1‬ﻣﺘﻘﺎﺭﺑﺔ‬
‫ﳓﻮ ﺍﻟﻌﺪﺩ ‪. l‬‬
‫ﻳﺮﻣﺰ ﻟﻠﻨﻬﺎﻳﺔ ﺍﻟﻴﺴﺮﻯ ﺑﺎﻟﺮﻣﺰ )‪ lim f ( x‬ﺃﻭ ) ‪ ، f (a − 0‬ﻭﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻴﻤﲎ ﺑﺎﻟﺮﻣﺰ )‪ lim f (x‬ﺃﻭ ) ‪f (a + 0‬‬
‫‪x→ a + 0‬‬
‫‪x→ a − 0‬‬
‫•‬
‫•‬
‫ﻧﺘﻴﺠﺔ ‪:‬‬
‫‪ -1‬ﺃ‪ ⇔ 1-‬ﺏ‪1-‬‬
‫‪،‬ﻭ‬
‫ﺃ‪ ⇔ 2-‬ﺏ‪2-‬‬
‫‪.‬‬
‫‪ -2‬ﺗﻜﻮﻥ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﺎﻳﺔ ‪ l‬ﰲ ﺍﻟﻘﻄﺔ ‪، a‬ﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻭﺟﺪﺕ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﺎﻳﺔ ﳝﲎ ﻭ‪‬ﺎﻳﺔ ﻳﺴﺮﻯ ﰲ ﺍﻟﻘﻄﺔ ‪ a‬ﻣﺘﺴﺎﻭﻳﺘﺎﻥ‪،‬‬
‫‪. f (a − 0) = lim‬‬
‫ﻋﻨﺪﻫﺎ ﻳﻜﻮﻥ‪f ( x) = f (a + 0 ) :‬‬
‫‪x→ a‬‬
‫ﻣﻼﺣﻈﺔ ‪ :‬ﰲ ﺣﺎﻟﺔ "‪ " a = 0‬ﺗﻜﺘﺐ ﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻴﺴﺮﻯ ﻭﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻴﻤﲎ ﻋﻠﻰ ﺍﻟﺸﻜﻞ ‪:‬‬
‫)‪lim f ( x‬‬
‫‪x→ −0‬‬
‫ﺃﻭ )‪، f (− 0‬ﻭ‬
‫)‪lim f ( x‬‬
‫‪x→ +0‬‬
‫ﺃﻭ )‪ f (+ 0‬ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ ‪.‬‬
‫ﻣﺜﺎﻝ ‪:‬ﻟﺘﻜﻦ ‪ f‬ﺩﺍﻟﺔ ﻣﻌﺮﻓﺔ ﻙ ﺍﻟﺘﺎﱄ‪:‬‬
‫‪x + 2 , x > 0‬‬
‫‪f ( x) =  3‬‬
‫‪, x≤ 0‬‬
‫‪x‬‬
‫ﻧﺒﺤﺚ ﻋﻦ ﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻴﻤﲎ ﻭﺍﻟﻴﺴﺮﻯ ﻟﻠﺪﺍﻟﺔ ﰲ ﺍﻟﺼﻔﺮ‬
‫ﻻﺣﻆ ﺃﻥ‪:‬‬
‫‪f (+ 0) = lim ( x + 2 ) = 2‬‬
‫‪x→ +0‬‬
‫‪f (− 0) = lim x 3 = 0‬‬
‫‪x→ −0‬‬
‫ﻭﻣﻨﻪ )‪ ، f (+ 0) ≠ f (− 0‬ﺃﻱ ﺃﻥ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫ﻟﻴﺲ ﳍﺎ ‪‬ﺎﻳﺔ ﰲ ﺍﻟﻨﻘﻄﺔ ‪. x = 0‬‬
‫ﺗﻨﺒﻴﻪ ‪ :‬ﳝﻜﻦ ﻧﻘﻞ ﻣﻔﻬﻮﻡ ﺍﻟﻴﻤﲔ ﻭﺍﻟﻴﺴﺎﺭ ﺇﱃ ﳎﻤﻮﻋﺔ ﻗﻴﻢ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫‪(lim f (x) = l + 0) ⇔  ∀ε > 0, ∃δ > 0 / ∀x ∈ V (a ) ⊂ D( f ) → f (x) ∈ [l, l + ε [ = V (l + 0)‬‬
‫‪(lim f (x) = l − 0) ⇔  ∀ε > 0, ∃δ > 0 / ∀x ∈ V (a ) ⊂ D( f ) → f (x) ∈ ]l − ε , l] = V (l − 0)‬‬
‫•‬
‫‪δ‬‬
‫‪ε‬‬
‫‪x→ a‬‬
‫•‬
‫‪δ‬‬
‫‪ε‬‬
‫‪x→ a‬‬
‫ﻣﺜﺎﻝ ‪ :‬ﻟﺘﻜﻦ ‪ f‬ﺩﺍﻟﺔ ﻣﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ‪:‬‬
‫‪, x< 0‬‬
‫‪, x=0‬‬
‫‪x>0‬‬
‫ﻻﺣﻆ ﺃﻥ‬
‫‪,‬‬
‫‪1 − x‬‬
‫‪‬‬
‫‪f ( x) = 2‬‬
‫‪‬‬
‫‪1 + x‬‬
‫‪lim f ( x) = 1 + 0‬‬
‫‪x→0‬‬
‫‪46‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪ -2‬ﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻼﻣﺘﻨﻬﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﰲ ﻧﻘﻄﺔ ﺛﺎﺑﺘﺔ ‪:‬‬
‫ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ ‪. a‬‬
‫ﺗﻌﺎﺭﻳﻒ ‪:‬‬
‫ﺃ‪ -‬ﺣﺴﺐ ﻛﻮﺷﻲ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫‪ ، lim‬ﺇﺫﺍ ﻛﺎﻥ‬
‫ﳍﺎ ‪‬ﺎﻳﺔ ﻏﲑ ﻣﻨﺘﻬﻴﺔ ﰲ ﺍﻟﻨﻘﻄﺔ ‪، a‬ﻭﻧﻜﺘﺐ ∞ = )‪f ( x‬‬
‫‪x→ a‬‬
‫•‬
‫‪∀ε > 0, ∃δ > 0 / ∀x ∈ Vδ (a ) ⊂ D( f ) → f ( x) > ε‬‬
‫•‬
‫) ∞( ‪∀ε > 0, ∃δ > 0 / ∀x ∈ Vδ (a ) ⊂ D( f ) → f ( x) ∈ Vε‬‬
‫ﺃﻱ‪:‬‬
‫ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ‬
‫•‬
‫‪‬‬
‫‪> 0 / ∀x ∈ Vδ1 (a ) ⊂ D( f ) → f ( x) ∈ Vε (+ ∞ )‬‬
‫‪‬‬
‫•‬
‫‪‬‬
‫‪> 0 / ∀x ∈ Vδ 2 (a ) ⊂ D( f ) → f ( x) ∈ Vε (− ∞ )‬‬
‫‪‬‬
‫‪(lim f (x) = +∞) ⇔  ∀ε > 0 , ∃δ‬‬
‫‪(lim f (x) = −∞) ⇔  ∀ε > 0 , ∃δ‬‬
‫‪1‬‬
‫‪x→ a‬‬
‫‪2‬‬
‫‪x→ a‬‬
‫ﺣﻴﺚ ) ∞( ‪ Vε (+ ∞ ) , Vε (− ∞ ) , Vε‬ﻫﻲ ‪ − ε‬ﺟﻮﺍﺭ ﻟـ ∞ ‪ + ∞ , − ∞ ,‬ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ‪ .‬ﺍﻧﻈﺮ ﻓﻘﺮﺓ ‪. 2.4.2‬‬
‫‪، lim‬ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﻦ ﺃﺟﻞ‬
‫ﺏ‪ -‬ﺣﺴﺐ ﻗﺎﻳﻦ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﳍﺎ ‪‬ﺎﻳﺔ ﻏﲑ ﻣﻨﺘﻬﻴﺔ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ a‬ﻭﻧﻜﺘﺐ ∞ = )‪f ( x‬‬
‫‪x→ a‬‬
‫‪، lim‬ﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ‪ ( f (a n ))n≥1‬ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ‬
‫ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ ‪ (a n )n≥1‬ﻣﻦ ﺟﻮﺍﺭ ﺍﻟﺘﻌﺮﻳﻒ ﺍﳌﺜﻘﻮﺏ ﺣﻴﺚ ‪a n = a‬‬
‫∞→ ‪n‬‬
‫‪. lim‬‬
‫ﺍﻟﻜﱪ ‪ ،‬ﺃﻱ‪f (a n ) = ∞ :‬‬
‫∞→ ‪n‬‬
‫ﻧﺘﻴﺠﺔ ‪:‬‬
‫‪ -1‬ﺃ ⇔ ﺏ‬
‫‪ -2‬ﻛﻤﺎ ﰲ ﺍﻟﺘﻨﺒﻴﻪ ﺍﻟﺴﺎﺑﻖ ‪ ،‬ﳝﻜﻦ ﺃﻥ ﻧﻌﺮﻑ ﺍﻟﻨﻬﺎﻳﺔ ﻏﲑ ﻣﻨﺘﻬﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﻳﺴﺎﺭ ﺍﻟﻨﻘﻄﺔ ‪ a‬ﻭﻋﻠﻰ ﳝﻴﻨﻬﺎ‪،‬ﺍﻟﱵ ﻧﻜﺘﺒﻬﺎ‬
‫‪ xlim‬ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ‬
‫ﻋﻠﻰ ﺍﻟﺸﻜﻞ ‪ lim f (x) = ∞ :‬ﻭ ∞ = )‪f (x‬‬
‫‪→a + 0‬‬
‫‪x→ a − 0‬‬
‫ﺗﻨﺒﻴﻪ ‪ :‬ﺍﻟﺪﻭﺍﻝ ﺍﻟﱵ ‪‬ﺎﻳﺘﻬﺎ ﻣﺎ ﻻ‪‬ﺎﻳﺔ ﺗﺴﻤﻰ ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﻜﱪ‪،‬ﻭﺍﻟﺪﻭﺍﻝ ﺍﻟﱵ ‪‬ﺎﻳﺘﻬﺎ ﺍﻟﺼﻔﺮ ﺗﺴﻤﻰ ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ‬
‫ﻣﺜﺎﻝ ‪:‬‬
‫‪f ( x) = lg x2‬‬
‫‪lim f ( x) = −∞ ,‬‬
‫= )‪f ( x‬‬
‫‪lim f ( x) = +∞ ,‬‬
‫‪ -3‬ﺍﻟﻨﻬﺎﻳﺔ ﰲ ﻣﺎ ﻻ ‪‬ﺎﻳﺔ ‪:‬‬
‫ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫‪1‬‬
‫‪x4‬‬
‫‪x→0‬‬
‫‪x→ 0‬‬
‫ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻤﺎ ﻻ ‪‬ﺎﻳﺔ‪ ،‬ﺃﻱ ‪:‬‬
‫) ‪∃δ > 0 / Vδ (∞ ) ⊂ D( f‬‬
‫ﺗﻨﺒﻴﻪ ﺃﻥ‬
‫•‬
‫) ∞( ‪Vδ (∞ ) = Vδ‬‬
‫‪.‬‬
‫‪47‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺗﻌﺎﺭﻳﻒ ‪:‬‬
‫ﺃ‪ -‬ﺣﺴﺐ ﻛﻮﺷﻲ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﻌﺪﺩ ‪ l‬ﻫﻮ ‪‬ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ‬
‫‪ ، lim‬ﺇﺫﺍ ﻛﺎﻥ ‪:‬‬
‫ﰲ ﺍﳌﺎ ﻻ ‪‬ﺎﻳﺔ ﻭﻧﻜﺘﺐ ‪f ( x) = l‬‬
‫∞→‪x‬‬
‫‪f‬‬
‫) ‪∀ε > 0، ∃δ > 0 / ∀x ∈ Vδ (∞ ) ⊂ D( f ) → f ( x) ∈ Vε (l‬‬
‫ﺃﻱ ‪:‬‬
‫)‬
‫)) ‪(− ∞ ) ⊂ D( f ) → f (x) ∈ V (l‬‬
‫) ‪> 0 / ∀x ∈ Vδ1 (+ ∞ ) ⊂ D( f ) → f ( x) ∈ Vε (l‬‬
‫‪1‬‬
‫‪> 0 / ∀x ∈ Vδ 2‬‬
‫‪2‬‬
‫‪ε‬‬
‫‪( lim f (x) = 0) ⇔ (∀ε > 0، ∃δ‬‬
‫‪( lim f (x) = 0) ⇔ (∀ε > 0 ، ∃δ‬‬
‫∞‪x→ +‬‬
‫∞‪x→ −‬‬
‫ﺏ‪ -‬ﺣﺴﺐ ﻗﺎﻳﻦ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﻌﺪﺩ ‪ l‬ﺎﻳﺔ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﰲ ﺍﳌﺎ ﻻ ‪‬ﺎﻳﺔ ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ ‪ (a n )n≥1‬ﻣﻦ‬
‫) ∞( ‪ ، Vδ‬ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﻜﱪ ﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ‪ ( f (a n ))n≥1‬ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ ‪. l‬‬
‫) ﰲ ﺣﺎﻟﺔ ∞‪ x → +‬ﺣﺪﻭﺩ ﺍﳌﺘﺘﺎﻟﻴﺔ ﺗﻜﻮﻥ ﰲ ) ∞ ‪، Vδ (+‬ﻭﰲ ﺣﺎﻟﺔ ∞‪ x → −‬ﺣﺪﻭﺩ ﺍﳌﺘﺘﺎﻟﻴﺔ ﺗﻜﻮﻥ ﰲ ) ∞ ‪( Vδ (−‬‬
‫ﻧﺘﻴﺠﺔ ‪ :‬ﺃ ⇔ ﺏ‬
‫ﻣﺜﺎﻝ ‪:‬‬
‫‪3 − 2x‬‬
‫‪x +1‬‬
‫= )‪f ( x‬‬
‫‪3 − 2x‬‬
‫‪= +2 + 0‬‬
‫‪x +1‬‬
‫‪ -4‬ﺍﻟﻨﻬﺎﻳﺔ ﺍﻟﻼﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﳌﺎ ﻻ ‪‬ﺎﻳﺔ ‪:‬‬
‫‪3 − 2x‬‬
‫‪= −2 − 0 ,‬‬
‫‪x +1‬‬
‫‪lim‬‬
‫∞‪x→ +‬‬
‫‪lim‬‬
‫∞‪x→ −‬‬
‫∞ = )‪lim f ( x‬‬
‫∞→‪x‬‬
‫ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ﺗﻜﺘﺐ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫) ∞( ‪∀ε > 0، ∃δ > 0 / ∀x ∈ Vδ (∞ ) ⊂ D( f ) → f ( x) ∈ Vε‬‬
‫ﺍﻟﺘﻔﺎﺻﻴﻞ ﺗﺴﺘﻨﺘﺞ ﻣﺒﺎﺷﺮﺓ ﻣﻦ ﺃﻧﻮﺍﻉ ﺍﻟﻨﻬﺎﻳﺎﺕ ﺍﻟﺴﺎﺑﻘﺔ‪.‬‬
‫‪ -3.3.3‬ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﳊﺴﺎﺑﻴﺔ ﻋﻠﻰ ﺍﻟﻨﻬﺎﻳﺎﺕ ﻭﺧﺼﺎﺋﺺ ﺍﻟﻨﻬﺎﻳﺎﺕ ‪:‬‬
‫‪ -1‬ﺇﺫﺍ ﻛﺎﻧﺖ‬
‫ﺃ‪-‬‬
‫‪lim g ( x) = l 2 , lim f ( x) = l 1‬‬
‫‪x→ a‬‬
‫‪lim( f ( x) ± g ( x)) = l 1 ± l 2‬‬
‫‪x→ a‬‬
‫‪lim f ( x) ⋅ g ( x) = l 1 ⋅ l 2‬‬
‫ﺏ‪-‬‬
‫ﺝ‪-‬‬
‫‪x→ a‬‬
‫‪ ،‬ﻓﺈﻥ ‪:‬‬
‫‪l2 ≠ 0‬‬
‫‪،‬‬
‫‪f ( x) l 1‬‬
‫=‬
‫‪g ( x) l 2‬‬
‫‪x→ a‬‬
‫‪lim‬‬
‫‪x→ a‬‬
‫‪ -2‬ﳎﻤﻮﻉ ﻭﻓﺮﻕ ﺩﺍﻟﺘﲔ ﻻ ﻣﺘﻨﺎﻫﻴﺘﲔ ﰲ ﺍﻟﺼﻐﺮ‪،‬ﻫﻮ ﺩﺍﻟﺔ ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ‪.‬‬
‫‪ -3‬ﺟﺪﺍﺀ ﺩﺍﻟﺔ ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ‪،‬ﻭﺩﺍﻟﺔ ﳏﺪﻭﺩﺓ ‪،‬ﻫﻮ ﺩﺍﻟﺔ ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ‪.‬‬
‫‪ ، lim‬ﻓﺈﻧﻪ ‪:‬‬
‫‪ -4‬ﺇﺫﺍ ﻛﺎﻥ ‪f (x) = l‬‬
‫‪x→ a‬‬
‫‪48‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪∃δ > 0 / ∀x ∈ Vδ (a ) → f ( x) ≤ c‬‬
‫‪ c‬ﺛﺎﺑﺖ‬
‫‪، lim‬ﻓﺈﻧﻪ‪:‬‬
‫‪ -5‬ﺇﺫﺍ ﻛﺎﻥ ‪f ( x) = l ≠ 0‬‬
‫‪x→ a‬‬
‫‪∃δ 1 > 0 / ∀x ∈ Vδ1 (a ) → f ( x)l > c‬‬
‫ﺃ‪-‬‬
‫‪ c‬ﺛﺎﺑﺖ‬
‫ﺏ‪-‬‬
‫‪ -6‬ﺇﺫﺍ ﻭﺟﺪ‬
‫‪>0‬‬
‫‪1‬‬
‫‪≤c‬‬
‫)‪f ( x‬‬
‫→ ) ‪∃δ 2 > 0 / ∀x ∈ Vδ 2 (a‬‬
‫‪ ، δ‬ﲝﻴﺚ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ x‬ﻣﻦ ) ‪ ، Vδ (a‬ﻳﻜﻮﻥ‪:‬‬
‫)‪g ( x) ≤ f ( x) ≤ h( x‬‬
‫)‪g ( x) ≤ f ( x) ≤ h( x‬‬
‫ﻓﺈﻥ‪:‬‬
‫‪lim f ( x) = l‬‬
‫‪x→ a‬‬
‫‪ -7‬ﺇﺫﺍ‬
‫ﻭﺟﺪ ‪> 0‬‬
‫ﻭ‬
‫‪lim g ( x) = lim h( x) = l‬‬
‫‪x→ a‬‬
‫‪x→ a‬‬
‫‪.‬‬
‫‪ ، δ‬ﲝﻴﺚ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ x‬ﻣﻦ ) ‪ ، Vδ (a‬ﻳﻜﻮﻥ‪:‬‬
‫)‪ f ( x) ≤ g ( x‬ﻭ ‪, lim f ( x) = l 1‬‬
‫‪x→ a‬‬
‫*‬
‫‪lim g ( x) = l 2‬‬
‫‪x→ a‬‬
‫ﻓﺈﻥ‪. l 1 ≤ l 2 :‬‬
‫ﻣﻼﺣﻈﺔ ‪ :‬ﺍﳋﺼﺎﺋﺺ ‪ 7 ← 1‬ﺻﺤﻴﺤﺔ ﺃﻳﻀﺎﹰ ﰲ ﺣﺎﻟﺔ‪:‬‬
‫‪. x → +∞ , x → −∞ , x → a + 0 , x → a − 0‬‬
‫ﻣﺜﺎﻝ ‪:‬‬
‫‪sin x‬‬
‫‪=1‬‬
‫‪x‬‬
‫‪-1‬‬
‫‪lim‬‬
‫‪x→ 0‬‬
‫ﻟﱪﻫﺎﻥ ﺍﻟﻨﻬﺎﻳﺔ ﻧﱪﻫﻦ ﺻﺤﺔ ﺍﳌﺘﺮﺍﺟﺤﺔ‬
‫)‪(1‬‬
‫ﺣﻴﺚ ‪:‬‬
‫‪sin x‬‬
‫‪<1‬‬
‫‪x‬‬
‫< ‪cos x‬‬
‫‪ π π ‬‬
‫‪0 ≠ x ∈ − , ‬‬
‫‪ 2 2 ‬‬
‫ﻧﺄﺧﺬ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ‪ ،‬ﺃﻱ‪. R = 1 :‬‬
‫>‬
‫>‬
‫>‬
‫ﻣﻦ ﺍﻟﺸﻜﻞ ﻧﻼﺣﻆ ﺃﻥ ﻣﺴﺎﺣﺔ ﺍﳌﺜﻠﺚ ‪ AOB‬ﺃﻗﻞ ﻣﻦ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ ‪ AOB‬ﺍﻟﱵ ﺃﻗﻞ ﻣﻦ ﻣﺴﺎﺣﺔ ﺍﳌﺜﻠﺚ ‪، AOD‬ﺃﻱ‪:‬‬
‫ﲟﺎﺃﻥ‬
‫)*(‬
‫‪1‬‬
‫‪(OA)2 sin x < 1 (OA)2 x < 1 OA. AD‬‬
‫‪2‬‬
‫‪2‬‬
‫‪2‬‬
‫‪, OA = 1 , sin x = AB‬‬
‫ﳛﺼﺮﻫﺎ ‪OB‬‬
‫‪، tgx = AD‬ﺣﻴﺚ ‪ x‬ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﱵ‬
‫ﻣﻊ‬
‫‪OA‬‬
‫ﺑﺮﺍﺩﻳﺎﻥ‪،‬ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ ‪:‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪sin x < x < tgx‬‬
‫‪2‬‬
‫‪2‬‬
‫‪2‬‬
‫‪49‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
: ‫ﻭﻣﻨﻪ ﻳﻜﻮﻥ‬
sin x > 0 ، sin x < x < tg x
1<
x
1
<
sin x cos x
‫ﻭﺑﺎﻟﺘﺎﱄ ﳓﺼﻞ ﻋﻠﻰ ﺍﳌﺘﺮﺍﺟﺤﺔ‬
. cos x <
sin x
<1
x
:‫ﺃﻱ‬
sin x
 π π
x ≠ 0 ,  − ,  ‫ ﻣﻦ‬x ‫ ﳏﻘﻘﺔ ﻣﻦ ﺃﺟﻞ ﻛﻞ‬-1- ‫ﻓﺈﻥ ﺍﳌﺘﺮﺍﺟﺤﺔ‬،‫ﺯﻭﺟﻴﺔ‬
‫ ﻭ‬cos x ‫ﲟﺎ ﺃﻥ ﺍﻟﺪﺍﻟﺔ‬
x
 2 2
: ‫ﻳﻜﻮﻥ‬،‫ ﳊﺴﺎﺏ ﺍﻟﻨﻬﺎﻳﺔ ﺍﳌﻄﻠﻮﺑﺔ‬-1- ‫ﻧﻄﺒﻴﻖ ﺍﳌﺘﺮﺍﺟﺤﺔ‬
lim cos x < lim
x→ 0
x→ 0
sin x
<1
x
, 1 < lim
x→ 0
sin x
<1
x
sin x
=1
x→ 0
x
x
 1
-2
lim
1 −  = e
x→ ∞
 x
n
 1
lim 1 +  = e ‫ﻣﻌﻠﻮﻡ ﺃﻥ‬
n → +∞
 n
, lim
x∈ℜ
n∈Ν
1
1 1
< <
n +1 x n
:‫ ﺃﻱ‬، n ≤ x ≤ n + 1 ‫ ﻳﻜﻮﻥ‬n = [x] ‫ﺑﻮﺿﻊ‬. x > 1 ‫ﻓﺈﻥ‬، x → +∞ ‫ ﲟﺎﺃﻥ‬-‫ﺃ‬
‫ﻭﺍﺿﺢ ﺃﻥ ﺍﳌﺘﺮﺍﺟﺤﺔ‬
n
x
1   1  1

1 +
 < 1 +  < 1 + 
 n + 1  x   n 
n +1
. ‫ﺻﺤﻴﺤﺔ‬
(x → +∞ ) ⇔ (n → +∞ ) ‫ﻭﺍﺿﺢ ﺃﻳﻀﺎﹰ ﺃﻥ‬
‫ﻋﻨﺪﻧﺎ‬
 1
lim
1 + 
n →∞
 n
n +1
n
 1
 1
= lim
1
+
lim


1 +  = e ⋅ 1 = e
n →∞
 n  n →∞  n 
n +1
1 

lim1 +

n
n →∞
1 
e
n +1


lim
1
+
=
=
=e


n→∞
1 
1

 n + 1
lim
1 +

n→∞
 n + 1
‫ﻭ‬
‫ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺍﳊﺼﺮ ﻳﻜﻮﻥ‬
50
PDF created with pdfFactory trial version www.pdffactory.com
‫‪x‬‬
‫‪ 1‬‬
‫‪lim‬‬
‫‪1 +  = e‬‬
‫∞‪x→ +‬‬
‫‪ x‬‬
‫ﺏ‪ -‬ﲟﺎﺃﻥ ∞‪، x → −‬ﻓﺈﻥ ‪ . x < −1‬ﺑﻮﺿﻊ ‪ y = − x‬ﳓﺼﻞ ﻋﻠﻰ‪:‬‬
‫‪−y‬‬
‫‪y‬‬
‫‪−y‬‬
‫‪ y −1‬‬
‫‪ y ‬‬
‫‪ = lim ‬‬
‫= ‪‬‬
‫‪= lim ‬‬
‫∞‪y → +‬‬
‫∞‪y → +‬‬
‫‪ y ‬‬
‫‪ y −1‬‬
‫‪y −1‬‬
‫‪‬‬
‫‪‬‬
‫‪1 ‬‬
‫‪1 ‬‬
‫‪ lim 1 +‬‬
‫‪ = e.1 = e‬‬
‫‪= lim 1 +‬‬
‫∞‪y → +‬‬
‫‪y − 1  y→ +∞‬‬
‫‪y − 1 ‬‬
‫‪‬‬
‫ﺃﻱ ﺃﻥ‪:‬‬
‫‪ 1‬‬
‫‪ 1‬‬
‫‪lim 1 +  = lim 1 − ‬‬
‫∞‪x→ −‬‬
‫∞‪y → +‬‬
‫‪y‬‬
‫‪ x‬‬
‫‪‬‬
‫‪x‬‬
‫‪y‬‬
‫‪‬‬
‫‪1 ‬‬
‫‪‬‬
‫‪= lim 1 +‬‬
‫∞‪y → +‬‬
‫‪y − 1 ‬‬
‫‪‬‬
‫‪x‬‬
‫‪ 1‬‬
‫‪lim 1 +  = e‬‬
‫∞‪x→ −‬‬
‫‪x‬‬
‫‪‬‬
‫‪ -4.3.3‬ﺎﻳﺔ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺮﺗﻴﺒﺔ ‪:‬‬
‫ﻧﻈﺮﻳﺔ ‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﻌﺮﻓﺔ ﻭﺭﺗﻴﺒﺔ ﻋﻠﻰ ﺍ‪‬ﺎﻝ ]‪، [a, b‬ﻓﺈ‪‬ﺎ ﰲ ﻛﻞ ﻧﻘﻄﺔ ‪ x0‬ﻣﻦ ﺍ‪‬ﺎﻝ [‪ ]a, b‬ﲤﻠﻚ ‪‬ﺎﻳﺔ‬
‫ﻳﺴﺮﻯ ﻭ‪‬ﺎﻳﺔ ﳝﲎ ﻣﻨﺘﻬﻴﺔ‪،‬ﻭﰲ ﺍﻟﻨﻘﻄﺔ ‪ b, a‬ﺎﻳﺔ ﳝﲎ ‪ ،‬ﻳﺴﺮﻯ ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ‪.‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪ :‬ﻧﱪﻫﻦ‬
‫‪ -1‬ﻧﱪﻫﻦ ﺃﻥ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﺎﻳﺔ ﳝﲎ ﰲ ﻛﻞ ﻧﻘﻄﺔ ‪، x0‬ﺣﻴﺚ ‪. a ≤ x0 < b‬‬
‫‪ -2‬ﻧﱪﻫﻦ ﺃﻥ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﺎﻳﺔ ﻳﺴﺮﻯ ﰲ ﻛﻞ ﻧﻘﻄﺔ ‪، x0‬ﺣﻴﺚ ‪. a < x0 ≤ b‬‬
‫ﻧﺄﺧﺬ ﺍﳊﺎﻟﺔ ﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ ‪ f‬ﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ‪ )،‬ﺣﺎﻟﺔ ﻟﻴﺴﺖ ﻣﺘﺰﺍﻳﺪﺓ ﺗﱪﻫﻦ ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ (‪.‬‬
‫‪ -1‬ﻋﻨﺪﻧﺎ‪:‬‬
‫)‪∀x ∈ ]x0 , b] → f ( x0 ) ≤ f ( x‬‬
‫ﻧﻼﺣﻆ ﺃﻥ ﳎﻤﻮﻋﺔ ﻗﻴﻢ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﺍ‪‬ﺎﻝ ]‪ ]x0 , b‬ﳏﺪﻭﺩﺓ ﻣﻦ ﺍﻷﺳﻔﻞ ‪،‬ﺃﻱ‪:‬‬
‫‪∃m = inf‬‬
‫) ‪f ( x) ≥ f ( x0‬‬
‫] ]‬
‫‪x∈ x0 ,b‬‬
‫ﻣﻦ ﺧﺼﺎﺋﺺ ﺍﻟﻌﺪﺩ ‪m‬‬
‫‪∀x ∈ ]x0 , b] → f ( x) ≥ m > m − ε‬‬
‫‪w‬‬
‫) ‪, ∃xε ∈ ]x0 , b] / m + ε > f ( xε‬‬
‫‪w‬‬
‫ﻧﺮﻣﺰ ﻟﻠﻔﺮﻕ ‪ xε − x0‬ﺑﺎﻟﺮﻣﺰ ‪، δ‬ﻭﺍﺿﺢ ﺃﻥ ‪. δ > 0‬‬
‫‪∀ε > 0‬‬
‫‪,‬‬
‫‪∀ε > 0‬‬
‫)‪(1‬‬
‫)‪(2‬‬
‫ﻻﺣﻆ‬
‫) ‪∀x ∈ ]x0 , xε [ = ]x0 , x.0 + δ [ → f ( x) ≤ f ( xε‬‬
‫)‪(3‬‬
‫ﻣﻦ )‪ (3), (2), (1‬ﻳﻜﻮﻥ ‪:‬‬
‫‪51‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫•‬
‫‪∀ε > 0, ∃δ > 0 / ∀x ∈ ]x0 , x.0 + δ [ = Vδ ( x0 + 0 ) → f ( x) − m < ε‬‬
‫‪f ( x0 + 0 ) = lim f ( x) = m‬‬
‫ﺃﻱ ﺃﻥ‬
‫‪x→ x0 + 0‬‬
‫‪ -2‬ﻋﻨﺪﻧﺎ‪:‬‬
‫) ‪∀x ∈ [a , x0 [ → f ( x) ≤ f ( x0‬‬
‫ﻧﻼﺣﻆ ﺃﻥ ﳎﻤﻮﻋﺔ ﻗﻴﻢ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﺍ‪‬ﺎﻝ [ ‪ [a , x0‬ﳏﺪﻭﺩﺓ ﻣﻦ ﺍﻷﻋﻠﻰ ‪،‬ﺃﻱ ‪:‬‬
‫) ‪∃M = sup f ( x) ≤ f (x0‬‬
‫[ ‪x∈[a , x0‬‬
‫ﻣﻦ ﺧﺼﺎﺋﺺ ﺍﻟﻌﺪﺩ ‪: M‬‬
‫)‪(1‬‬
‫‪∀x ∈ [a , x0 [ → f ( x) ≤ M < M + ε ,‬‬
‫‪∀ε > 0‬‬
‫‪w‬‬
‫‪∀ε > 0 , ∃xε ∈ [a , x0 [ / f ( xε ) > M − ε‬‬
‫‪w‬‬
‫ﻧﺮﻣﺰ ﻟﻠﻔﺮﻕ ‪ x0 − xε‬ﺑﺎﻟﺮﻣﺰ ‪ ، δ‬ﻭﺍﺿﺢ ﺃﻥ ‪. 0 < δ‬‬
‫)‪(3‬‬
‫) ‪∀x ∈ ]xε , x0 [ = ]x0 − δ , x.0 [ → f ( x) ≥ f ( xε‬‬
‫ﻻﺣﻆ‬
‫ﻣﻦ )‪ (3), (2), (1‬ﻳﻜﻮﻥ ‪:‬‬
‫)‪(2‬‬
‫•‬
‫‪∀ε > 0, ∃δ > 0 / ∀x ∈ ]x0 − δ , x.0 [ = Vδ ( x0 + 0) → f ( x) − M < ε‬‬
‫‪f ( x0 − 0 ) = lim f ( x) = M‬‬
‫ﺃﻱ ﺃﻥ‪:‬‬
‫‪x→ x0 − 0‬‬
‫ﻧﺘﻴﺠﺔ ‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ‬
‫‪ -1‬ﺇﺫﺍ ﻛﺎﻧﺖ ‪ f‬ﻣﻌﺮﻓﺔ ﻭﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ ]‪ ، [a, b‬ﻓﺈﻥ ‪:‬‬
‫)‪∀x ∈ [a , b] → f ( x − 0 ) ≤ f ( x) ≤ f ( x + 0‬‬
‫‪ -2‬ﺇﺫﺍ ﻛﺎﻧﺖ ‪ f‬ﻣﻌﺮﻓﺔ ﻭﻟﻴﺴﺖ ﻣﺘﺰﺍﻳﺪﺓ ﻋﻠﻰ ]‪ ، [a, b‬ﻓﺈﻥ ‪:‬‬
‫)‪∀x ∈ [a , b] → f ( x + 0 ) ≤ f (x) ≤ f ( x − 0‬‬
‫‪ -3‬ﺍﻟﻨﻈﺮﻳﺔ ﺻﺤﻴﺤﺔ ﰲ ﺣﺎﻟﺔ ﺍ‪‬ﺎﻝ ]‪ [a, b‬ﻛﻴﻔﻲ‪ ،‬ﺃﻱ ﻣﻔﺘﻮﺡ ﺃﻭ ﻏﲑ ﻣﻨﺘﻪ ‪.‬‬
‫‪ -5.3.3‬ﻣﻌﻴﺎﺭ ﻛﻮﺷﻲ ﻟﻨﻬﺎﻳﺎﺕ ﺍﻟﺪﻭﺍﻝ ‪:‬‬
‫ﺗﻌﺮﻳﻒ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﲢﻘﻖ ﺷﺮﻁ ﻛﻮﺷﻲ ﰲ ﺍﻟﻨﻘﻄﺔ‪،‬ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ ‪ a‬ﻭﲢﻘﻖ ﺍﻟﺸﺮﻁ‪:‬‬
‫•‬
‫‪∀ε > 0, ∃δ > 0 / ∀x′, x′′ ∈ Vδ (a ) → f ( x′) − f ( x′′) < ε‬‬
‫ﻧﻈﺮﻳﺔ ‪ :‬ﺗﻜﻮﻥ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﺎﻳﺔ ﻣﻨﺘﻬﻴﺔ ﰲ ﺍﻟﻨﻘﻄﺔ ‪، a‬ﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻧﺖ ﲢﻘﻖ ﺷﺮﻁ ﻛﻮﺷﻲ ﰲ ﺗﻠﻚ ﺍﻟﻨﻘﻄﺔ‪.‬‬
‫‪ ، lim‬ﺃﻱ ‪:‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪ [⇐] :‬ﻧﻔﺮﺽ ﺃﻥ ‪f ( x) = l‬‬
‫‪x→ a‬‬
‫‪−1−‬‬
‫‪ε‬‬
‫‪2‬‬
‫•‬
‫< ‪∀ε > 0, ∃δ > 0 / ∀x ∈ Vδ (a ) ⊂ D( f ) → f (x) − l‬‬
‫‪52‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫•‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ‪ x′′ , x′‬ﻧﻘﻄﺘﲔ ﻛﻴﻔﻴﺘﲔ ﻣﻦ ) ‪،Vδ (a‬ﻓﺈﻧﻪ ﻣﻦ ‪ −1 −‬ﻳﻨﺘﺞ‬
‫‪ε ε‬‬
‫‪+ =ε‬‬
‫‪2 2‬‬
‫< ‪f ( x′) − f ( x′′) = ( f ( x′) − l ) − ( f ( x′′) − l ) ≤ f ( x′) − l + f ( x′′) − l‬‬
‫ﻭﻣﻨﻪ ﺷﺮﻁ ﻛﻮﺷﻲ ﳏﻘﻖ ‪.‬‬
‫]⇒[ ﻧﻔﺮﺽ ﺃﻥ ‪ f‬ﲢﻘﻖ ﺷﺮﻁ ﻛﻮﺷﻲ ﰲ ﺍﻟﻨﻘﻄﺔ ‪، a‬ﺃﻱ‪:‬‬
‫‪−2−‬‬
‫•‬
‫‪∀ε > 0, ∃δ > 0 / ∀x′, x′′ ∈ Vδ (a ) ⊂ D( f ) → f ( x′) − f ( x′′) < ε‬‬
‫•‬
‫ﻭﻣﻨﻪ ﻳﻮﺟﺪ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ) ‪ Vδ (a‬ﻟﻠﻨﻘﻄﺔ ‪ a‬ﺗﻜﻮﻥ ﻓﻴﻪ ﺍﻟﺪﺍﻟﺔ ﻣﻌﺮﻓﺔ‪.‬‬
‫•‬
‫ﻟﺘﻜﻦ ‪ (a n )n≥1‬ﻣﺘﺘﺎﻟﻴﺔ ﻣﻦ ) ‪،Vδ (a‬ﺣﻴﺚ‪:‬‬
‫‪. lim‬‬
‫‪an = a‬‬
‫∞→‪n‬‬
‫ﻧﱪﻫﻦ ﺃﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ‪، ( f (a n ))n ≥1‬ﲤﻠﻚ ‪‬ﺎﻳﺔ ﻣﻨﺘﻬﻴﺔ ﻏﲑ ﻣﺘﻌﻠﻘﺔ ﺑﺎﺧﺘﻴﺎﺭ ‪. (a n )n≥1‬‬
‫ﻋﻨﺪﻧﺎ ‪a n = a‬‬
‫‪ lim‬ﺗﻌﲏ ‪:‬‬
‫∞→‪n‬‬
‫‪∀ε > 0, ∃nε ≥ 1 / ∀n ≥ nε → a n − a < ε‬‬
‫ﻣﻦ ﺃﺟﻞ ‪ ε = δ ε‬ﺣﻴﺚ ‪ δ‬ﻣﻌﺮﻓﺔ ﰲ ﺍﻟﺼﻴﻐﺔ ‪ −1 −‬ﻳﻜﻮﻥ ‪:‬‬
‫‪ε = δ , ∃nδ ε ≥ 1 / ∀n ≥ nδ ε → a n − a < δ ε‬‬
‫‪−3−‬‬
‫ﻫﺬﺍ ﻳﻌﲏ ﺃﻧﻪ‬
‫•‬
‫•‬
‫) ‪, ∀m ≥ nδε → a n ∈Vδ ε (a ) , a m ∈Vδ ε (a‬‬
‫ﻣﻦ ﻫﻨﺎ ﺣﺴﺐ‬
‫ﺍﻟﺼﻴﻐﺔ ‪− 3 − , − 2 −‬‬
‫‪∀n ≥ nδ ε‬‬
‫ﻳﻜﻮﻥ ‪:‬‬
‫‪∀ε > 0, ∃nε′ = nδ ε / ∀n ≥ nε′ , ∀m ≥ nε′ → f (a n ) − f (a m ) < ε‬‬
‫ﺃﻱ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ ( f (a n ))n ≥1‬ﻟﻜﻮﺷﻲ ‪.‬‬
‫‪∃l = lim‬‬
‫ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﻛﻮﺷﻲ ﻓﻘﺮﺓ‪ 1.8.2‬ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ ( f (a n ))n ≥1‬ﺗﻜﻮﻥ ﻣﺘﻘﺎﺭﺑﺔ‪ ،‬ﺃﻱ ‪f (a n ) :‬‬
‫∞→‪n‬‬
‫•‬
‫ﻧﱪﻫﻦ ﺃﻥ ‪ l‬ﻣﺴﺘﻘﻞ ﻋﻦ ﺍﺧﺘﻴﺎﺭ ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ (a n )n≥1‬ﻣﻦ ) ‪. Vδ (a‬‬
‫•‬
‫ﻧﻔﺮﺽ ﺍﻟﻌﻜﺲ‪ ،‬ﺃﻱ ﺗﻮﺟﻮﺩ ﻣﺘﺘﺎﻟﻴﺔ ﺃﺧﺮﻯ ‪ (bn )n ≥1‬ﻣﻦ ) ‪ Vδ (a‬ﲢﻘﻖ‪:‬‬
‫‪lim‬‬
‫‪b = lim‬‬
‫‪an = a‬‬
‫‪n→∞ n‬‬
‫∞→ ‪n‬‬
‫‪lim‬‬
‫‪ ، lim‬ﺣﻴﺚ‪f (a n ) = l 1 ≠ l 2 :‬‬
‫ﻭ ‪f (bn ) = l 2‬‬
‫∞→‪n‬‬
‫∞→ ‪n‬‬
‫ﻣﻌﻠﻮﻡ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ (c n )n ≥1‬ﺍﳌﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫}‪= {c1 , c 2 , c3 ,........} ≡ {a 1 , b1 , a 2 , b2 , a 3 ........‬‬
‫) ‪(c‬‬
‫‪n ≥1‬‬
‫‪n‬‬
‫•‬
‫‪. lim‬‬
‫ﻣﻦ ) ‪،Vδ (a‬ﻭﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ ‪ ، a‬ﺃﻱ‪c = a :‬‬
‫‪n→∞ n‬‬
‫‪53‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﻣﻦ ﻫﻨﺎ ﻭﻣﻦ ﺷﺮﻁ ﻛﻮﺷﻲ‪ ،‬ﻭﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ‪، (a n )n≥1‬ﻧﺴﺘﻨﺘﺞ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ ( f (c n ))n ≥1‬ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﻋﺪﺩ ‪ l 3‬ﺃﻱ‪:‬‬
‫‪lim‬‬
‫‪f (cn ) = l 3‬‬
‫∞→‪n‬‬
‫ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ ( f (c n ))n ≥1‬ﻫﻲ ﺍﳌﺘﺘﺎﻟﻴﺔ‬
‫}‪{ f (a ), f (b ), f (a ), f (b ),...........‬‬
‫ﻫﺬﺍ ﻳﻌﻦ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ )) ‪ ( f (b )) , ( f (a‬ﺟﺰﺋﻴﺘﺎﻥ ﻣﻦ ﺍﳌﺘﺘﺎﻟﻴﺔ )) ‪. ( f (c‬‬
‫‪2‬‬
‫‪n ≥1‬‬
‫‪n‬‬
‫‪n ≥1‬‬
‫‪2‬‬
‫‪1‬‬
‫‪1‬‬
‫‪n ≥1‬‬
‫‪n‬‬
‫‪n‬‬
‫ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﻓﻘﺮﺓ ‪ 7.2‬ﻳﻜﻮﻥ ‪:‬‬
‫‪ l 1 = l 3‬ﻭ ‪ ، l 2 = l 3‬ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ‪. l 1 = l 2 :‬‬
‫•‬
‫ﻭﻣﻨﻪ ‪‬ﺎﻳﺔ ‪ ( f (a n ))n ≥1‬ﻣﺴﺘﻘﻠﺔ ﻋﻦ ﺍﺧﺘﻴﺎﺭ ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ (a n )n≥1‬ﻣﻦ ) ‪،Vδ (a‬ﺃﻱ ﺃﻥ ‪ f‬ﳍﺎ ‪‬ﺎﻳﺔ ﻣﻨﺘﻬﻴﺔ ﰲ ﺍﻟﻨﻘﻄﺔ ‪. a‬‬
‫ﻣﻼﺣﻈﺔ ‪ :‬ﻧﻈﺮﻳﺔ ﻛﻮﺷﻲ ﺻﺤﻴﺤﺔ ﻋﻨﺪﻣﺎ ﻧﺴﺘﺒﺪﻝ ﺍﻟﻜﺘﺎﺑﺔ ‪ ، x → a‬ﺑﺎﻟﻜﺘﺎﺑﺔ‪:‬‬
‫‪x→ a +0‬‬
‫‪ ،‬ﺃﻭ‬
‫‪x→ a −0‬‬
‫‪ ،‬ﺃﻭ‬
‫∞→‪x‬‬
‫‪ -4.3‬ﺍﻻﺳﺘﻤﺮﺍﺭ ‪:‬‬
‫ﻟﺘﻜﻦ ‪ f‬ﺩﺍﻟﺔ ﺣﻘﻴﻘﻴﺔ ﳌﺘﻐﲑ ﺣﻘﻴﻘﻲ ﻭ ‪ a‬ﻋﺪﺩﺍﹰ ﻣﻦ ‪. ℜ‬‬
‫‪ -1.4.3‬ﺗﻌﺎﺭﻳﻒ ‪:‬‬
‫‪ -1‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ ، a‬ﺇﺫﺍ ﻛﺎﻧﺖ ‪:‬‬
‫‪ w‬ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻨﻘﻄﺔ ‪a‬‬
‫‪f ( x) = f (a ) w‬‬
‫‪lim‬‬
‫‪x→ a‬‬
‫ﺃﻱ ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪، a‬ﺇﺫﺍ ﲢﻘﻘﺖ ﺍﻟﺸﺮﻭﻁ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫ﺃ‪-‬‬
‫ﺏ‪-‬‬
‫ﺝ‪-‬‬
‫•‬
‫) ‪∃δ 0 > 0 / Vδ 0 (a ) ⊂ D( f‬‬
‫‪∃ lim‬‬
‫‪f ( x) = l‬‬
‫‪x→ a‬‬
‫‪f (a ) = l‬‬
‫ﻧﺘﻴﺠﺔ ‪ :‬ﻣﻦ ﺍﻟﺘﻌﺮﻳﻒ ﺍﻟﺴﺎﺑﻖ ﻭﻣﻦ ﺗﻌﺮﻳﻒ ﺍﻟﻨﻬﺎﻳﺔ ﺣﺴﺐ ﻗﺎﻳﻦ ﻭ ﻛﻮﺷﻲ ﻧﺴﺘﻨﺘﺞ ﺗﻌﺮﻳﻔﲔ ﻟﻼﺳﺘﻤﺮﺍﺭ‪.‬‬
‫ﺃ‪ -1‬ﺣﺴﺐ ﻛﻮﺷﻲ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ ، a‬ﺇﺫﺍ ﲢﻘﻖ ‪:‬‬
‫•‬
‫) ‪∃δ 0 > 0 / Vδ 0 (a ) ⊂ D( f‬‬
‫‪w‬‬
‫)) ‪∀ε > 0 , ∃δ ∈ ]0, δ 0 ] / ∀x ∈ Vδ (a ) → f ( x) ∈ Vε ( f (a‬‬
‫‪w‬‬
‫ﺏ‪ -1‬ﺣﺴﺐ ﻗﺎﻳﻦ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ ، a‬ﺇﺫﺍ ﲢﻘﻖ ‪:‬‬
‫‪w‬‬
‫•‬
‫) ‪∃δ 0 > 0 / Vδ 0 (a ) ⊂ D( f‬‬
‫‪54‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪ w‬ﻣﻦ ﺃﺟﻞ ﻛﻞ ﻣﺘﺘﺎﻟﻴﺔ ‪ (a n )n≥1‬ﻣﻦ ) ‪ Vδ (a‬ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ ﺍﻟﻌﺪﺩ ‪، a‬ﺗﻜﻮﻥ ﻣﺘﺘﺎﻟﻴﺔ ﺍﻟﺼﻮﺭ ‪ ( f (a n ))n ≥1‬ﻣﺘﻘﺎﺭﺑﺔ ﳓﻮ‬
‫‪0‬‬
‫ﺍﻟﻌﺪﺩ ) ‪. f (a‬‬
‫‪ -2‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ‬
‫ﺃ‪ -2‬ﻋﻠﻰ ﻳﺴﺎﺭ ﺍﻟﻨﻘﻄﺔ ‪، a‬ﺇﺫﺍ ﻛﺎﻧﺖ ‪:‬‬
‫‪w‬‬
‫‪w‬‬
‫•‬
‫) ‪∃δ 0 > 0 / Vδ 0 (a − 0) ⊂ D( f‬‬
‫) ‪lim f ( x) = f (a‬‬
‫‪x→ a − 0‬‬
‫ﺏ‪ -2‬ﻋﻠﻰ ﳝﲔ ﺍﻟﻨﻘﻄﺔ ‪، a‬ﺇﺫﺍ ﻛﺎﻧﺖ ‪:‬‬
‫‪w‬‬
‫‪w‬‬
‫•‬
‫) ‪∃δ 0 > 0 / Vδ 0 (a + 0) ⊂ D( f‬‬
‫) ‪lim f ( x) = f (a‬‬
‫‪x→ a + 0‬‬
‫ﻣﻼﺣﻈﺔ ‪:‬‬
‫‪-1‬ﻣﻦ ﺍﻟﺘﻌﺎﺭﻳﻒ ﺃ‪ ، 1‬ﺃ‪ ، 2‬ﺏ‪ 2‬ﻧﺴﺘﺨﻠﺺ ﺗﻌﺮﻳﻒ ﻛﻮﺷﻲ ﻟﻼﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻴﻤﲔ ‪،‬ﻭﻣﻦ ﺍﻟﻴﺴﺎﺭ‪.‬‬
‫‪-2‬ﻣﻦ ﺍﻟﺘﻌﺎﺭﻳﻒ ﺏ‪ ، 1‬ﺃ‪ ، 2‬ﺏ‪ 2‬ﻧﺴﺘﺨﻠﺺ ﺗﻌﺮﻳﻒ ﻗﺎﻳﻦ ﻟﻼﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻴﻤﲔ ‪،‬ﻭﻣﻦ ﺍﻟﻴﺴﺎﺭ‪.‬‬
‫ﻧﺘﺎﺋﺞ ‪:‬‬
‫‪ -1‬ﺃ‪ ⇔ 1‬ﺏ‬
‫‪ f -2‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ ‪ ، A‬ﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺘﻤﺮﺓ ﰲ ﻛﻞ ﻧﻘﻄﺔ ﻣﻦ ‪. A‬‬
‫‪ f -3‬ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ ، a‬ﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺘﻤﺮﺓ ﻣﻦ ﺍﻟﻴﻤﲔ‪،‬ﻭﻣﻦ ﺍﻟﻴﺴﺎﺭ ﰲ ﺍﻟﻨﻘﻄﺔ ‪. a‬‬
‫‪1‬‬
‫)‬
‫(‬
‫‪( lim‬‬
‫‪f ( x) = f lim‬‬
‫‪ f ) -4‬ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ f ) ⇔ ( a‬ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻟﻠﻨﻘﻄﺔ ‪ a‬ﻭ ‪x‬‬
‫‪x→ a‬‬
‫‪x→ a‬‬
‫‪ -5‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ]‪، [a, b‬ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺘﻤﺮﺓ ﰲ ﻛﻞ ﻧﻘﻄﺔ ﻣﻦ [‪، ]a, b‬ﻭﻣﺴﺘﻤﺮﺓ ﻣﻦ ﺍﻟﻴﻤﲔ ﰲ‬
‫ﺍﻟﻨﻘﻄﺔ ‪ a‬ﻭﻣﻦ ﺍﻟﻴﺴﺎﺭ ﰲ ﺍﻟﻨﻘﻄﺔ ‪. b‬‬
‫ﺃﻣﺜﻠﺔ ‪:‬‬
‫‪ -1‬ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ ‪، f‬ﺣﻴﺚ ‪:‬‬
‫‪a =0‬‬
‫ﻭﺍﺿﺢ ﺃﻥ ‪، D( f ) = ℜ‬ﻭ‬
‫‪1‬‬
‫‪≤ x‬‬
‫‪x‬‬
‫‪1‬‬
‫‪‬‬
‫‪, x≠0‬‬
‫‪ x sin‬‬
‫‪f ( x) = ‬‬
‫‪x‬‬
‫‪0‬‬
‫‪, x=0‬‬
‫‪∀x ∈ ℜ → 0 ≤ f ( x) − f (0) = f ( x) = x sin‬‬
‫‪55‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫) ‪∃δ 0 > 0 / Vδ 0 (0 ) ⊂ D( f‬‬
‫ﺃﻱ‬
‫ﻭ‬
‫ﻳﻜﻔﻲ ﺃﺧﺬ‬
‫‪∀ε > 0, ∃δ > 0 / ∀x ∈ Vδ (0 ) ⊂ D( f ) → f ( x) < ε‬‬
‫‪δ =ε‬‬
‫‪ ،‬ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ‬
‫) ‪lim f ( x) = 0 = f (0‬‬
‫‪x→0‬‬
‫ﺃﻱ ﺃﻥ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪. a = 0‬‬
‫‪ -2‬ﺗﺄﺧﺬ ]‪ f (x) = [x‬ﺍﻧﻈﺮ ﻣﺜﺎﻝ ‪ 3‬ﺑﺪﺍﻳﺔ ﺍﻟﻔﺼﻞ‪.‬‬
‫‪lim f ( x) = f (1 + 0 ) = f (1) = 1‬‬
‫ﻣﻦ ﺷﻜﻞ ﺍﻟﺪﺍﻟﺔ ﻭﺍﺿﺢ ﺃﻥ‬
‫‪x→1+ 0‬‬
‫)‪lim f ( x) = f (1 − 0 ) = 0 ≠ f (1‬‬
‫ﻭ‬
‫‪x→1−0‬‬
‫ﺃﻱ ﺃﻥ‬
‫‪f‬‬
‫ﻣﺴﺘﻤﺮﺓ ﻣﻦ ﺍﻟﻴﻤﲔ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ ، a = 1‬ﻟﻜﻦ ﻟﻴﺴﺖ ﻣﺴﺘﻤﺮﺓ ﻣﻦ ﺍﻟﻴﺴﺎﺭ ﰲ ﻧﻔﺲ ﺍﻟﻨﻘﻄﺔ‪.‬‬
‫‪ -2.4.3‬ﻧﻘﻂ ﻋﺪﻡ ﺍﻻﺳﺘﻤﺮﺍﺭ ﻭﺍﻟﺘﻤﺪﻳﺪ ﺑﺎﻻﺳﺘﻤﺮﺍﺭ ‪:‬‬
‫ﺗﻌﺮﻳﻒ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﻨﻘﻄﺔ ‪ a‬ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻟﻠﺪﺍﻟﺔ‬
‫‪-1‬‬
‫‪-2‬‬
‫‪f‬‬
‫‪ ،‬ﺇﺫﺍ ﱂ ﻳﺘﺤﻘﻖ ﺃﺣﺪ ﺍﻟﺸﺮﻭﻁ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬
‫) ‪a ∈ D( f‬‬
‫)‪∃l ∈ ℜ / l = lim f ( x‬‬
‫‪x→ a‬‬
‫) ‪l = f (a‬‬
‫‪-3‬‬
‫ﺗﺼﻨﻒ ﻧﻘﻂ ﻋﺪﻡ ﺍﻻﺳﺘﻤﺮﺍﺭ ﺇﱃ ﺛﻼﺙ ﺃﺻﻨﺎﻑ ﻫﻲ‪:‬‬
‫ﺃ‪ -‬ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ ‪:‬‬
‫ﻧﻘﻮﻝ ﻋﻦ ﺍﻟﻨﻘﻄﺔ ‪ a‬ﺇ‪‬ﺎ ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺪﺍﻟﺔ ‪، f‬ﺇﺫﺍ ﲢﻘﻖ ﺍﻟﺸﺮﻁ ‪ -2-‬ﻭﱂ ﻳﺘﺤﻘﻖ ﺃﺣﺪ ﺍﻟﺸﺮﻭﻁ‬
‫‪. -3- ، -1‬‬‫ﻧﺘﻴﺠﺔ ‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﻘﻄﺔ ‪ a‬ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ ﻟﻠﺪﺍﻟﺔ‬
‫ﳓﺼﻞ ﻋﻠﻰ ﺩﺍﻟﺔ‬
‫*‪f‬‬
‫‪x→ a‬‬
‫ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ ، a‬ﺗﻜﻮﻥ ﻣﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫‪ f ( x) , x ≠ a‬‬
‫‪f ∗ ( x) = ‬‬
‫‪x=a‬‬
‫ﻓﻌﻼﹰ ﻷﻥ‬
‫‪، f‬ﺃﻱ )‪∃l = lim f ( x‬‬
‫‪ ،‬ﻓﺈﻥ ﺑﻮﺿﻌﻨﺎ‬
‫) ‪l = f ∗ (a‬‬
‫‪l‬‬
‫‪,‬‬
‫) ‪a ∈ D( f ) , lim f ∗ ( x) = lim f ( x) = l = f ∗ (a‬‬
‫‪x→ a‬‬
‫‪x→ a‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﻧﻜﻮﻥ ﻗﺪ ﻣﺪﺩﻧﺎ ‪ f‬ﺑﺎﻻﺳﺘﻤﺮﺍﺭﻳﺔ ﰲ ﺍﻟﻨﻘﻄﺔ ‪. a‬‬
‫ﻋﻨﺪﻫﺎ ﻧﻘﻮﻝ ﺇﻥ ﻛﻞ ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ ﳝﻜﻦ ﺟﻌﻠﻬﺎ ﻧﻘﻄﺔ ﺍﺳﺘﻤﺮﺍﺭ‪.‬‬
‫ﻣﺜﺎﻝ‪ : 1‬ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ ‪. f (x) = x sin 1‬‬
‫‪x‬‬
‫ﻻﺣﻆ ﺃﻥ‬
‫‪1‬‬
‫‪=0‬‬
‫‪x‬‬
‫‪lim x sin‬‬
‫‪x→ 0‬‬
‫‪،‬ﻟﻜﻦ ﺍﻟﻌﺒﺎﺭﺓ‬
‫‪1‬‬
‫‪x sin‬‬
‫‪x‬‬
‫ﻟﻴﺲ ﳍﺎ ﻣﻌﲎ ﰲ ﺍﻟﺼﻔﺮ‪ ،‬ﻭﺑﺎﻟﺘﺎﱄ ﺍﻟﻨﻘﻄﺔ ‪ a = 0‬ﻫﻲ ﻧﻘﻄﺔ ﻋﺪﻡ‬
‫‪56‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ‪.‬‬
‫ﻟﻠﺒﺤﺚ ﻋﻦ ﲤﺪﻳﺪ‬
‫‪f‬‬
‫ﺑﺎﻻﺳﺘﻤﺮﺍﺭ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ a = 0‬ﻳﻜﻔﻲ ﺃﻥ ﳒﻌﻞ‬
‫‪ f ( x) , x ≠ a‬‬
‫‪f ∗ ( x) = ‬‬
‫‪x=a‬‬
‫ﻻﺣﻆ‬
‫‪0‬‬
‫‪,‬‬
‫ﺃﻥ‪ ، 0 ∈ D( f ), lim f ∗ ( x) = lim f ( x) = 0 = f ∗ (0 ) :‬ﺃﻱ ∗ ‪f‬‬
‫‪x→ 0‬‬
‫‪x→ 0‬‬
‫ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﺼﻔﺮ‪.‬‬
‫ﺏ‪ -‬ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ ‪:‬‬
‫ﻧﻘﻮﻝ ﻋﻦ ﺍﻟﻨﻘﻄﺔ ‪ a‬ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ ﻟﻠﺪﺍﻟﺔ ‪، f‬ﺇﺫﺍ ﻭﺟﺪﺕ ‪‬ﺎﻳﺔ ﻣﻨﺘﻬﻴﺔ ﻣﻦ ﺍﻟﻴﻤﲔ ﻭﺃﺧﺮﻯ ﻣﻨﺘﻬﻴﺔ‬
‫ﻣﻦ ﺍﻟﻴﺴﺎﺭ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﰲ ﺍﻟﻨﻘﻄﺔ ‪ a‬ﳐﺘﻠﻔﺘﲔ‪ ،‬ﺃﻱ ‪:‬‬
‫‪ ∃f (a − 0) ∈ ℜ , ∃f (a + 0 ) ∈ ℜ‬ﻭ )‪f (a − 0) ≠ f (a + 0‬‬
‫ﺍﻟﻔﺮﻕ )‪ ، α = f (a + 0) + f (a − 0‬ﻳﺴﻤﻰ ﻗﻔﺰﺓ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﰲ ﺍﻟﻨﻘﻄﺔ ‪. a‬‬
‫ﻣﺜﺎﻝ‪ : 2‬ﺍﻟﺪﺍﻟﺔ ﺍﻹﺷﺎﺭﺓ ﺍﻧﻈﺮ ﻣﺜﺎﻝ ‪ -2-‬ﺑﺪﺍﻳﺔ ﺍﻟﻔﺼﻞ‬
‫‪1 , x > 0‬‬
‫‪‬‬
‫‪f ( x) = sgn x = 0 , x = 0‬‬
‫‪− 1 , x < 0‬‬
‫‪‬‬
‫ﻻﺣﻆ ﺃﻥ‪:‬‬
‫ﺃﻱ ﺃﻥ‬
‫ﺍﻟﻨﻘﻄﺔ ‪a = 0‬‬
‫‪∃ lim f ( x) = f (+ 0) = 1 ‬‬
‫‪‬‬
‫‪x→ +0‬‬
‫)‪ ⇒ f (+ 0) ≠ f (− 0‬‬
‫‪∃ lim f ( x) = f (− 0) = −1‬‬
‫‪x→ −0‬‬
‫‪‬‬
‫ﻫﻲ ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ‪ .‬ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻗﻔﺰﺓ ﺍﻟﺪﺍﻟﺔ ﻫﻲ ‪. α = 1 − (− 1) = 2‬‬
‫ﺝ‪ -‬ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻟﺜﺎﱐ ‪:‬‬
‫ﻧﻘﻮﻝ ﻋﻦ ﺍﻟﻨﻘﻄﺔ ‪ a‬ﻫﻲ ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻟﺜﺎﱐ ﻟﻠﺪﺍﻟﺔ ‪ ، f‬ﺇﺫﺍ ﻛﺎﻧﺖ ﰲ ﻫﺬﻩ ﺍﻟﻨﻘﻄﺔ ﻋﻠﻰ ﺍﻷﻗﻞ ﺃﺣﺪ‬
‫ﺍﻟﻨﻬﺎﻳﺘﲔ ﺍﻟﻴﻤﲎ ﺃﻭ ﺍﻟﻴﺴﺮﻯ ﻏﲑ ﻣﻮﺟﻮﺩﺓ ﺃﻭ ﺗﺴﺎﻭﻱ ﺍﳌﺎﻻ‪‬ﺎﻳﺔ‪.‬‬
‫ﻣﺜﺎﻝ ‪ :‬ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﺣﻴﺚ‪:‬‬
‫ﺑﺎﺳﺘﻌﻤﺎﻝ ﺗﻌﺮﻳﻒ ﻗﺎﻳﻦ ﻟﻠﻨﻬﺎﻳﺔ ﳓﺼﻞ ﻋﻠﻰ‬
‫ﻟﻜﻦ ﺗﻮﺟﺪ ‪‬ﺎﻳﺔ ﻣﻦ ﺍﻟﻴﻤﲔ ﻟﻠﺪﺍﻟﺔ‬
‫‪f‬‬
‫‪1‬‬
‫‪‬‬
‫‪ x cos x , x < 0‬‬
‫‪‬‬
‫‪f ( x) = 0‬‬
‫‪, x=0‬‬
‫‪‬‬
‫‪1‬‬
‫‪cos‬‬
‫‪, x>0‬‬
‫‪x‬‬
‫‪‬‬
‫‪lim f (x) = 0‬‬
‫ﰲ ﺍﻟﻨﻘﻄﺔ‬
‫‪x→ −0‬‬
‫‪a =0‬‬
‫‪.‬‬
‫‪.‬‬
‫‪57‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﻫﺬﺍ ﻳﻌﲎ ﺃﻥ ﺍﻟﻨﻘﻄﺔ‬
‫‪a =0‬‬
‫ﻫﻲ ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻟﺜﺎﱐ ﻟﻠﺪﺍﻟﺔ ‪. f‬‬
‫ﻧﻈﺮﻳﺔ ‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﻌﺮﻓﺔ ﻋﻠﻰ ]‪ [a, b‬ﻭﺭﺗﻴﺒﺔ ﻋﻠﻴﻪ‪ ،‬ﻓﺈﻧﻪ ﺇﺫﺍ ﻛﺎﻧﺖ ﳍﺎ ﻧﻘﻂ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﰲ ﺍ‪‬ﺎﻝ [‪ ]a, b‬ﻓﺈ‪‬ﺎ‬
‫ﺗﻜﻮﻥ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ‪.‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪ :‬ﻧﻔﺮﺽ ﺃﻥ‬
‫‪f‬‬
‫ﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ‪.‬‬
‫ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﻓﻘﺮﺓ ‪ ،4.3.3‬ﻟﻠﺪﺍﻟﺔ ‪ f‬ﰲ ﻛﻞ ﻧﻘﻄﺔ ﻣﻦ ﺍ‪‬ﺎﻝ [‪ ]a, b‬ﺎﻳﺔ ﳝﲎ ﻣﻨﺘﻬﻴﺔ‪،‬ﻭﻳﺴﺮﻯ ﻣﻨﺘﻬﻴﺔ ﻭﻳﻜﻮﻥ ﻋﻨﺪﻫﺎ ‪:‬‬
‫) ‪∀x0 ∈ ]a , b[ → f ( x0 − 0) ≤ f ( x0 ) ≤ f ( x0 + 0‬‬
‫ﻫﺬﺍ ﻳﻌﲎ‬
‫‪ ، ∃f (x0 + 0 ),‬ﺃﻱ ﺃﻥ ﺍﻟﻨﻘﻄﺔ ‪ x0‬ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ‪.‬‬
‫) ‪∃f ( x0 − 0‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ )‪ ، f (x0 + 0) = f (x0 − 0‬ﻓﺈﻥ‪:‬‬
‫)‪∃ lim f ( x) = f ( x0 + 0) = f ( x0 − 0‬‬
‫‪x→ x0‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﺗﻜﻮﻥ ‪ x0‬ﻧﻘﻄﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻌﺰﻭﻝ‪ ،‬ﻭﻫﻲ ﺗﺆﻭﻝ ﺇﱃ ﻧﻘﻄﺔ ﺍﺳﺘﻤﺮﺍﺭ ﻛﻤﺎ ﻋﺮﻓﻨﺎ ﰲ ﺍﻟﻨﺘﻴﺠﺔ ﻓﻘﺮﺓ ‪.2.4.3‬‬
‫ﰲ ﺣﺎﻟﺔ ‪ f‬ﻟﻴﺴﺖ ﻣﺘﺰﺍﻳﺪﺓ ﺗﱪﻫﻦ ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ‪.‬‬
‫‪ -3.4.3‬ﺍﻻﺳﺘﻤﺮﺍﺭ ﺑﺎﻷﺟﺰﺍﺀ ‪:‬‬
‫ﺗﻌﺮﻳﻒ ﺃ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﺑﺎﻷﺟﺰﺍﺀ ﻋﻠﻰ ﺍ‪‬ﺎﻝ ]‪، [a, b‬ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﺍ‪‬ﺎﻝ [‪ ]a, b‬ﺑﺎﺳﺘﺜﻨﺎﺀ ﳏﺘﻤﻞ ﻟﻌﺪﺩ‬
‫ﻣﻨﺘﻪ ﻣﻦ ﻧﻘﻂ ﺍ‪‬ﺎﻝ [‪، ]a, b‬ﺍﻟﱵ ﺗﻜﻮﻥ ﻧﻘﻂ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ‪ .‬ﻭﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺫﺍﻟﻚ ﲤﻠﻚ ‪‬ﺎﻳﺔ ﻳﺴﺮﻯ ﰲ‬
‫ﺍﻟﻨﻘﻄﺔ ‪، b‬ﻭ‪‬ﺎﻳﺔ ﳝﲎ ﰲ ﺍﻟﻨﻘﻄﺔ ‪. a‬‬
‫ﺗﻌﺮﻳﻒ ﺏ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﺑﺎﻷﺟﺰﺍﺀ ﻋﻠﻰ ‪ ، ℜ‬ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻷﺟﺰﺍﺀ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ]‪ [a, b‬ﻣﻦ ‪. ℜ‬‬
‫ﻣﺜﺎﻝ ‪ :‬ﺍﻟﺪﺍﻟﺔ ﺍﳉﺰﺀ ﺍﻟﺼﺤﻴﺢ ]‪. f (x) = [x‬‬
‫ﻣﺴﺘﻤﺮﺓ ﺑﺎﻷﺟﺰﺍﺀ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ]‪ [a, b‬ﻣﻦ ‪، ℜ‬ﻭﺑﺎﻟﺘﺎﱄ ﻫﻲ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻷﺟﺰﺍﺀ ﻋﻠﻰ ﻛﻞ ‪، ℜ‬ﻷﻧﻪ ﰲ ﻛﻞ ﻋﺪﺩ ﺻﺤﻴﺢ‬
‫‪ q‬ﲤﻠﻚ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﺎﻳﺔ ﳝﲎ ﻣﻨﺘﻬﻴﺔ ﻭﻳﺴﺮﻯ ﻣﻨﺘﻬﻴﺔ‪ ،‬ﻭ ) ‪، f (q + 0 ) ≠ f (q − 0‬ﺃﻱ ﰲ ﻛﻞ ﻧﻘﻄﺔ ‪ q‬ﻣﻦ ‪ Ζ‬ﲤﻠﻚ‬
‫ﺍﻟﺪﺍﻟﺔ ﻋﺪﻡ ﺍﺳﺘﻤﺮﺍﺭ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﻭﻝ‪.‬‬
‫‪ -4.4.3‬ﺧﻮﺍﺹ ﺍﻟﺪﻭﺍﻝ ﺍﳌﺴﺘﻤﺮﺓ ‪:‬‬
‫‪ -1.4.4.3‬ﺧﻮﺍﺹ ﺍﻟﺪﻭﺍﻝ ﺍﳌﺴﺘﻤﺮﺓ ﰲ ﻧﻘﻄﺔ ‪:‬‬
‫‪ -1‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ a‬ﻓﺈ‪‬ﺎ ﺗﻜﻮﻥ ﳏﺪﻭﺩﺓ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻨﻘﻄﺔ ‪، a‬ﺃﻱ‪:‬‬
‫‪∀x ∈ Vδ (a ) → f ( x) ≤ c‬‬
‫‪/‬‬
‫‪∃c > 0 , ∃δ > 0‬‬
‫‪ -2‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ ، a‬ﻭ ‪ ، f (a ) ≠ 0‬ﻓﺈﻧﻪ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻨﻘﻄﺔ ‪، a‬ﺗﻜﻮﻥ ﺇﺷﺎﺭﺓ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﻦ‬
‫ﻧﻔﺲ ﺇﺷﺎﺭﺓ ﺍﻟﻌﺪﺩ ) ‪ ، f (a‬ﺃﻱ ‪:‬‬
‫) ‪∀x ∈ Vδ (a ) → signf ( x) = signf (a‬‬
‫‪/‬‬
‫‪∃δ > 0‬‬
‫‪58‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪ -3‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺘﺎﻥ‬
‫‪f ⋅ g,‬‬
‫‪f ±g‬‬
‫‪g, f‬‬
‫‪‬‬
‫‪f‬‬
‫‪,‬‬
‫‪ g (a ) ≠ 0 ,‬‬
‫‪g ‬‬
‫‪‬‬
‫‪ -4‬ﻧﻈﺮﻳﺔ ‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ‬
‫) ‪y0 = ϕ ( x0‬‬
‫ﻣﺴﺘﻤﺮﺗﲔ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ ، a‬ﻓﺈﻥ ﺍﻟﺪﻭﺍﻝ ‪:‬‬
‫ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪. a‬‬
‫)‪z = f ( y‬‬
‫ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪، y0‬ﻭﺍﻟﺪﺍﻟﺔ‬
‫‪،‬ﻓﺈﻧﻪ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻟﻠﻨﻘﻄﺔ ‪ x0‬ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ ﺍﳌﺮﻛﺒﺔ‬
‫)‪y = ϕ (x‬‬
‫‪h = f oϕ‬‬
‫ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪، x0‬ﺣﻴﺚ‬
‫ﻣﻌﺮﻓﺔ ﻭﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪. x0‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪:‬‬
‫ﻧﻀﻊ ‪f ( y0 ) = z0‬‬
‫ﻋﻨﺪﻧﺎ‬
‫‪f‬‬
‫ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ y0‬ﻳﻌﲏ‬
‫) ‪/ ∀y ∈ Vδ1 ( y0 ) ⊂ D( f ) → f ( y) ∈ Vε ( z0‬‬
‫‪−1−‬‬
‫‪∀ε > 0 , ∃δ 1 > 0‬‬
‫ﻋﻨﺪﻧﺎ ‪ ϕ‬ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪ x0‬ﻳﻌﲏ‬
‫) ‪/ ∀x ∈ Vδ 0 ( x0 ) ⊂ D(ϕ ) → ϕ ( x) ∈ Vε ( y0‬‬
‫‪−2−‬‬
‫‪∀ε > 0 , ∃δ 0 > 0‬‬
‫ﻣﻦ ﺃﺟﻞ ‪ ε = δ 1‬ﺣﻴﺚ ‪ δ 1‬ﻣﻌﺮﻓﺔ ﰲ ﺍﻟﺼﻴﻐﺔ ‪ −1 −‬ﻳﻜﻮﻥ‬
‫) ‪/ ∀x ∈ Vδ ′ ( x0 ) ⊂ D(ϕ ) → ϕ ( x) ∈ Vδ1 ( y0‬‬
‫‪−3−‬‬
‫‪ε = δ 1 , ∃δ ′ > 0‬‬
‫ﻻﺣﻆ ﰲ ﺍﻟﺼﻴﻐﺔ ‪ y = ϕ (x)∈Vδ ( y0 ) − 3 −‬ﺣﺴﺐ ﺍﻟﺼﻴﻐﺔ ‪ −1 −‬ﻳﻜﻮﻥ‪:‬‬
‫) ‪، f ( y) = f (ϕ (x)) ∈Vε (z0‬ﺣﻴﺚ ) ‪ ، z0 = f (ϕ (x0 )) = f ( y0‬ﻫﺬﺍ ﻳﻌﲏ ﺃﻧﻪ ) ‪، Vδ ′ (x0 ) ⊂ D( f o ϕ‬ﻭ‬
‫‪1‬‬
‫))) ‪∀ε > 0, ∃δ ′ > 0 / ∀x ∈ Vδ ′ ( x0 ) → f (ϕ ( x)) ∈ Vε ( f (ϕ ( x0‬‬
‫ﺃﻱ ﺃﻥ ﺍﻟﺪﺍﻟﺔ ‪ h‬ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪x0‬‬
‫‪ -2.4.4.3‬ﺧﻮﺍﺹ ﺍﻟﺪﻭﺍﻝ ﺍﳌﺴﺘﻤﺮﺓ ﻋﻠﻰ ﳎﻤﻮﻋﺔ ‪:‬‬
‫‪ -1‬ﻧﻈﺮﻳﺔ ‪ ) :‬ﺍﻟﻨﻈﺮﻳﺔ ﺍﻷﻭﱃ ﻟﻔﲑﺷﺘﺮﺍﺹ ( ‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﺍ‪‬ﺎﻝ ]‪ [a, b‬ﻓﻬﻲ ﳏﺪﻭﺩﺓ ﻋﻠﻴﻪ‪ ،‬ﺃﻱ‪:‬‬
‫‪/ ∀x ∈ [a , b] → f ( x) ≤ c‬‬
‫‪∃c > 0‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪ :‬ﻧﻔﺮﺽ ﺍﻟﻌﻜﺲ‪ ،‬ﺃﻱ ‪:‬‬
‫‪−1−‬‬
‫‪/ ∀x ∈ [a , b] → f ( x) > c‬‬
‫‪∃c > 0‬‬
‫ﻣﻦ ﺍﻟﺼﻴﻐﺔ ‪ −1 −‬ﻧﺴﺘﻨﺘﺞ ﺃﻧﻪ‬
‫‪−2−‬‬
‫‪∀n ∈ Ν , ∃xn ∈ [a , b] / f ( xn ) > n‬‬
‫ﻻﺣﻆ ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ (xn )n≥1‬ﳏﺪﻭﺩﺓ ﻷﻥ‬
‫ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺑﻮﻟﺰﺍﻧﻮ‪-‬ﻓﲑﺷﺘﺮﺍﺹ ﻓﻘﺮﺓ ‪ 1.7.2‬ﻣﻦ ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ (xn )n≥1‬ﳝﻜﻦ ﺇﺧﺮﺍﺝ ﻣﺘﺘﺎﻟﻴﺔ ﺟﺰﺋﻴﺔ ‪ (xk )n ≥1‬ﻣﺘﻘﺎﺭﺑﺔ‪،‬ﺃﻱ‪:‬‬
‫‪, a ≤ xn ≤ b‬‬
‫‪∀n ≥ 1‬‬
‫‪n‬‬
‫‪/ ξ = lim xkn‬‬
‫∞→‪n‬‬
‫‪∃ξ ∈ ℜ‬‬
‫‪59‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺍﳊﺼﺮ ‪. a ≤ ξ ≤ b‬‬
‫ﲟﺎﺃﻥ ‪ f‬ﻣﺴﺘﻤﺮﺓ‪،‬ﻓﺎﻧﻪ ﺣﺴﺐ ﺍﻟﻨﺘﻴﺠﺔ ‪ 4‬ﻓﻘﺮﺓ ‪1.4.3‬ﻳﻜﻮﻥ‪:‬‬
‫) ‪lim f (xk ) = f (ξ‬‬
‫‪−3−‬‬
‫∞→ ‪n‬‬
‫‪n‬‬
‫ﻋﻨﺪﻧﺎ ﺍﻟﺼﻴﻐﺔ ‪ − 2 −‬ﳏﻘﻘﺔ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ (n ≥ 1), n‬ﻭﻣﻨﻪ ﻣﻦ ﺃﺟﻞ ‪ kn‬ﳏﻘﻘﺔ ﺃﻳﻀﺎ‪ ،‬ﺃﻱ‪:‬‬
‫) (‬
‫‪−4−‬‬
‫ﺍﳌﺘﺮﺍﺟﺤﺔ ‪ -4-‬ﺗﻌﲏ ﺃﻥ‪:‬‬
‫) (‬
‫‪f xkn > kn‬‬
‫∞ = ‪lim f xkn‬‬
‫∞→ ‪n‬‬
‫ﻫﺬﺍ ﻣﻨﺎﻑ ﻟﻠﻤﺴﺎﻭﺍﺓ ‪ − 3 −‬ﻭﻣﻨﻪ ﺍﻟﻔﺮﺽ ﻏﲑ ﺻﺤﻴﺢ‪ ،‬ﺃﻱ ﺃﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﳏﺪﻭﺩﺓ ﻓﻌﻼﹰ ﻋﻠﻰ ]‪. [a, b‬‬
‫ﻗﻀﻴﺔ ‪ :‬ﺣﺎﻟﺔ ﺍ‪‬ﺎﻝ ﻏﲑ ﻣﻐﻠﻖ ‪،‬ﺍﻟﻨﻈﺮﻳﺔ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ﻏﲑ ﺻﺤﻴﺤﺔ‪.‬‬
‫ﻣﺜﺎﻝ ‪ :‬ﺍﻟﺪﺍﻟﺔ ‪، f (x) = 1‬ﻭﺍﺿﺢ ﺃ‪‬ﺎ ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ [‪ ، ]0,1‬ﻟﻜﻦ ﻟﻴﺴﺖ ﳏﺪﻭﺩﺓ ﻋﻠﻴﻪ‪.‬‬
‫‪x‬‬
‫‪ -2‬ﻧﻈﺮﻳﺔ ) ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻟﻔﲑﺷﺘﺮﺍﺹ (‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ]‪ ، [a, b‬ﻓﺈ‪‬ﺎ ﻋﻠﻰ ﻫﺬﺍ ﺍ‪‬ﺎﻝ ﺗﺼﻞ ﺇﱃ‬
‫ﺣﺪﻫﺎ ﺍﻻﻋﻠﻰ‪،‬ﻭﺍﻟىﺤﺪﻫﺎ ﺍﻷﺩﱏ‪ ،‬ﺃﻱ‪:‬‬
‫)‪f ( x‬‬
‫‪f (ς ) = sup‬‬
‫‪∃ς ∈ [a , b ] /‬‬
‫)‪f (ς ′) = inf f ( x‬‬
‫‪∃ς ′ ∈ [a , b] /‬‬
‫] ‪x∈[a ,b‬‬
‫] ‪x∈[a ,b‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪ :‬ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ]‪ [a, b‬ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺴﺎﺑﻘﺔ ﺗﻜﻮﻥ ﳏﺪﻭﺩﺓ ﻋﻠﻴﻪ‪ ،‬ﺃﻱ ‪:‬‬
‫‪,‬‬
‫)‪∃ inf f ( x‬‬
‫)‪∃ sup f ( x‬‬
‫] ‪x∈[a ,b‬‬
‫] ‪x∈[a ,b‬‬
‫ﻧﱪﻫﻦ ﺃﻥ‬
‫)‪f (ς ) = sup f ( x‬‬
‫] ‪x∈[a ,b‬‬
‫ﺑﻮﺿﻊ‬
‫)‪M = sup f (x‬‬
‫] ‪x∈[a ,b‬‬
‫ﺃ‪-‬‬
‫ﺏ‪-‬‬
‫‪∃ς ∈ [a , b] /‬‬
‫ﻳﺘﺤﻘﻖ ‪:‬‬
‫‪∀x ∈ [a , b] → f ( x) ≤ M‬‬
‫‪∀ε > 0, ∃x(ε ) ∈ [a , b] / f ( x(ε )) > M − ε‬‬
‫ﻣﻦ ﺃﺟﻞ ‪، ε = 1‬ﻣﻦ –ﺏ‪ -‬ﻧﺴﺘﻨﺘﺞ ﺃﻧﻪ‪:‬‬
‫‪n‬‬
‫ﺏ‪-‬‬
‫ﻣﻦ ﺃ ‪ ،‬ﺏ‪ ‬ﻧﺴﺘﻨﺞ ﺃﻧﻪ ‪:‬‬
‫ﺣﻴﺚ‬
‫) ‪n ≥ 1 , xn = x( 1n‬‬
‫‪1‬‬
‫‪n‬‬
‫‪f (x( 1n )) > M −‬‬
‫‪∀n ≥ 1, ∃x( 1n )∈ [a , b] /‬‬
‫‪1‬‬
‫‪1‬‬
‫‪< f ( xn ) ≤ M < M +‬‬
‫‪n‬‬
‫‪n‬‬
‫‪∀n ≥ 1 → M −‬‬
‫‪60‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪. lim‬‬
‫ﻫﺬﺍ ﻳﻌﲎ ﺃﻥ ‪f ( xn ) = M‬‬
‫∞→ ‪n‬‬
‫ﻣﻦ ﺏ‪ ‬ﻳﻜﻮﻥ‬
‫]‪, xn ∈ [a , b‬‬
‫‪ ، ∀n ≥ 1‬ﺃﻱ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ (xn )n≥1‬ﳏﺪﻭﺩﺓ‪،‬ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺑﻮﻟﺰﺍﻧﻮ‪-‬ﻓﲑﺷﺘﺮﺍﺹ ﻣﻦ ﺍﳌﺘﺘﺎﻟﻴﺔ‬
‫‪ (xn )n≥1‬ﳝﻜﻦ ﺇﺧﺮﺍﺝ ﻣﺘﺘﺎﻟﻴﺔ ﺟﺰﺋﻴﺔ‬
‫)‬
‫‪n ≥1‬‬
‫‪n‬‬
‫‪ (xk‬ﻣﺘﻘﺎﺭﺑﺔ‪،‬ﺃﻱ‪:‬‬
‫‪∃ς ∈ ℜ‬‬
‫‪/ ς = lim xkn‬‬
‫∞→‪n‬‬
‫ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺍﳊﺼﺮ ‪. a ≤ ς ≤ b‬‬
‫ﲟﺎﺃﻥ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪، ξ‬ﻓﺎﻧﻪ ﻳﻜﻮﻥ ‪:‬‬
‫ﻻﺣﻆ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ‬
‫ﺍﳌﺘﺘﺎﻟﻴﺔ ﺍﳉﺰﺋﻴﺔ‬
‫))‬
‫‪n ≥1‬‬
‫))‬
‫‪n ≥1‬‬
‫) (‬
‫) ‪lim f xkn = f (ς‬‬
‫∞→ ‪n‬‬
‫‪ ( f (xk‬ﺟﺰﺋﻴﺔ ﻣﻦ ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ ( f (xn ))n ≥1‬ﺍﳌﺘﻘﺎﺭﺑﺔ ﳓﻮ ‪ ، M‬ﺣﺴﺐ ﺧﺼﺎﺋﺺ ﺍﳌﺘﺘﺎﻟﻴﺔ ﺍﳉﺰﺋﻴﺔ‬
‫‪n‬‬
‫‪ ( f (xk‬ﻣﺘﻘﺎﺭﺑﺔ ﺃﻳﻀﺎﹰ ﳓﻮ ‪ ، M‬ﺃﻱ ﺃﻥ ) ‪ ، M = f (ς‬ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫)‪∃ς ∈ [a , b] / ς = sup f ( x‬‬
‫‪n‬‬
‫] ‪x∈[a ,b‬‬
‫ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﻧﱪﻫﻦ‬
‫)‪f (ς ′) = inf f ( x‬‬
‫] ‪x∈[a ,b‬‬
‫ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻧﻜﺘﺐ‬
‫)‪sup f ( x) = min f ( x‬‬
‫] ‪x∈[a ,b‬‬
‫] ‪x∈[a ,b‬‬
‫‪∃ς ′ ∈ [a , b] /‬‬
‫‪,‬‬
‫)‪inf f ( x) = min f ( x‬‬
‫] ‪x∈[a ,b‬‬
‫] ‪x∈[a ,b‬‬
‫ﻗﻀﻴﺔ ‪ :‬ﰲ ﺣﺎﻟﺔ ﺍ‪‬ﺎﻝ ﻏﲑ ﻣﻐﻠﻖ‪ ،‬ﺍﻟﻨﻈﺮﻳﺔ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ﻏﲑ ﺻﺤﻴﺤﺔ‪.‬‬
‫ﻣﺜﺎﻝ ‪:‬‬
‫ﺃ‪ -‬ﺍﻟﺪﺍﻟﺔ ‪ f‬ﺣﻴﺚ ‪ ، f ( x) = x 2‬ﻋﻠﻰ ﺍ‪‬ﺎﻝ [‪ ]0,1‬ﻻﺗﺼﻞ ﺇﱃ ﺣﺪﻫﺎ ﺍﻷﻋﻠﻰ‪،‬ﻭﻻ ﺇﱃ ﺣﺪﻫﺎ ﺍﻷﺩﱏ‪.‬‬
‫ﺫﻟﻚ ﻷﻥ ‪inf f ( x) = 0 , sup f ( x) = 1 :‬‬
‫[‪x∈]0 ,1‬‬
‫[‪x∈]0 ,1‬‬
‫ﺏ‪ -‬ﻫﺬﺍ ﺍﳌﺜﺎﻝ ﻳﺒﲔ ﺃﻥ ﺷﺮﻁ ﺍﻻﺳﺘﻤﺮﺍﺭ ﺃﺳﺎﺳﻲ ﻟﺼﺤﺔ ﺍﻟﻨﻈﺮﻳﺔ ‪.‬‬
‫ﰲ ﺣﺎﻝ ‪ f‬ﻣﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫ﻻﺣﻆ ﺃﻥ‪:‬‬
‫‪sup f ( x) = 1‬‬
‫]‪x∈[0 ,1‬‬
‫‪ x2 , 0 < x < 1‬‬
‫‪‬‬
‫‪f ( x) =  1‬‬
‫‪, x = 0 , x =1‬‬
‫‪‬‬
‫‪2‬‬
‫‪inf f ( x) = 0 ,‬‬
‫]‪x∈[0 ,1‬‬
‫ﻋﻠﻰ ﺍ‪‬ﺎﻝ ]‪ [0,1‬ﺍﻟﺪﺍﻟﺔ ﻟﻴﺴﺖ ﻣﺴﺘﻤﺮﺓ ‪،‬ﻭﻫﻲ ﻻ ﺗﺼﻞ ﻻ ﺇﱃ ﺣﺪﻫﺎ ﺍﻷﻋﻠﻰ ﻭﻻ ﺇﱃ ﺣﺪﻫﺎ ﺍﻷﺩﱏ‪.‬‬
‫‪ -3‬ﻧﻈﺮﻳﺔ)ﺍﻟﻨﻈﺮﻳﺔ ﺍﻷﻭﱃ ﻟﺒﻮﻟﺰﺍﻧﻮ‪-‬ﻛﻮﺷﻲ(‪:‬ﺇﺫﺍ ﻛﺎﻧﺖ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ]‪ [a, b‬ﻭﲤﻠﻚ ﰲ‬
‫)‪ ، ( f (a ) ⋅ f (b ) < 0‬ﻓﺈ‪‬ﺎ ﻋﻠﻰ ]‪ [a, b‬ﲤﻠﻚ ﻋﻠﻰ ﺍﻷﻗﻞ ﺻﻔﺮﺍ ﻭﺍﺣﺪﺍ‪ ،‬ﺃﻱ‪:‬‬
‫‪f (α ) = 0‬‬
‫‪b, a‬‬
‫ﺇﺷﺎﺭﺗﲔ ﳐﺘﻠﻔﺘﲔ‪،‬‬
‫‪∃α ∈ [a , b] /‬‬
‫‪61‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪ :‬ﻧﻘﺴﻢ ﺍ‪‬ﺎﻝ ]‪ [a, b‬ﺇﱃ ﻧﺼﻔﲔ‪.‬ﻟﺘﻜﻦ ‪ d‬ﻭﺳﻂ ﺍ‪‬ﺎﻝ‪.‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ‪ f (d ) = 0‬ﻓﻬﻮ ﺍﳌﻄﻠﻮﺏ‪.‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ‪، f (d ) ≠ 0‬ﻓﺈﻧﻪ ﻳﻜﻮﻥ ﺇﻣﺎ ‪ ، f (a ) ⋅ f (d ) < 0‬ﻭﺇﻣﺎ ‪. f (b ) ⋅ f (d ) < 0‬‬
‫ﻧﺮﻣﺰ ﻟﻠﻤﺠﺎﻝ ﺍﻟﺬﻱ ﺗﺄﺧﺬ ﺍﻟﺪﺍﻟﺔ ﰲ ‪‬ﺎﻳﺘﻴﻪ ﺇﺷﺎﺭﺗﲔ ﳐﺘﻠﻔﺘﲔ ﺑﺎﻟﺮﻣﺰ ] ‪. ∆1 = [a1 ,b1‬‬
‫ﻧﻘﺴﻢ ﺍ‪‬ﺎﻝ ‪ ∆ 1‬ﺇﱃ ﻧﺼﻔﲔ‪ ،‬ﻟﺘﻜﻦ ‪ d1‬ﻧﺼﻒ ﺍ‪‬ﺎﻝ ‪ ، ∆ 1‬ﺇﺫﺍ ﻛﺎﻧﺖ ‪ f (d1 ) = 0‬ﻓﻬﻮ ﺍﳌﻄﻠﻮﺏ‪.‬‬
‫ﺇﺫﺍ ﻛﺎﻧﺖ ‪ ، f (d1 ) ≠ 0‬ﻓﺎﻧﻪ ﻧﻔﺲ ﺍﻟﺸﻲﺀ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﰲ ‪‬ﺎﻳﱵ ﺃﺣﺪ ﺍ‪‬ﺎﻟﲔ ] ‪ ، [d1 ,b1‬ﺃﻭ ] ‪ [a1 ,d1‬ﲤﻠﻚ ﺇﺷﺎﺭﺗﲔ‬
‫ﳐﺘﻠﻔﺘﲔ ‪،‬ﻧﺮﻣﺰ ﻟﻠﻤﺠﺎﻝ ﺍﻟﺬﻱ ﲤﻠﻚ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﰲ ‪‬ﺎﻳﺘﻴﺘﻴﻪ ﺇﺷﺎﺭﺗﲔ ﳐﺘﻠﻔﺘﲔ ﺑﺎﻟﺮﻣﺰ ] ‪. ∆ 2 = [a 2 ,b2‬‬
‫ﻧﻮﺍﺻﻞ ﺍﻟﻌﻤﻠﻴﺔ ﳓﺼﻞ ﻋﻠﻰ ﺍﺣﺘﻤﺎﻟﲔ ﺇﻣﺎ ﻳﻮﺟﺪ ﻋﺪﺩ ‪ α‬ﻣﻦ ]‪ ، [a, b‬ﲝﻴﺚ ﻳﻜﻮﻥ ‪ f (α ) = 0‬ﻭﻣﻨﻪ ﻓﻬﻮ ﺍﳌﻄﻠﻮﺏ‪.‬‬
‫ﻭﺇﻣﺎ ﳓﺼﻞ ﻋﻠﻰ ﻣﺘﺘﺎﻟﻴﺔ ﻣﻦ ﺍ‪‬ﺎﻻﺕ ‪، (∆ n )n≥1‬ﺣﻴﺚ ] ‪. ∀n ≥ 1 , ∆ n = [a n , bn‬ﲢﻘﻖ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪(n ≥ 1), n‬‬
‫ﺍﳌﺘﺮﺍﺟﺤﺔ ‪. f (a n ) ⋅ f (bn ) < 0‬‬
‫ﻻﺣﻆ ﺃﻥ ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ (∆ n )n≥1‬ﻫﻲ ﻣﺘﺘﺎﻟﻴﺔ ﻣﻦ ﺍ‪‬ﺎﻻﺕ ﺍﳌﻐﻠﻘﺔ ﻭﺍﶈﺪﻭﺩﺓ ﺍﳌﺘﺪﺍﺧﻠﺔ ﻭﻗﻄﺮﻫﺎ ﻳﺆﻭﻝ ﺇﱃ ﺍﻟﺼﻔﺮ‪،‬ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ‬
‫ﳛﻮﻯ ﻧﻘﻄﺔ ﻭﺍﺣﺪﺓ ‪. α‬‬
‫‪ -2‬ﻓﻘﺮﺓ ‪ 2.4.1‬ﻳﻜﻮﻥ ﺗﻘﺎﻃﻊ ﻛﻞ ﺍ‪‬ﺎﻻﺕ‬‫ﻧﱪﻫﻦ ﺃﻥ ‪. f (α ) = 0‬‬
‫ﻧﻔﺮﺽ ﺍﻟﻌﻜﺲ ﺃﻱ ‪، f (α ) > 0‬ﺃﻭ ‪. f (α ) < 0‬‬
‫‪n ≥1 , ∆n‬‬
‫ﰲ ﺣﺎﻟﺔ ‪ f (α ) > 0‬ﺣﺴﺐ ﺍﳋﺎﺻﻴﺔ ‪ -2-‬ﻓﻘﺮﺓ ‪ 1.4.4.3‬ﻳﺘﺤﻘﻖ‪:‬‬
‫‪∀x ∈ Vδ (α ) → f ( x) > 0‬‬
‫)∗(‬
‫‪/‬‬
‫‪∃δ > 0‬‬
‫ﻋﻨﺪﻧﺎ ‪ ، bn − a n = b −n a‬ﺃﻱ ‪:‬‬
‫‪2‬‬
‫‪∀n ≥ nε → bn − a n < ε‬‬
‫‪/‬‬
‫‪∀ε > 0 , ∃nε ∈ Ν‬‬
‫ﻣﻦ ﺃﺟﻞ ‪ ε = δ‬ﺗﻮﺟﺪ ‪ nδ‬ﲝﻴﺚ ‪:‬‬
‫‪∀n ≥ nδ → bn − a n < δ‬‬
‫ﻭﻣﻨﻪ‬
‫‪bnδ − a nδ < δ‬‬
‫ﲟﺎ ﺃﻥ ] ‪، α ∈ [a n , bn‬ﻭ ‪، bn − a n < δ‬ﻓﺈﻥ‬
‫ﻣﻦ ﻫﻨﺎ ﻭﻣﻦ )∗( ﻳﻜﻮﻥ‪:‬‬
‫‪δ‬‬
‫‪δ‬‬
‫‪δ‬‬
‫‪δ‬‬
‫‪/‬‬
‫‪∃nδ ∈ Ν‬‬
‫) ‪∆ nδ ⊂ Vδ (α‬‬
‫‪.‬‬
‫‪∀x ∈ ∆ nδ → f (x) > 0‬‬
‫ﻫﺬﺍ ﻳﻨﺎﻗﺾ ﻛﻮﻥ‬
‫‪f‬‬
‫ﲤﻠﻚ ﺇﺷﺎﺭﺗﲔ ﳐﺘﻠﻔﺘﲔ ﰲ ‪‬ﺎﻳﱵ ﻛﻞ ﳎﺎﻝ ﻣﻦ ﺍﻟﻨﻮﻉ ‪ ∆ n‬ﲟﺎ ﻓﻴﻬﺎ ﺍ‪‬ﺎﻝ ‪، ∆ n‬ﻭﻋﻠﻴﻪ ﺍﻟﻔﺮﺽ‬
‫‪δ‬‬
‫‪ f (α ) > 0‬ﻣﺴﺘﺤﻴﻞ‪.‬‬
‫‪62‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﻧﱪﻫﻦ ﺃﻥ ﺍﻟﻔﺮﺽ ‪ f (α ) < 0‬ﻣﺴﺘﺤﻴﻞ‪ ،‬ﻭﻋﻠﻴﻪ ﻳﻜﻮﻥ ‪. f (α ) = 0‬‬
‫ﻣﺜﺎﻝ ‪ :‬ﻧﱪﻫﻦ ﺃﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ‪ 2 x = 4 x‬ﺟﺬﻭﺭ‪.‬‬
‫ﻧﻼﺣﻆ ﺃﻥ ‪ x = 4‬ﺟﺬﺭ ﻭﺍﺿﺢ ﻟﻠﻤﻌﺎﺩﻟﺔ‪.‬‬
‫ﻟﺘﻌﲔ ﻣﻮﺿﻊ ﺍﳉﺬﻭﺭ ﺍﻷﺧﺮﻯ ﻧﻀﻊ ‪. f (x) = 2 x − 4 x‬‬
‫ﻭﺍﺿﺢ ﺃﻥ ﺟﺬﻭﺭ ﺍﳌﻌﺎﺩﻟﺔ‬
‫ﻋﻨﺪﻧﺎ‬
‫‪2 −2<0‬‬
‫‪2 x − 4x = 0‬‬
‫= )‪( 2‬‬
‫ﻫﻲ ﺃﺻﻔﺎﺭ ﺍﻟﺪﺍﻟﺔ ‪. f‬‬
‫‪f (0) = 1 − 0 = 1 > 0,‬‬
‫‪f 1‬‬
‫‪ ،‬ﻭ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ‬
‫‪ 1‬‬
‫‪0, 2 ‬‬
‫‪،‬ﻭﻣﻨﻪ ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺴﺎﺑﻘﺔ‪،‬‬
‫ﻟﻠﺪﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﺍﻷﻗﻞ ﺻﻔﺮ ﰲ ﺍ‪‬ﺎﻝ ‪. 0, 1 ‬‬
‫‪ 2‬‬
‫‪ -4‬ﻧﻈﺮﻳﺔ)ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻟﺒﻮﻟﺰﺍﻧﻮ‪-‬ﻛﻮﺷﻲ(‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ‬
‫ﻗﻴﻤﺔ‬
‫‪λ‬‬
‫ﺑﲔ ) ‪ f (a‬ﻭ ) ‪ f (b‬ﺗﻮﺟﺪ ﻧﻘﻄﺔ‬
‫ﺍﻟﱪﻫﺎﻥ ‪ :‬ﻧﻀﻊ‬
‫‪f (a ) = α‬‬
‫‪ξ‬‬
‫‪f (b ) = β‬‬
‫‪,‬‬
‫ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ]‪، [a, b‬ﻭ ) ‪ ، f (a ) ≠ f (b‬ﻓﺈﻧﻪ ﻣﻦ ﺃﺟﻞ ﺃﻱ‬
‫‪f‬‬
‫ﻣﻦ ]‪ [a, b‬ﲝﻴﺚ ﻳﻜﻮﻥ ) ‪. C = f (ξ‬‬
‫‪,‬‬
‫‪α≠β‬‬
‫ﺍﳊﺎﻟﺔ ‪: α < β‬‬
‫ﻧﱪﻫﻦ ﺃﻧﻪ‪:‬‬
‫‪∀λ ∈ [α , β ] , ∃ξ ∈ [a , b] / f (ξ ) = λ‬‬
‫ﰲ ﺣﺎﻟﺔ‬
‫‪λ =α‬‬
‫ﺃﻭ‬
‫ﰲ ﺍﳊﺎﻟﺔ‬
‫ﻋﻨﺪﻫﺎ ﻳﻜﻮﻥ ‪:‬‬
‫‪α <λ <β‬‬
‫‪λ=β‬‬
‫ﻧﻀﻊ‬
‫ﻧﺄﺧﺬ‬
‫‪ξ =a‬‬
‫ﺃﻭ‬
‫‪ξ =b‬‬
‫ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ ‪.‬‬
‫‪x ∈ [a , b] , ϕ ( x) = f ( x) − λ‬‬
‫‪ϕ (a ) = f (a ) − λ = α − λ < 0‬‬
‫‪‬‬
‫‪ϕ (b ) = f (b ) − λ = β − λ > 0‬‬
‫)∗(‬
‫ﺍﻟﺪﺍﻟﺔ )‪ ϕ (x‬ﲢﻘﻖ ﺷﺮﻭﻁ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻷﻭﱃ ﻟﺒﻮﻟﺰﺍﻧﻮ‪-‬ﻛﻮﺷﻲ ‪،‬ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫‪∃ξ ∈ [a , b] / ϕ (ξ ) = 0‬‬
‫ﺃﻱ ‪:‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪. f (ξ ) = λ‬‬
‫ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﰲ ﺣﺎﻟﺔ‬
‫‪f (ξ ) − λ = 0‬‬
‫‪∃ξ ∈ [a , b] /‬‬
‫‪.β <α‬‬
‫ﻧﺘﻴﺠﺔ ‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ]‪ ، [a, b‬ﻓﺈﻥ ﳎﻤﻮﻋﺔ ﻗﻴﻢ ﺍﻟﺪﺍﻟﺔ ﻋﻠﻰ ]‪ [a, b‬ﻫﻲ ] ‪، [m, M‬ﺣﻴﺚ‪:‬‬
‫)‪m = inf f ( x‬‬
‫‪,‬‬
‫)‪M = sup f ( x‬‬
‫] ‪x∈[a ,b‬‬
‫] ‪x∈[a ,b‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪ :‬ﻭﺍﺿﺢ ﺃﻥ‪:‬‬
‫‪63‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪∀x ∈ [a , b] → m ≤ f ( x) ≤ M‬‬
‫ﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻟﻔﲑﺷﺘﺮﺍﺹ‪ ،‬ﺍﻟﺪﺍﻟﺔ ‪ f‬ﺗﺄﺧﺬ ﺍﻟﻘﻴﻤﺔ ‪، m‬ﻭ ‪ M‬ﻋﻠﻰ ]‪ [a, b‬ﻭﺣﺴﺐ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺜﺎﻧﻴﺔ ﻟﺒﻮﻟﺰﺍﻧﻮ‪-‬‬
‫ﻛﻮﺷﻲ‪ ،‬ﺍﻟﺪﺍﻟﺔ ‪ f‬ﺗﺄﺧﺬ ﻛﻞ ﻗﻴﻢ ﺍ‪‬ﺎﻝ ] ‪، [m, M‬ﻭﺑﺎﻟﺘﺎﱄ ﻓﺈﻥ ) ‪ Ε( f‬ﻫﻲ ] ‪، [m, M‬ﺣﻴﺚ ]‪. x ∈ [a , b‬‬
‫ﻣﻼﺣﻈﺔ ‪ :‬ﰲ ﺣﺎﻟﺔ‬
‫‪m= M‬‬
‫ﺗﻜﻮﻥ ‪ f‬ﺛﺎﺑﺘﺔ‪.‬‬
‫‪ -5.3‬ﺍﻻﺳﺘﻤﺮﺍﺭ ﺑﺎﻧﺘﻈﺎﻡ ‪ ،‬ﻣﻌﻴﺎﺭ ﺍﻻﺳﺘﻤﺮﺍﺭ ‪:‬‬
‫‪ -1.5.3‬ﺍﻻﺳﺘﻤﺮﺍﺭ ﺑﺎﻧﺘﻈﺎﻡ ‪:‬‬
‫ﻣﻦ ﺍﻟﺘﻌﺎﺭﻳﻒ ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﻓﻘﺮﺓ ‪ 1.4.3‬ﻧﺴﺘﻄﻴﻊ ﺃﻥ ﻧﻘﻮﻝ ‪:‬‬
‫‪f‬‬
‫ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﳎﺎﻝ ﻣﺎ ‪ I‬ﻣﻦ ‪، ℜ‬ﺇﺫﺍ ﲢﻘﻖ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ a‬ﻣﻦ ‪ I‬ﺍﻟﺸﺮﻁ‪:‬‬
‫‪x − a < δ ) → f ( x) − f (a ) < ε‬‬
‫‪/‬‬
‫‪(∀x ∈ I‬‬
‫‪/‬‬
‫‪∀ε > 0, ∃δ > 0‬‬
‫ﻣﻦ ﻫﺬﺍ ﺍﻟﺘﻌﺮﻳﻒ ﻭﺍﺿﺢ ﺃﻧﻪ ﻛﻠﻤﺎ ﺗﻐﲑﺕ ‪ a‬ﻣﻦ ‪ ، I‬ﻓﺈﻥ ‪ δ‬ﺗﺘﻐﲑ ‪ ،‬ﻭﻛﻠﻤﺎ ﺗﻐﲑﺕ ‪ ε‬ﺃﻳﻀﺎﹰ ‪ δ‬ﺗﺘﻐﲑ ‪،‬ﺃﻱ ﺃﻥ‬
‫) ‪ ، δ = δ (ε , a‬ﻭﺣﱴ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﱵ ﻳﻜﻮﻥ ﻓﻴﻬﺎ ‪ ε‬ﻣﻌﻄﻰ ) ﺛﺎﺑﺖ ( ﻓﺈﻥ ‪ δ‬ﺗﺘﻐﲑ ﺑﺘﻐﲑ ‪. a‬‬
‫ﻣﺜﺎﻝ ‪ :‬ﺍﻟﺪﺍﻟﺔ ‪ f (x) = 1‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ [∞‪]0,+‬‬
‫‪x‬‬
‫ﻻﺣﻆ ﺃﻥ‪:‬‬
‫‪ε1 = ε 2 ‬‬
‫‪‬‬
‫) ‪δ 1 ≠ δ 2  ⇒ δ = δ (a‬‬
‫‪a1 ≠ a 2 ‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﰲ ﺣﺎﻟﺔ ﺍﻻﺳﺘﻤﺮﺍﺭ ﻳﻜﻮﻥ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ) ‪δ = δ (ε , a‬‬
‫ﻭﺍﻵﻥ ﻳﻄﺮﺡ ﺳﺆﺍﻝ ‪ :‬ﻫﻞ ﺑﺎﻣﻜﺎﻧﻨﺎ ﺇﳚﺎﺩ ‪، δ‬ﻳﻜﻮﻥ ﻣﻼﺋﻤﺎ ﻟﻜﻞ ‪ a‬ﻣﻦ ‪ ، I‬ﺃﻱ ) ‪. δ = δ (ε‬‬
‫ﻻﺣﻆ ﰲ ﺣﺎﻟﺔ ‪ I‬ﻣﻨﺘﻪ ﻳﻜﻮﻥ ﻋﺪﺩ ‪ δ‬ﺑﻌﺪﺩ ‪ a‬ﻣﻦ ‪ I‬ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﺃﺻﻐﺮ ﺍﻷﻋﺪﺍﺩ ‪ δ‬ﻳﻜﻮﻥ ﻣﻼﺋﻤﺎ ﻟﻜﻞ ‪ a‬ﻣﻦ ‪. I‬‬
‫ﺃﻣﺎ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ‪ ،‬ﺇﺫﺍ ﻭﺟﺪ ‪ δ‬ﻟﻜﻞ ‪ a‬ﻣﻦ ‪ ، I‬ﻧﻘﻮﻝ ﺇﻥ ﻫﺬﻩ ﺍﻟﺪﺍﻟﺔ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ‪. I‬‬
‫ﺗﻌﺮﻳﻒ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ﳎﺎﻝ ‪ I‬ﻣﻦ ‪ ، ℜ‬ﺇﺫﺍ ﻛﺎﻥ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ (ε > 0), ε‬ﺗﻮﺟﺪ ‪(δ > 0), δ‬‬
‫ﲝﻴﺚ ﻣﻦ ﺍﺟﻞ ﻛﻞ ﻧﻘﻄﺘﲔ ‪ x′, x′′‬ﻣﻦ ‪ I‬ﳛﻘﻘﺎﻥ ﺍﻟﻌﻼﻗﺔ‬
‫‪x′ − x′′ < δ‬‬
‫‪،‬ﻳﻜﻮﻥ ‪ ، f (x′) − f (x′′) < ε‬ﺃﻱ‪:‬‬
‫‪∀ε > 0, ∃δ > 0 / (∀x′, x′′ ∈ I / x′ − x′′ < δ ) → f ( x′) − f ( x′′) < ε‬‬
‫ﺃﻱ ﺃﻥ‪. δ = δ (ε ) :‬‬
‫ﻧﺘﻴﺠﺔ ‪:‬‬
‫ﺃ‪ -‬ﺍﻻﺳﺘﻤﺮﺍﺭ ﺑﺎﻧﺘﻈﺎﻡ ⇐ ﺍﻻﺳﺘﻤﺮﺍﺭ ‪.‬‬
‫ﺏ‪ -‬ﻋﻜﺲ‪ -‬ﺃ‪ -‬ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ ﻏﲑ ﺻﺤﻴﺢ‪.‬‬
‫‪64‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﻣﺜﺎﻝ ‪:‬‬
‫ﺃ‪ -‬ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ‬
‫‪1‬‬
‫‪x‬‬
‫= )‪، f ( x‬ﻭ [∞‪I = [1,+‬‬
‫ﻻﺣﻆ ﺃﻥ‪:‬‬
‫‪1‬‬
‫‪1‬‬
‫‪x′ − x′′‬‬
‫‪−‬‬
‫=‬
‫‪≤ x′ − x′′‬‬
‫‪x′ x′′‬‬
‫‪x′ ⋅ x′′‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﻣﻦ ﺃﺟﻞ ﻛﻞ‬
‫‪ε‬‬
‫= )‪f ( x′) − f ( x′′‬‬
‫‪ (ε > 0),‬ﳝﻜﻦ ﺃﺧﺬ ‪ ، δ = ε‬ﻭﻣﻨﻪ ﻧﻜﺘﺐ‪:‬‬
‫‪x′ − x′′ < δ ) → f ( x′) − f ( x′′) < ε‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ‬
‫‪f‬‬
‫‪/‬‬
‫‪/ (∀x′, x′′ ∈ I‬‬
‫‪∀ε > 0, ∃δ = ε‬‬
‫ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ‪. I‬‬
‫ﺏ‪ -‬ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫→ ‪∀x′, x′′ ∈ I‬‬
‫‪1‬‬
‫‪x‬‬
‫= )‪، f ( x‬ﻭ ]‪I = ]0,1‬‬
‫ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ‪ I‬ﻟﻜﻦ ﻟﻴﺴﺖ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻵﻥ‬
‫‪∃ε 0 > 0 / ∀δ > 0 , (∃x1 x2 ∈ I / x1 − x2 < δ ) / f ( x1 ) − f ( x2 ) > ε 0‬‬
‫ﻭﻫﺬﺍ ﻭﺍﺿﺢ ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ‪ ،‬ﻭﺍﳌﺘﺮﺍﺟﺤﺔ ﺍﻟﺘﺎﻟﻴﺔ‬
‫‪1 1‬‬
‫‪x′ − x′′‬‬
‫‪−‬‬
‫=‬
‫‪≥ x′ − x′′‬‬
‫‪x′ x′′‬‬
‫‪x′ ⋅ x′′‬‬
‫ﻧﻈﺮﻳﺔ)ﻧﻈﺮﻳﺔ ﻛﺎﻧﺘﻮﺭ(‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫= )‪f ( x′) − f (x′′‬‬
‫ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﺍ‪‬ﺎﻝ ﺍﳌﻐﻠﻖ ﻭﺍﶈﺪﻭﺩ ]‪ [a, b‬ﻓﺈ‪‬ﺎ ﺗﻜﻮﻥ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ‬
‫ﻋﻠﻴﻪ‪.‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪ :‬ﻧﻔﺮﺽ ﺃﻥ ‪ f‬ﻟﻴﺴﺖ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ]‪ ، [a, b‬ﺃﻱ‪:‬‬
‫‪∃ε 0 > 0 / ∀δ > 0, (∃x′, x′′ ∈ [a , b ] / x′ − x′′ < δ ) / f ( x′) − f ( x′′) ≥ ε 0‬‬
‫ﻻﺣﻆ ﻣﻦ ﺃﺟﻞ‬
‫‪1‬‬
‫‪n‬‬
‫= ‪n ∈ Ν ,δ‬‬
‫ﻳﻮﺟﺪ ‪ x′n′, x′n‬ﳛﻘﻘﺎﻥ ‪:‬‬
‫)∗(‬
‫ﻟﻜﻦ‬
‫‪x′n − x′n′ < δ‬‬
‫‪(∗)′‬‬
‫ﻣﻦ ]‪، [a, b‬ﻫﺬﺍ ﻳﻌﲎ ﺃﻥ ﻛﻞ ﻣﻦ ﺍﳌﺘﺘﺎﻟﻴﺘﲔ ‪, ( xn′ )n≥1‬‬
‫‪f ( x′n ) − f ( xn′′ ) ≥ ε 0‬‬
‫‪n ≥ 1 , x′n′ , x′n‬‬
‫‪ (xn′′ )n≥1‬ﳏﺪﻭﺩﺓ‪.‬‬
‫ﻧﺄﺧﺬ ﺍﳌﺘﺘﺎﻟﻴﺔ ‪ (x′n )n≥1‬ﺍﶈﺪﻭﺩﺓ ‪ ،‬ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺑﺎﻟﺰﺍﻧﻮ‪-‬ﻓﺸﺘﺮﺍﺹ ‪،‬ﻫﺬﻩ ﺍﳌﺘﺘﺎﻟﻴﺔ ﲤﻠﻚ ﻣﺘﺘﺎﻟﻴﺔ ﺟﺰﺋﻴﺔ‬
‫ﲟﺎ ﺃﻥ ‪ ، n ≥ 1 , a ≤ x′k ≤ b‬ﻓﺈﻧﻪ‪:‬‬
‫)* *(‬
‫‪∃ξ ∈ [a , b ] / ξ = lim xk′‬‬
‫∞→ ‪n‬‬
‫)‬
‫‪n ≥1‬‬
‫‪ (xk′‬ﻣﺘﻘﺎﺭﺑﺔ‪.‬‬
‫‪n‬‬
‫‪n‬‬
‫‪n‬‬
‫ﻋﻨﺪﻧﺎ ﺍﳌﺘﺮﺍﺟﺤﺔ‬
‫‪65‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫)* * *(‬
‫‪x′k′n − ξ = xk′′n − x′kn + x′kn − ξ ≤ xk′′n − x′kn + xk′ n − ξ‬‬
‫ﳏﻘﻘﺔ‬
‫ﻣﻦ )*( ﻭ )* *( ﳓﺼﻞ ﺑﺈﺩﺧﺎﻝ ﺍﻟﻨﻬﺎﻳﺔ ﻋﻠﻰ )* * *( ‪،‬ﻋﻠﻰ‪:‬‬
‫‪lim‬‬
‫‪x′k′ = ξ‬‬
‫∞→‪n‬‬
‫‪n‬‬
‫ﲟﺎ ﺃﻥ‬
‫ﻣﺴﺘﻤﺮﺓ ﰲ ﺍﻟﻨﻘﻄﺔ ‪، ξ‬ﻓﺈﻧﻪ ﺣﺴﺐ ﺗﻌﺮﻳﻒ ﻗﺎﻳﻦ ﻟﻼﺳﺘﻤﺮﺍﺭ ﻳﻜﻮﻥ ‪:‬‬
‫) ‪lim f (x′k′ ) = lim f (x′k ) = f (ξ‬‬
‫∞→ ‪n‬‬
‫∞→ ‪n‬‬
‫‪f‬‬
‫‪n‬‬
‫ﻫﺬﺍ ﻳﻌﲏ‬
‫)) ( ) ( (‬
‫ﺃﻥ ‪lim f x′k′n − f x′kn = 0‬‬
‫∞→ ‪n‬‬
‫‪n‬‬
‫‪،‬ﻭﻫﻮ ﻣﻨﺎﻑ ﻟﻜﻮﻥ‬
‫) ( ) (‬
‫‪∀n ≥ 1 → f xk′ n − f xk′′n ≥ ε 0‬‬
‫ﻫﺬﺍ ﲜﻌﻞ ‪ kn‬ﰲ ﻣﻜﺎﻥ ‪ n‬ﰲ ﺍﻟﺼﻴﻐﺔ ‪. (∗)′‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﺍﻟﻔﺮﺽ ﻏﲑ ﺻﺤﻴﺢ‪ ،‬ﺃﻱ ﺃﻥ‬
‫‪f‬‬
‫ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ]‪. [a, b‬‬
‫ﻧﺘﻴﺠﺔ ‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ]‪، [a, b‬ﻓﺈﻧﻪ ﻣﻦ ﺃﺟﻞ ﻛﻞ‬
‫‪ (ε > 0 ), ε‬ﻳﻮﺟﺪ ‪> 0 ), δ‬‬
‫‪ (δ‬ﲝﻴﺚ ﻳﻜﻮﻥ ﺗﺬﺑﺬﺏ‬
‫ﺍﻟﺪﺍﻟﺔ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﻣﻐﻠﻮﻕ ﳏﺘﻮﻯ ﰲ ﺍ‪‬ﺎﻝ ]‪ [a, b‬ﻭﻃﻮﻟﻪ ﺃﻗﻞ ﻣﻦ ‪، δ‬ﺃﻗﻞ ﻣﻦ ‪. ε‬‬
‫ﺍﻟﺘﺬﺑﺬﺏ ﻋﻠﻰ ﻛﻞ ﺍ‪‬ﺎﻝ ]‪ [a, b‬ﻳﻌﺮﻑ ﻛﺎﻟﺘﺎﱄ ‪ w = M − m‬ﺣﻴﺚ‪m = inf f ( x) , M = sup f ( x) :‬‬
‫] ‪x∈[a ,b‬‬
‫] ‪x∈[a ,b‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪ :‬ﻭﺍﺿﺢ ﺃﻥ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﻣﻐﻠﻖ ﳏﺘﻮﻯ ﰲ ﺍ‪‬ﺎﻝ ]‪ [a, b‬ﺗﻜﻮﻥ ‪ f‬ﻣﺴﺘﻤﺮﺓ ‪.‬‬
‫ﺗﺄﺧﺬ ﳎﺎﻝ ﻛﻴﻔﻲ ] ‪ [a 1 ,b1‬ﻣﻦ ]‪ [a, b‬ﺣﻴﺚ ‪b1 − a 1 < δ‬‬
‫‪f‬‬
‫ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ] ‪ [a 1 ,b1‬ﻳﻌﲏ‬
‫)‪∃x′ ∈ [a 1 , b1 ] / f ( x′) = m1 = inf f ( x‬‬
‫] ‪x∈[a1 ,b1‬‬
‫)‪∃x′′ ∈ [a 1 , b1 ] / f ( x′′) = M 1 = sup f ( x‬‬
‫] ‪x∈[a1 ,b1‬‬
‫ﻭﺍﺿﺢ ﺃﻥ‬
‫‪f‬‬
‫‪x′ − x′′ < δ‬‬
‫ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ] ‪ ، [a 1 ,b1‬ﺃﻱ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻴﻪ‪ ،‬ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ ‪، f (x′) − f (x′′) < ε‬ﻭﻣﻨﻪ‬
‫ﻳﻜﻮﻥ‪w = M − m :‬‬
‫‪ -2.5.3‬ﻣﻌﻴﺎﺭ ﺍﻻﺳﺘﻤﺮﺍﺭ ‪:‬‬
‫ﻟﺘﻜﻦ‬
‫‪f‬‬
‫ﻣﻌﺮﻓﺔ ﻭ ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﳎﺎﻝ ‪ I‬ﻣﻦ ‪. ℜ‬‬
‫ﺗﻌﺮﻳﻒ ‪ :‬ﻣﻦ ﺃﺟﻞ ﻛﻞ‬
‫‪> 0 ), δ‬‬
‫‪ (δ‬ﻳﻌﺮﻑ ﻣﻌﻴﺎﺭ ﺍﺳﺘﻤﺮﺍﺭ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻋﻠﻰ ‪، I‬ﺑﺄﻧﻪ ﺍﳊﺪ ﺍﻷﻋﻠﻰ‬
‫ﻟﻸﻋﺪﺍﺩ )‪f ( x′) − f ( x′′‬‬
‫ﺣﻴﺚ ‪ x′′, x′‬ﻣﻦ ‪ I‬ﲢﻘﻖ ‪. x′ − x′′ ≤ δ‬‬
‫ﻳﺮﻣﺰ ﳌﻌﻴﺎﺭ ﺍﺳﺘﻤﺮﺍﺭ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻋﻠﻰ ‪ I‬ﺑﺎﻟﺮﻣﺰ ) ‪ ، w( f ; I , δ‬ﺃﻭ ) ‪، w( f ; δ‬ﻭﻧﻜﺘﺐ‪:‬‬
‫)*(‬
‫} ‪w( f ; δ ) = sup{ f ( x′) − f ( x′′) / x′ − x′′ ≤ δ , x′, x′′ ∈ I‬‬
‫‪66‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺗﻨﺒﻴﻪ ‪ :‬ﰲ ﺍﻟﺼﻴﻐﺔ )∗( ﳝﻜﻦ ﺍﻻﺳﺘﻐﻨﺎﺀ ﻋﻦ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻄﻠﻘﺔ‪ ،‬ﺃﻱ ﻧﻜﺘﺐ‪:‬‬
‫} ‪w( f ; δ ) = sup{( f ( x′) − f ( x′′)) / x′ − x′′ ≤ δ , x′, x′′ ∈ I‬‬
‫ﺧﻮﺍﺹ ﻣﻌﻴﺎﺭ ﺍﻻﺳﺘﻤﺮﺍﺭ ‪:‬‬
‫‪ -1‬ﻣﻌﻴﺎﺭ ﺍﻻﺳﺘﻤﺮﺍﺭ ﺩﻭﻣﺎﹰ ﻣﻮﺟﺐ ‪،‬ﺃﻱ‪. w( f ;δ ) ≥ 0 :‬‬
‫‪ w( f ; δ ) -2‬ﺩﺍﻟﺔ ﻟﻴﺴﺖ ﻣﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ ﻧﺼﻒ ﺍﳌﺴﺘﻘﻴﻢ ‪. δ > 0‬‬
‫ﻣﺜﺎﻝ ‪ :‬ﻟﺘﻜﻦ ‪ f‬ﺩﺍﻟﺔ ﻣﻌﺮﻓﺔ ﻋﻠﻰ ﺍ‪‬ﺎﻝ ]‪، [0,1‬ﻛﺎﻟﺘﺎﱃ‪:‬‬
‫ﺣﺴﺎﺏ ﻣﻌﻴﺎﺭ ﺍﺳﺘﻤﺮﺍﺭ ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫‪f ( x) = x 2‬‬
‫‪.‬‬
‫} ]‪w( f ; δ ) = sup{( f (x′) − f ( x′′)) / x′ − x′′ ≤ δ , x′, x′′ ∈ [0,1‬‬
‫ﰲ ﺣﺎﻟﺔ ‪ ، δ = 1‬ﻭﺍﺿﺢ ﺃﻥ‬
‫ﰲ ﺣﺎﻟﺔ ‪ : 0 < δ < 1‬ﻋﻨﺪﻧﺎ‬
‫‪w( f ;1) = 1‬‬
‫‪0 ≤ x′′ − δ ≤ x′ ≤ x′′ < 1 ⇔ x′ − x′′ ≤ δ‬‬
‫ﻭﻣﻨﻪ ﻳﻜﻮﻥ‪:‬‬
‫‪2‬‬
‫‪x′′ 2 − x′ 2 ≤ x′′ 2 − ( x′′ − δ ) = 2 x′′δ − δ 2 ≤ 2δ − δ 2‬‬
‫ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ‪:‬‬
‫)∗( ‪(x′ 2 − x′′ 2 ) ≤ 2δ − δ 2‬‬
‫‪w( f ; δ ) = sup{( f (x′) − f ( x′′)) / x′ − x′′ ≤ δ , x′, x′′ ∈ [0,1] } = sup‬‬
‫‪x′− x′′ ≤δ‬‬
‫ﻻﺣﻆ ﰲ ﺍﳊﺎﻟﺔ ﺍﳋﺎﺻﺔ ﻋﻨﺪﻣﺎ ‪ ، x′ = 1 − δ , x′′ = 1‬ﻳﻜﻮﻥ‪:‬‬
‫)* *(‬
‫‪(x′′2 − x′2 ) = 1 − (1 − δ )2 = 2δ − δ 2‬‬
‫ﻣﻦ )*( ‪ (* *) ,‬ﻳﻜﻮﻥ‪:‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪:‬‬
‫‪x′′− x′ ≤δ‬‬
‫‪w( f , δ ) = 2δ − δ 2‬‬
‫ﻧﻈﺮﻳﺔ ‪ :‬ﺗﻜﻮﻥ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ﺍ‪‬ﺎﻝ ‪ ، I‬ﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻧﺖ ‪:‬‬
‫‪f‬‬
‫‪w( f , δ ) = sup‬‬
‫‪lim w( f , δ ) = 0‬‬
‫‪δ → +0‬‬
‫ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ‪،‬ﺃﻱ ‪:‬‬
‫‪∀ε > 0, ∃δ ε > 0, (∀x′, x′′ ∈ I / x′ − x′′ < δ ε ) → f ( x′) − f (x′′) < ε‬‬
‫)‪(1‬‬
‫ﺍﻟﺼﻴﻐﺔ )‪ (1‬ﳝﻜﻦ ﻛﺘﺎﺑﺘﻬﺎ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫)‪(2‬‬
‫‪ε‬‬
‫‪2‬‬
‫< )‪∀ε > 0, ∃δ ε > 0 / (∀x′, x′′ ∈ I / x′ − x′′ < δ ε ) → f ( x′) − f ( x′′‬‬
‫ﻣﻦ )‪ (2‬ﻧﺴﺘﻨﺘﺞ ﺃﻧﻪ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪، δ‬ﺣﻴﺚ ‪ 0 < δ < δ ε‬ﻳﺘﺤﻘﻖ ﻣﺎ ﻳﻠﻲ‪:‬‬
‫ﺃﻱ ﺃﻥ‪:‬‬
‫‪ε‬‬
‫‪<ε‬‬
‫‪2‬‬
‫≤ } ‪, x′, x′′ ∈ I‬‬
‫‪w( f , δ ) = sup{ f ( x′) − f (x′′) / x′ − x′′ ≤ δ‬‬
‫‪67‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪∀ε > 0, ∃δ ε > 0 / ∀δ < δ ε , (δ > 0 ) → w( f , δ ) < ε‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪:‬‬
‫‪lim w( f , δ ) = 0‬‬
‫]⇒[ ﻟﺘﻜﻦ‬
‫‪δ → +0‬‬
‫‪lim w( f , δ ) = 0‬‬
‫‪δ → +0‬‬
‫‪،‬ﺃﻱ‪:‬‬
‫‪∀ε > 0, ∃δ ε > 0 / ∀δ < δ ε , (δ > 0 ) → w( f , δ ) < ε‬‬
‫ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ‪:‬‬
‫‪∀x′, x′′ ∈ I / x′ − x′′ ≤ δ < δ ε → f ( x′) − f ( x′′) < ε‬‬
‫ﻭﻣﻨﻪ ﻧﺴﺘﻨﺘﺞ ‪:‬‬
‫‪∀ε > 0, ∃δ ε > 0 / (∀x′, x′′ ∈ I / x′ − x′′ < δ ε ) → f ( x′) − f ( x′′) < ε‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ‪. I‬‬
‫ﻣﺜﺎﻝ ‪:‬‬
‫ﺃ‪ -‬ﻋﺮﻓﻨﺎ ﰲ ﺍﳌﺜﺎﻝ ﻓﻘﺮﺓ ‪، 2.5.3‬ﺃﻥ ‪، w( f , δ ) = 2δ − δ 2‬ﺣﻴﺚ ‪ f (x) = x2‬ﻣﺄﺧﻮﺫﺓ ﻋﻠﻰ ﺍ‪‬ﺎﻝ ]‪. [0,1‬‬
‫‪. δlim‬ﻭﺑﺎﻟﺘﺎﱄ ﺍﻟﺪﺍﻟﺔ ‪ f (x) = x 2‬ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ ]‪. [0,1‬‬
‫ﻭﺍﺿﺢ ﺃﻥ ‪w( f , δ ) = 0‬‬
‫‪→ +0‬‬
‫ﺏ‪ -‬ﻧﺄﺧﺬ ﺍﻟﺪﺍﻟﺔ ‪ f (x) = x2‬ﻋﻠﻰ ﺍ‪‬ﺎﻝ [∞‪. ]− ∞,+‬‬
‫ﺗﺄﻛﺪ ﻣﻦ ﺃﻥ ∞‪. − ∞ < x < +∞ , w( f , δ ) = +‬‬
‫‪ ، δlim‬ﺃﻱ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻟﻴﺴﺖ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻧﺘﻈﺎﻡ ﻋﻠﻰ [∞‪. ]− ∞,+‬‬
‫ﻭﻣﻨﻪ ﻧﺴﺘﻨﺘﺞ ﺃﻥ ∞‪w( f , δ ) = +‬‬
‫‪→ +0‬‬
‫‪ -6.3‬ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ‪:‬‬
‫ﻣﻔﻬﻮﻡ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ‪:‬‬
‫ﻟﺘﻜﻦ‬
‫‪f‬‬
‫ﺩﺍﻟﺔ ﻋﺪﺩﻳﺔ‬
‫‪،‬ﺃﻱ ‪x ∈ D(ℜ) ⊂ ℜ‬‬
‫‪، y = f (x) ,‬ﺣﻴﺚ ﻣﻦ ﺃﺟﻞ‬
‫ﻛﻞ ‪x0‬‬
‫ﻣﻦ ) ‪ D( f‬ﻳﻮﺟﺪ ‪ y0‬ﻭﺣﻴﺪ ﳛﻘﻖ‬
‫) ‪y0 = f ( x0 ) ∈ Ε( f‬‬
‫ﻻﺣﻆ ﺃﻧﻪ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻌﺎﻣﺔ‬
‫ﺍﳌﻌﺎﺩﻟﺔ ‪، f ( x) = y0‬ﺣﻴﺚ ) ‪y0 ∈ Ε( f‬‬
‫‪،‬ﲤﻠﻚ ﺃﻛﺜﺮ ﻣﻦ ﺣﻞ‪.‬‬
‫ﻣﺜﺎﻝ ‪:‬‬
‫ﺃ‪ -‬ﻣﻦ ﺃﺟﻞ ‪ ( y0 > 0) ، y0‬ﺛﺎﺑﺖ ﻳﻜﻮﻥ ﻛﻞ ﻣﻦ ‪ x2 = − y0 ، x1 = y0‬ﺣﻼ ﻟﻠﻤﻌﺎﺩﻟﺔ ‪، f (x) = y0‬ﺣﻴﺚ ‪. f (x) = x2‬‬
‫ﻻﺣﻆ ﻟﻮ ﻧﺄﺧﺬ ﺍﻟﺪﺍﻟﺔ ‪ f (x) = x2‬ﰲ ﺍ‪‬ﺎﻝ [‪ ، ]− ∞,0‬ﺃﻭ ﺍ‪‬ﺎﻝ [∞‪ [0,+‬ﻳﻜﻮﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ‪ f (x) = y0‬ﺣﻞ ﻭﺣﻴﺪ ﻫﻮ‬
‫‪ ، y0‬ﺃﻭ ‪ − y0‬ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ‪.‬‬
‫ﺏ‪ -‬ﻟﺘﻜﻦ ﺍﻟﺪﺍﻟﺔ ‪، f ( x) = x + 1‬ﺣﻴﺚ ‪D( f ) = ℜ‬‬
‫ﻭﺍﺿﺢ ﺃﻧﻪ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ y0‬ﻳﻮﺟﺪ ‪ x0‬ﻭﺣﻴﺪ‪،‬ﺣﻴﺚ ‪. (x0 = y0 − 1) ، f (x0 ) = y0‬‬
‫‪68‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺗﻌﺮﻳﻒ ‪:‬‬
‫ﺃ‪ -‬ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﱵ ﻳﻜﻮﻥ ﻓﻴﻬﺎ ﻟﻠﻤﻌﺎﺩﻟﺔ ‪ y0 ∈ Ε( f ) ، f (x) = y0‬ﺃﻛﺜﺮ ﻣﻦ ﺣﻞ‪ ،‬ﻳﺴﻤﻲ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﺬﻱ ﻳﺮﻓﻖ ﺑﻜﻞ ‪y‬‬
‫ﻣﻦ ) ‪ x ، Ε( f‬ﻣﻦ ) ‪ D( f‬ﺑﺎﻟﺼﻮﺭﺓ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪ ، f‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ‪، f‬ﻭﻧﻜﺘﺐ‪:‬‬
‫) ‪f : Ε( f ) → D ( f‬‬
‫‪y → f ( y) = x‬‬
‫ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﺗﺴﻤﻰ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ﻟﻠﺪﺍﻟﺔ ‪. f‬‬
‫ﺏ‪ -‬ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﱵ ﻳﻜﻮﻥ ﻓﻴﻬﺎ ﻟﻠﻤﻌﺎﺩﻟﺔ ‪ y0 ∈ Ε( f ) ، f (x) = y0‬ﺣﻞ ﻭﺣﻴﺪ ‪،‬ﻳﺴﻤﻰ ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﺬﻱ ﻳﺮﻓﻖ ﺑﻜﻞ ‪ y‬ﻣﻦ‬
‫) ‪ x ، Ε( f‬ﻭﺣﻴﺪ ﻣﻦ ) ‪ D( f‬ﺑﺎﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪، f‬ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪. f −1‬‬
‫) ‪f −1 : Ε ( f ) → D ( f‬‬
‫‪y → f −1 ( y) = x‬‬
‫ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﰲ ﺍﻷﺻﻞ‪،‬ﺗﺴﻤﻰ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻭﺣﻴﺪﺓ ﺍﻟﻘﻴﻤﺔ ﻟﻠﺪﺍﻟﺔ ‪. f‬‬
‫ﺧﺼﺎﺋﺺ ‪:‬‬
‫‪ f‬ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪. f −1‬‬
‫ﺃ‪-‬‬
‫) ‪D ( f −1 ) = Ε ( f ) , Ε ( f −1 ) = D ( f‬‬
‫ﺏ‪-‬‬
‫ﺝ‪-‬‬
‫‪f ( f −1 ( x)) = x ، ∀x ∈ D( f ) → f −1 ( f ( x)) = x‬‬
‫ﺩ‪ -‬ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ‪ f −1‬ﻣﺘﻨﺎﻇﺮ ﻣﻊ ﺑﻴﺎﻥ ‪ f‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻨﺼﻒ ﺍﻷﻭﻝ‪.‬‬
‫ﻧﺘﻴﺠﺔ ‪ :‬ﻣﻦ ﺍﻟﺘﻌﺮﻳﻒ ﺏ‪ -‬ﻟﻀﻤﺎﻥ ﻭﺟﻮﺩ ﺍﻟﺪﺍﻟﺔ‬
‫ﻧﻈﺮﻳﺔ ‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ‬
‫ﺍﻟﻌﻜﺴﻴﺔ ‪f −1‬‬
‫‪f : D ( f ) → Ε( f ) ، f‬‬
‫→ ) ‪∀x ∈ Ε( f‬‬
‫‪،‬ﻧﺸﺘﺮﻁ ﺃﻥ ﺗﻜﻮﻥ ‪ f‬ﺭﺗﻴﺒﺔ ﲤﺎﻣﺎﹰ ﻋﻠﻰ ) ‪. D( f‬‬
‫ﺭﺗﻴﺒﺔ ﲤﺎﻣﺎﹰ ﻭﻣﺴﺘﻤﺮﺓ‪ ،‬ﻓﺈﻧﻪ ﺗﻮﺟﺪ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻌﻜﺴﻴﺔ ‪، f −1‬‬
‫) ‪ ، f −1 : Ε( f ) → D( f‬ﻭﺗﻜﻮﻥ ﺭﺗﻴﺒﺔ ﲤﺎﻣﺎﹰ‪)،‬ﺍﻟﺮﺗﺎﺑﺔ ﻣﻦ ﻧﻔﺲ ﺭﺗﺎﺑﺔ ‪،( f‬ﻭﻣﺴﺘﻤﺮﺓ‪.‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪ :‬ﻧﺄﺧﺬ ﺍﳊﺎﻟﺔ ﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ ‪ f‬ﻣﺘﺰﺍﻳﺪﺓ‪.‬‬
‫ﺍﻟﺪﺍﻟﺔ ‪ f −1‬ﻣﻮﺟﻮﺩﺓ ﺣﺴﺐ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺴﺎﺑﻘﺔ ‪.‬‬
‫ﻧﱪﻫﻦ ﺃﻥ ) ‪ f −1 : Ε( f ) → D( f‬ﻣﺘﺰﺍﻳﺪﺓ ﺃﻳﻀﺎﹰ‪ ،‬ﺃﻱ ﻧﱪﻫﻦ ‪:‬‬
‫)*(‬
‫ﻧﻀﻊ ) ‪f −1 ( y2 ), x1 = f −1 ( y1‬‬
‫ﻧﻔﺮﺽ ﺃﻥ ‪. x1 ≥ x2‬‬
‫) ‪∀y1 , y2 ∈ Ε( f ) , y1 < y2 ⇒ f −1 ( y1 ) < f −1 ( y2‬‬
‫= ‪x2‬‬
‫ﻋﻨﺪﻧﺎ ‪ f‬ﻣﺘﺰﺍﻳﺪﺓ ﻳﻌﲏ ) ‪ ، f (x1 ) ≥ f (x2‬ﺃﻱ ‪، y1 ≥ y2‬ﻭﻫﺬﺍ ﻳﻨﺎﰲ )∗( ‪،‬ﻭﻣﻨﻪ ‪ ، x1 < x2‬ﺃﻱ‪:‬‬
‫ﻧﱪﻫﻦ ﺃﻥ ) ‪ f −1 : Ε( f ) → D( f‬ﻣﺴﺘﻤﺮﺓ ‪،‬ﺃﻱ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ y0‬ﻛﻴﻔﻴﺔ ﻣﻦ ) ‪ Ε( f‬ﻳﺘﺤﻘﻖ ‪:‬‬
‫) ‪f −1 ( y2‬‬
‫< ) ‪. f −1 ( y1‬‬
‫‪69‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫‪∀ε > 0, ∃δ > 0 / (∀y ∈ Ε( f ) / y − y0 < δ ) → f −1 ( y) − f −1 ( y0 ) < ε‬‬
‫ﻋﻨﺪﻧﺎ ‪ f‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ) ‪ D( f‬ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ ) ‪ Ε( f‬ﻋﺒﺎﺭﺓ ﻋﻦ‬
‫ﳎﺎﻝ ‪‬ﺎﻳﺘﻪ ‪ M‬ﻭ ‪، m‬ﺣﻴﺚ‪:‬‬
‫)‪m = inf f ( x), M = sup f ( x‬‬
‫) ‪D( f‬‬
‫) ‪D( f‬‬
‫ﰲ ﺣﺎﻟﺔ ) ‪ D( f‬ﳎﺎﻝ ﻣﻐﻠﻖ ﺗﻜﻮﻥ‬
‫ﺃﻧﻈﺮ ﻧﻈﺮﻳﺔ ﺑﻮﻟﺰﺍﻧﻮ‪-‬ﻛﻮﺷﻲ ‪.‬‬
‫] ‪Ε( f ) = [m, M‬‬
‫ﰲ ﺣﺎﻟﺔ ) ‪ D( f‬ﳎﺎﻝ ﻛﻴﻔﻲ ﻳﻜﻮﻥ ) ‪ Ε( f‬ﺃﻳﻀﺎﹰ ﳎﺎﻝ ﻛﻴﻔﻲ‬
‫‪‬ﺎﻳﺘﻪ ‪. m, M‬‬
‫ﺍﳊﺎﻟﺔ [ ‪ ، Ε( f ) = ]m, M‬ﺃﻱ ﺃﻥ ) ‪ D( f‬ﳎﺎﻝ ﻣﻔﺘﻮﺡ ‪،‬‬
‫ﻻﺣﻆ ﻣﻦ ﺃﺟﻞ ﻛﻞ ) ‪ y0 ∈ Ε( f‬ﺗﻮﺟﺪ ‪ x0‬ﻣﻦ ) ‪، D( f‬ﺣﻴﺚ ) ‪f ( x0‬‬
‫= ‪. y0‬‬
‫ﺣﺴﺐ ﺧﺎﺻﻴﺔ ﺍﻻﺳﺘﻤﺮﺍﺭ ﻟـ ‪ ، ℜ‬ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ (ε > 0) , ε‬ﻳﻜﻮﻥ ‪:‬‬
‫) ‪. x0 − ε ∈ D( f ), x0 + ε ∈ D( f‬‬
‫ﻧﻀﻊ ) ‪y2 = f ( x0 + ε ), y1 = f ( x0 − ε‬‬
‫ﲟﺎﺃﻥ ‪ f‬ﻣﺘﺰﺍﻳﺪﺓ ‪،‬ﻓﺈﻥ ‪. y1 < y0 < y2 :‬‬
‫ﻧﺄﺧﺬ ﺍﻵﻥ ‪ δ > 0‬ﳛﻘﻖ ‪ δ )، y1 ≤ y0 − δ , y0 + δ ≤ y2‬ﻣﻮﺟﻮﺩ ﺣﺴﺐ ﺧﺎﺻﻴﺔ ﺍﻻﺳﺘﻤﺮﺍﺭ ﻟـ ‪.( ℜ‬‬
‫ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ y‬ﳛﻘﻖ ‪ ، y0 − δ < y < y0 + δ‬ﻳﻜﻮﻥ ‪y1 < y < y2 :‬‬
‫ﲟﺎ ﺃﻥ ‪ f −1‬ﻣﺘﺰﺍﻳﺪﺓ ﻓﺈﻥ‪f −1 ( y1 ) < f −1 ( y) < f −1 ( y2 ) :‬‬
‫ﲟﺎ ﺃﻥ‬
‫‪f −1 ( y1 ) = x0 − ε = f −1 ( y0 ) − ε‬‬
‫‪f −1 ( y 0 ) + ε ,‬‬
‫= ‪ ، f −1 ( y2 ) = x0 + ε‬ﻓﺈﻥ ‪:‬‬
‫‪f −1 ( y0 ) − ε < f −1 ( y) < f −1 ( y0 ) + ε‬‬
‫ﻭﻫﺬﺍ ﻣﻦ ﺍﺟﻞ ﻛﻞ ‪ y‬ﲢﻘﻖ‬
‫‪y0 − δ < y < y0 + δ‬‬
‫‪ .‬ﺃﻱ ﺃﻥ‪:‬‬
‫‪∀ε > 0 , ∃δ > 0 / (∀ ∈ Ε( f ) / y − y0 < δ ) → f −1 ( y) − f −1 ( y0 ) < ε‬‬
‫ﲟﺎ ﺃﻥ ‪ y0‬ﻛﻴﻔﻴﺔ ﻣﻦ ) ‪ ، Ε( f‬ﻓﺈﻥ ‪ f −1‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ) ‪. Ε( f‬‬
‫ﰲ ﺣﺎﻟﺔ ﻭﺟﻮﺩ ﻋﻠﻰ ﺍﻷﻗﻞ ‪ m‬ﺃﻭ ‪ M‬ﰲ ) ‪، Ε( f‬ﻳﻜﻔﻲ ﺃﻥ ﻧﱪﻫﻦ ﺃﻥ‬
‫ﻫﺬﺍﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ‪.‬‬
‫‪f −1‬‬
‫ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﳝﲔ ‪ ، m‬ﻭﻋﻠﻰ ﻳﺴﺎﺭ ‪، M‬‬
‫ﺗﻌﺮﻳﻒ ‪ :‬ﺍﻟﺘﻄﺒﻴﻖ ‪ f‬ﻣﻦ ﳎﺎﻝ ‪ I‬ﰲ ﳎﺎﻝ ‪ J‬ﻣﻦ ‪، ℜ‬ﻧﻘﻮﻝ ﺇﻧﻪ ﻫﻮﻣﻴﻮﻣﻮﺭﻓﻴﺰﻡ‪ ،‬ﺇﺫﺍ ﲢﻘﻖ ﻣﺎ ﻳﻠﻲ ‪:‬‬
‫ﺃ‪ f -‬ﺗﻘﺎﺑﻞ‬
‫ﺏ‪ f -‬ﻭ ‪ f −1‬ﻣﺴﺘﻤﺮﺍﻥ‪.‬‬
‫‪70‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﻧﺘﻴﺠﺔ ‪:‬‬
‫ﺃ‪ -‬ﺇﺫﺍ ﻛﺎﻧﺖ ‪ f‬ﻫﻮﻣﻴﻮﻣﻮﺭﻓﻴﺰﻡ‪ ،‬ﻓﺈﻥ ‪ f −1‬ﻛﺬﻟﻚ‪.‬‬
‫ﺏ‪ -‬ﺇﺫﺍ ﻛﺎﻧﺖ ‪ f‬ﺭﺗﻴﺒﺔ ﲤﺎﻣﺎﹰ ﻭﻣﺴﺘﻤﺮﺓ‪ ،‬ﻓﺈﻥ ‪ f‬ﻫﻮﻣﻴﻮﻣﻮﺭﻓﻴﺰﻡ ﻣﻦ ) ‪ D( f‬ﻋﻠﻰ ) ‪. Ε( f‬‬
‫‪ w‬ﳎﻤﻮﻋﺘﺎﻥ ﺑﻴﻨﻬﻤﺎ ﻫﻮﻣﻴﻮﻣﻮﺭﻓﻴﺰﻡ ﻧﺴﻤﻴﻬﻤﺎ ﻫﻮﻣﻴﻮﻣﻮﺭﻓﻴﲔ‪.‬‬
‫‪ -7.3‬ﺍﻟﺪﻭﺍﻝ ﺍﻟﺒﺴﻴﻄﺔ ﻭﺩﻭﺍﳍﺎ ﺍﻟﻌﻜﺴﻴﺔ ‪:‬‬
‫‪ -1.7.3‬ﺍﻟﺪﻭﺍﻝ ﺍﻵﺳﻴﺔ ‪:‬‬
‫ﺗﻌﺮﻳﻒ ‪ :‬ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ (a > 0) ، a‬ﻣﻌﻄﻰ ﺍﻟﺪﺍﻟﺔ ‪ f (x) = a x‬ﺍﳌﻌﺮﻓﺔ ﻋﻠﻰ ﻛﻞ ‪ ℜ‬ﺗﺴﻤﻰ ﺩﺍﻟﺔ ﺁﺳﻴﺔ ﺫﺍﺕ ﺍﻷﺳﺎﺱ ‪. a‬‬
‫ﰲ ﺣﺎﻟﺔ‬
‫‪a =1‬‬
‫ﺗﻜﻮﻥ ‪. f (x) = 1‬‬
‫ﺧﺼﺎﺋﺺ ‪:‬‬
‫ﺃ‪، (a < 1) ، a > 1 -‬ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺘﺰﺍﻳﺪﺓ‪ )،‬ﻣﺘﻨﺎﻗﺼﺔ(‪.‬‬
‫ﺏ‪، (a x )y = a x⋅ y -‬ﻭ ‪. ∀x, y ∈ ℜ, a x a y = a x+ y‬‬
‫ﺝ‪ f (x) = a x -‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ﻛﻞ ‪. ℜ‬‬
‫ﻧﺘﺎﺋﺞ ‪:‬‬
‫‪-1‬‬
‫‪-2‬‬
‫‪a > 0, ∀x ∈ ℜ → a x > 0‬‬
‫‪a > 0 , b > 0, ∀x ∈ ℜ → (ab ) = a xb x‬‬
‫‪x‬‬
‫‪ -2.7.3‬ﺍﻟﺪﻭﺍﻝ ﺍﻟﻠﻮﻏﺎﺭﲤﻴﺔ ‪:‬‬
‫ﺣﺴﺐ ﻧﻈﺮﻳﺔ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ‬
‫ﰲ ﺣﺎﻟﺔ ‪ a > 0‬ﺍﻟﺪﺍﻟﺔ ﺍﻵﺳﻴﺔ ‪ f (x) = a x‬ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ‬
‫ﻋﻠﻰ ﻛﻞ ‪ ℜ‬ﻭﳎﻤﻮﻋﺔ ﻗﻴﻤﻬﺎ ﻫﻲ [∞‪، ]0,+‬ﻭﺑﺎﻟﺘﺎﱄ ﻋﻠﻰ ﺍ‪‬ﺎﻝ‬
‫[∞‪ ]0,+‬ﺗﻌﺮﻑ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ﺍﻵﺳﻴﺔ ﻭﺗﻜﻮﻥ ﻣﺘﺰﺍﻳﺪﺓ‬
‫ﻭﻣﺴﺘﻤﺮﺓ ‪.‬‬
‫ﺗﺴﻤﻰ ﻫﺬﻩ ﺍﻟﺪﺍﻟﺔ ﺑﺎﻟﺪﺍﻟﺔ ﺍﻟﻠﻮﻏﺎﺭﲤﻴﺔ ﺫﺍﺕ ﺍﻷﺳﺎﺱ ‪، a‬‬
‫ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪y = log a x‬‬
‫ﰲ ﺣﺎﻟﺔ ‪، 0 < a < 1‬ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ ‪ y = log a x‬ﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ ‪.‬‬
‫ﺧﺼﺎﺋﺺ ‪:‬‬
‫ﺃ‪-‬‬
‫ﺏ‪-‬‬
‫‪x > 0 , y > 0 , log a xy = log a x + log a y‬‬
‫‪x > 0 , α ∈ ℜ , log a xα = α log a x‬‬
‫‪71‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺝ‪-‬‬
‫‪, a log a x = x‬‬
‫‪log b x‬‬
‫‪log b a‬‬
‫ﺩ‪-‬‬
‫ﺣﺎﻟﺔ ﺧﺎﺻﺔ‬
‫‪:‬ﺣﺎﻟﺔ ‪a = e‬‬
‫‪x>0‬‬
‫= ‪x > 0 , b > 0 , log a x‬‬
‫ﺗﺴﻤﻰ ﺍﻟﺪﺍﻟﺔ‬
‫‪log e x‬‬
‫ﺑﺎﻟﺪﺍﻟﺔ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻢ ﺍﻟﻨﻴﱪﻱ ﻭﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪. ln x‬‬
‫‪ -3.7.3‬ﺍﻟﺪﺍﻟﺔ ﺍﻟﻘﻮﺓ ‪:‬‬
‫ﺗﻌﺮﻳﻒ ‪ :‬ﻣﻦ ﺃﺟﻞ ﻛﻞ ﻋﺪﺩ ‪ α‬ﺍﻟﺪﺍﻟﺔ ‪ f (x) = xα‬ﺍﳌﻌﺮﻓﺔ ﻣﻦ ﺃﺟﻞ‬
‫‪x>0‬‬
‫ﺗﺴﻤﻰ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻘﻮﺓ ﺫﺍﺕ ﺍﻷﺱ ‪. α‬‬
‫ﻣﻼﺣﻈﺔ ‪ α = 0 :‬ﺗﻜﻮﻥ ‪. f (x) = 1‬‬
‫ﺧﺼﺎﺋﺺ ‪:‬‬
‫ﺃ‪ α < 0 -‬ﺍﻟﺪﺍﻟﺔ‬
‫ﺏ‪ α > 0 -‬ﺍﻟﺪﺍﻟﺔ‬
‫‪f‬‬
‫‪f‬‬
‫ﻣﺘﻨﺎﻗﺼﺔ ‪.‬‬
‫ﻣﺘﺰﺍﻳﺪﺓ ‪.‬‬
‫ﺝ‪ f -‬ﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ [∞‪. ]0,+‬‬
‫ﺩ‪ ، x = 0 ، α > 0 -‬ﺗﻜﻮﻥ ‪. f (x) = 0‬‬
‫‪ -4.7.3‬ﺍﻟﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ ﻭﺩﻭﺍﳍﺎ ﺍﻟﻌﻜﺴﻴﺔ ‪:‬‬
‫ﻟﺘﻜﻦ ‪ x 2 + y 2 = r 2‬ﻣﻌﺎﺩﻟﺔ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﱵ ﻣﺮﻛﺰﻫﺎ )‪ (0,0‬ﻭﻧﺼﻒ ﻗﻄﺮﻫﺎ ‪، (r > 0 ), r‬ﺍﺳﺘﻨﺎﺩﺍ ﺇﱃ ﺍﻟﺸﻜﻞ ﺍ‪‬ﺎﻭﺭ‪،‬ﺗﻌﺮﻑ‬
‫ﺍﻟﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫‪η‬‬
‫‪r‬‬
‫‪ξ‬‬
‫= ‪f ( x) = cos x‬‬
‫‪r‬‬
‫‪η sin x‬‬
‫= = ‪f ( x) = tgx‬‬
‫‪ξ cos x‬‬
‫‪ξ cos x‬‬
‫= = ‪f ( x) = ctgx‬‬
‫‪η sin x‬‬
‫‪r‬‬
‫‪1‬‬
‫= = ‪f ( x) = sec x‬‬
‫‪ξ cos x‬‬
‫‪r‬‬
‫‪1‬‬
‫= = ‪f ( x) = cos ec‬‬
‫‪η sin x‬‬
‫= ‪f ( x) = sin x‬‬
‫ﰲ ﺣﺎﻟﺔ ‪ r = 1‬ﺗﻜﻮﻥ ‪:‬‬
‫‪cos x = ξ = OB , sin x = η = BC‬‬
‫‪η BC‬‬
‫=‬
‫‪= AE‬‬
‫‪ξ OB‬‬
‫ﺗﻨﺒﻴﻪ ‪ x :‬ﻻ ﺗﻔﻬﻢ ﻓﻘﻂ ﻋﻠﻰ ﺃ‪‬ﺎ‬
‫= ‪tgx‬‬
‫ﺍﻟﺰﺍﻭﻳﺔ ‪AOC‬‬
‫‪,‬‬
‫‪ξ OB‬‬
‫=‬
‫‪= MN‬‬
‫‪η BC‬‬
‫= ‪ctg‬‬
‫ﺑﻞ ﻧﻔﻬﻢ ﺃﻳﻀﺎﹰ ﺿﻌﻒ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ ‪، OCA‬ﺫﻟﻚ ﻷﻥ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ‬
‫‪72‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
. S = 1 AC ⋅ r : ‫ﺗﻌﻄﻰ ﺑﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺎﻟﻴﺔ‬
2
. S = 1 r 2 x ‫ﻭﺑﺎﻟﺘﺎﱄ ﻳﻜﻮﻥ‬
2
r ⋅ x = AC
: ‫ ﻫﻲ‬x ‫ﻭﺍﻟﺰﺍﻭﻳﺔ‬
AC
S
‫ﻣﻌﻠﻮﻡ ﺃﻥ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﻟﻘﻮﺱ‬
. x = 2.S ‫ ﻳﻜﻮﻥ‬،(‫)ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ‬، r = 1 ‫ﻧﻀﻊ‬
: ‫ﺃﻫﻢ ﺧﺼﺎﺋﺺ ﺍﻟﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ‬
sin x
 π π
x ∈  − ,  , x ≠ 0 , cos x <
<1
x
 2 2
-1
sin ( x ± y) = sin x cos y ± cos x sin y
-2
-3
cos( x ± y) = cos x cos y m sin x sin y
tgx ± tgy
ctgxctgy m 1
tg ( x ± y) =
, ctg ( x ± y) =
ctgy ± ctgx
1 m tgxtgy
-4
∀x ∈ ℜ,
sin x ≤ x
: ‫ ﻫﻨﺎﻙ ﻋﺪﺓ ﺧﺼﺎﺋﺺ ﺃﺧﺮﻯ ﳒﻤﻠﻬﺎ ﰲ ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ‬-5
=
f ( x)
ctgx
tgx
cos x
sin x
− ∞ < x < +∞
− ∞ < x < +∞
π
x ≠ + kπ
2
− ∞ < x < +∞
− ∞ < x < +∞
D( f )
− 1 ≤ f ( x) ≤ 1
Ε( f )
2π
π
x = + kπ
2
‫ﻧﻘﺎﻁ ﺍﻟﻘﻴﻢ ﺍﻟﻘﺼﻮﻯ‬
x = kπ
‫ﻧﻘﺎﻁ ﺍﻹﻧﻌﻄﺎﻑ‬
x ≠ kπ
− ∞ < f ( x) < +∞
π
x = + kπ
2
− ∞ < f ( x) < +∞
x = kπ
− 1 ≤ f ( x) ≤ 1
π
x = + kπ
2
π
π
2π
‫ﻻ‬
‫ﻻ‬
x = kπ
x=
π
+ kπ
2
x = kπ
x=
π
+ kπ
2
x = kπ
f
‫ﺃﺻﻔﺎﺭ‬
‫ﺍﻟﺪﻭﺭ‬
‫ﺯﻭﺟﻴﺔ‬
‫ﻓﺮﺩﻳﺔ‬
‫ﺯﻭﺟﻴﺔ‬
‫ﻓﺮﺩﻳﺔ‬
‫ﺍﻟﻨﻮﻋﻴﺔ‬
‫ﻻ‬
‫ﻻ‬
‫ﻻ‬
‫ﻻ‬
‫ﺍﻟﺮﺗﺎﺑﺔ‬
‫ﻻ‬
‫ﻻ‬
‫ﻧﻌﻢ‬
‫ﻧﻌﻢ‬
‫ﺍﶈﺪﻭﺩﻳﺔ‬
‫ﻧﻌﻢ‬
‫ﻧﻌﻢ‬
‫ﻧﻌﻢ‬
‫ﻧﻌﻢ‬
‫ﺍﻻﺳﺘﻤﺮﺍﺭﻳﺔ‬
73
PDF created with pdfFactory trial version www.pdffactory.com
‫ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ ‪:‬‬
‫‪ -1‬ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ‬
‫ﻋﻨﺪﻧﺎ‬
‫‪D( f ) = ℜ‬‬
‫‪f ( x) = sin x‬‬
‫‪Ε( f ) = [− 1,1] ,‬‬
‫ﻻﺣﻆ ﻣﻦ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ﻳﻨﺘﺞ ﺃﻥ ﻟﻜﻞ ‪ y0‬ﻣﻦ ) ‪ Ε( f‬ﻳﻜﻮﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ‪، f (x) = y0‬ﻣﺎ ﻻ‪‬ﺎﻳﺔ ﻣﻦ ﺍﳊﻠﻮﻝ ‪،‬ﻭﺑﺎﻟﺘﺎﱄ ﻧﻘﻮﻝ ﺇﻥ‬
‫ﻟﻠﺪﺍﻟﺔ ‪ f‬ﻻ ﺗﻮﺟﺪ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﺗﻌﺮﻳﻔﻬﺎ‪ ،‬ﺑﻞ ﻧﻘﻮﻝ ﺇﻥ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ﺃﻭ ﻛﻤﺎ ﲰﻴﻨﻬﺎ ﺳﺎﺑﻘﺎﹰ‬
‫‪74‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﺗﻌﺮﻳﻔﻬﺎ ‪،‬ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ‬
‫‪Arc sin y‬‬
‫‪،‬ﻭﻧﻜﺘﺐ ‪ ، x = f ( y) = Arc sin y‬ﻭﻧﻘﺮﺃ ‪ x‬ﻫﻮ‬
‫ﺍﻟﻘﻮﺱ ﺍﻟﺬﻱ ﺟﻴﺒﻪ ‪. y‬‬
‫ﻻﺣﻆ ﺣﺴﺐ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ‪، f (x) = sin x‬ﺍﻟﺪﺍﻟﺔ ﻣﺘﺰﺍﻳﺪﺓ ﻋﻠﻰ ﺍ‪‬ﺎﻻﺕ ﻣﻦ ﺍﻟﻨﻮﻉ‬
‫ﻣﺴﺘﻤﺮﺓ‪،‬ﻭﰲ ﻛﻞ ﳎﺎﻝ ﻣﻦ‬
‫‪π‬‬
‫‪π‬‬
‫‪‬‬
‫ﺍﻟﻨﻮﻉ ‪2kπ + 2 , (2k + 1)π + 2  = J k‬‬
‫‪π‬‬
‫‪π‬‬
‫‪‬‬
‫‪2kπ − 2 ,2kπ + 2  = I k‬‬
‫ﻭﺃﻳﻀﺎﹰ‬
‫ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ ﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ‪،‬ﻭﺑﺎﻟﺘﺎﱄ ﺣﺴﺐ‬
‫ﺍﻟﻨﻈﺮﻳﺔ ﻓﻘﺮﺓ ‪، 6.3‬ﻳﻜﻮﻥ ﻟﻠﺪﺍﻟﺔ ‪ f (x) = sin x‬ﻋﻠﻰ ﺍ‪‬ﺎﻻﺕ ‪ I k‬ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ‪ f −1‬ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ) ‪ ، Ε( f‬ﻭﻋﻠﻰ‬
‫ﺍ‪‬ﺎﻻﺕ ‪ J k‬ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ‪ f −1‬ﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ) ‪ ، Ε( f‬ﻧﺮﻣﺰ ﻟﻠﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪ sin x‬ﺑﺎﻟﺮﻣﺰ ‪، x = arcsin y‬‬
‫ﻭﻧﻘﺮﺃ ‪ x‬ﻫﻮ ﺍﻟﻘﻮﺱ ﺍﻟﺬﻱ ﺟﻴﺒﻪ ‪، y‬ﻭﻧﻜﺘﺐ ‪. x = f −1 ( y) = arcsin y‬‬
‫ﻣﻦ‬
‫ﺃﺟﻞ ‪k = 0‬‬
‫‪f −1‬‬
‫ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻫﻲ ﺍﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﺪﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ‪. f‬‬
‫ﺧﺼﺎﺋﺺ ‪:‬‬
‫ﺃ‪-‬‬
‫ﺏ‪-‬‬
‫ﺝ‪-‬‬
‫ﺭﺳﻢ‬
‫ﻋﻠﻰ‬
‫ﺍ‪‬ﺎﻝ ‪I 0‬‬
‫ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ‪، f −1 ( y) = arcsin y‬ﺗﺴﻤﻰ ﺍﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻘﻮﺱ ﺍﳉﻴﺐ‪،‬ﺃﻭ ﻧﻘﻮﻝ ﺇﻥ‬
‫]‪sin (arcsin y) = y , y ∈ [− 1,1‬‬
‫‪ π π‬‬
‫‪arcsin (sin x) = x , x ∈ − , ‬‬
‫‪ 2 2‬‬
‫]‪arcsin (− y) = − arcsin y , y ∈ [− 1,1‬‬
‫ﺍﻟﺪﺍﻟﺘﲔ ‪Arc sin y‬‬
‫‪arcsin y,‬‬
‫‪:‬‬
‫ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ﺍﳌﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ‪ ، f ( y) = Arc sin y‬ﻫﻮ ﻧﻈﲑ‬
‫ﻟﺒﻴﺎﻥ ‪. x ∈ D( f ) , f (x) = sin x‬‬
‫ﻟﻜﻦ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ‪، f −1 ( y) = arcsin y‬ﻫﻮ ﻧﻈﲑ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ‬
‫‪ π π‬‬
‫‪x ∈ − ,  , f ( x) = sin x‬‬
‫‪ 2 2‬‬
‫) ﺍﻟﺘﻨﺎﻇﺮ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻨﺼﻒ ﺍﻷﻭﻝ (‪.‬‬
‫ﺑﻴﺎﻥ‬
‫‪ π π‬‬
‫)‪ f −1 ( y‬ﺣﻴﺚ ‪x ∈ − , ‬‬
‫‪ 2 2‬‬
‫ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ‪. f ( y) = Arc sin y‬‬
‫ﻭﺍﺿﺢ ﺃﻥ‪:‬‬
‫ﻳﺴﻤىﺎﻟﻔﺮﻉ ﺍﻟﺮﺋﻴﺴﻲ ﻣﻦ‬
‫‪π‬‬
‫‪π‬‬
‫≤ ‪≤ arcsin y‬‬
‫‪2‬‬
‫‪2‬‬
‫‪, k = 0,±1,±2...........‬‬
‫‪∀y ∈ [− 1,1] → −‬‬
‫‪∀y ∈ [− 1,1] → Arc sin y = arcsin y + 2kπ‬‬
‫‪75‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫]‪→ Arc sin y = (2k + 1)π − arcsin y , k = 0,±1,±2........... ∀y ∈ [− 1,1‬‬
‫ﺍﻟﺘﻔﺴﲑ ﺍﳍﻨﺪﺳﻲ ‪:‬‬
‫ﺍﻧﻈﺮ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ‬
‫ﻣﻦ ﺃﺟﻞ ﻛﻞ ]‪ y0 ∈ [− 1,1‬ﻧﺒﺤﺚ ﻋﻦ ﻛﻞ ﺍﻷﻗﻮﺍﺱ‪)،‬ﺍﻟﺰﺍﻭﻳﺔ(‪،‬ﺍﻟﱵ ﺗﻘﺒﻞ ‪ y0‬ﺟﻴﺒﺎﹰ ﳍﺎ‪،‬ﻧﻼﺣﻆ ﻣﻦ ﺍﻟﺸﻜﻞ ﺃﻥ ﻛﻞ ﺍﻷﻗﻮﺍﺱ‬
‫ﺍﻟﱵ ﻣﺒﺪﺅﻫﺎ ‪ A‬ﻭ‪‬ﺎﻳﺘﻬﺎ ﰲ ﺇﺣﺪﻯ ﺍﻟﻨﻘﻄﻴﺘﲔ ‪ M‬ﺃﻭ ‪ M ′‬ﳍﺎ ﺟﻴﺐ ﻳﺴﺎﻭﻱ ‪. y0‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ‪ a‬ﺃﺻﻐﺮ ﺍﻷﻗﻮﺍﺱ ﺍﻟﱵ ﺟﻴﺒﻬﺎ ‪ ، y0‬ﻓﺈﻧﻪ ﻳﻜﻮﻥ ‪:‬‬
‫‪AM = 2kπ + a‬‬
‫‪AM ′ = (2k + 1)π − a‬‬
‫‪,‬‬
‫ﻭﻣﻨﻪ ﻳﻮﺟﺪ ﻋﺪﺩ ﻏﲑ ﻣﻨﺘﻪ ﻣﻦ ﺍﻷﻗﻮﺍﺱ ﺗﻘﺒﻞ ‪ y0‬ﺟﻴﺒﺎ ﳍﺎ‪،‬ﻭﺑﺎﻟﺘﺎﱄ ﻧﻜﻮﻥ ﻗﺪ ﻋﺮﻓﻨﺎ ﺩﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ﻭﻫﻲ ﺍﻟﱵ ﻋﺮﻓﺖ‬
‫ﻗﺒﻞ ﻗﻠﻴﻞ ﺃﻱ‪. f ( y) = Arc sin y :‬‬
‫ﻻﺣﻆ ﻟﻮ ﺃﺧﺬﻧﺎ ﻓﻘﻂ ﺍﻷﻗﻮﺍﺱ ﺍﻟﻮﺍﻗﻌﺔ ﰲ‬
‫ﻭﻫﻮ‬
‫ﺍﻟﻘﻮﺱ ‪AM‬‬
‫‪.‬‬
‫‪π‬‬
‫ﺍ‪‬ﺎﻝ‬
‫‪2 ‬‬
‫‪, 2kπ +‬‬
‫‪، I k = 2kπ − π‬ﻓﺈﻧﻪ ﻳﻮﺟﺪ ﻗﻮﺱ ﻭﺍﺣﺪ ﻳﻘﺒﻞ ‪ y0‬ﺟﻴﺒﺎ ﻟﻪ‪،‬‬
‫‪2‬‬
‫‪‬‬
‫ﻭﺇﺫﺍ ﺃﺧﺬﻧﺎ ﻓﻘﻂ ﺍﻷﻗﻮﺍﺱ ﺍﻟﻮﺍﻗﻌﺔ ﰲ ﺍ‪‬ﺎﻝ ‪، J k = 2kπ + π , (2k + 1)π + π ‬ﻓﺈﻧﻪ ﻳﻮﺟﺪ ﻗﻮﺱ ﻭﺍﺣﺪ ﻳﻘﺒﻞ ‪ y0‬ﺟﻴﺒﺎ ﻟﻪ‪،‬‬
‫‪2‬‬
‫ﻭﻫﻮ ﺍﻟﻘﻮﺱ ‪. AM ′‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﺗﻜﻮﻥ ﺩﺍﺧﻞ ﺍ‪‬ﺎﻻﺕ ‪ I k‬ﺃﻭ ‪ J k‬ﺍﻟﺪﺍﻟﺔ‬
‫‪2‬‬
‫‪‬‬
‫‪ f (x) = sin x‬ﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻭﻫﻲ‪:‬‬
‫‪f −1 ( y) = arcsin y‬‬
‫‪ -2‬ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪y = f ( x) = cos x‬‬
‫‪D( f ) = ℜ‬‬
‫‪Ε( f ) = [− 1,1],‬‬
‫ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ ﻧﻼﺣﻆ ﺃﻧﻪ ﻣﻦ ﺃﺟﻞ‬
‫ﻛﻞ ‪y0‬‬
‫ﻣﻦ ]‪ ، [− 1,1‬ﻳﻜﻮﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ‪ f (x) = y0‬ﻣﺎ ﻻ‪‬ﺎﻳﺔ ﻣﻦ ﺍﳊﻠﻮﻝ‪.‬‬
‫ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺪﺍﻟﺔ ‪، f (x) = sin x‬ﳒﺪ ﻟﻠﺪﺍﻟﺔ ‪ f (x) = cos x‬ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ ﺃﻭ ﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ ﻋﻠﻰ‬
‫ﻛﻞ ﳎﺎﻝ ﺗﻌﺮﻳﻔﻬﺎ ‪ ،‬ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪ ، x = f ( y) = Arc cos y‬ﻭﻧﻘﺮﺃ ‪ x‬ﺍﻟﻘﻮﺱ ﺍﻟﺬﻱ ﺟﻴﺐ ﲤﺎﻣﻪ ‪. y‬‬
‫ﻋﻠﻰ ﺍ‪‬ﺎﻻﺕ ] ‪ I k = [2kπ , 2kπ + π‬ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ ‪،‬ﻭﻋﻠﻰ ﺍ‪‬ﺎﻻﺕ ] ‪J k = [2kπ + 1 , 2kπ + π‬‬
‫ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ‪.‬‬
‫‪f −1 ( y) = arccos y‬‬
‫ﻳﺮﻣﺰ ﻟﻠﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪، y = f (x) = cos x‬ﺑﺎﻟﺮﻣﺰ‬
‫ﰲ ﺍﳊﺎﻟﺔ ﺍﳋﺎﺻﺔ ‪، k = 0‬ﻋﻠﻰ ‪ I 0‬ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪، cos x‬ﺃﻱ ﺍﻟﺪﺍﻟﺔ‬
‫ﺍﻟﺮﺋﻴﺴﻲ ﻟﻘﻮﺱ ﲤﺎﻡ ﺍﳉﻴﺐ‪ ،‬ﺃﻱ ﻟﻠﺪﺍﻟﺔ ‪. f ( y) = x = Arc cos y‬‬
‫ﺧﺼﺎﺋﺺ ‪:‬‬
‫ﺃ‪-‬‬
‫]‪y ∈ [− 1,1‬‬
‫‪cos(arccos y) = y ,‬‬
‫=‪.x‬‬
‫‪x ∈ [0, π ] , f −1 ( y) = arccos y‬‬
‫ﺗﺴﻤﻰ ﺍﳉﺰﺀ‬
‫‪.‬‬
‫‪76‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺏ‪-‬‬
‫ﺝ‪-‬‬
‫ﺩ‪-‬‬
‫] ‪arccos(cos x) = x , x ∈ [0, π‬‬
‫]‪arccos(− y) = π − arccos y , y ∈ [− 1,1‬‬
‫‪π‬‬
‫]‪, y ∈ [− 1,1‬‬
‫‪2‬‬
‫ﺭﺳﻢ ﺍﻟﺪﺍﻟﺘﲔ‬
‫= ‪arcsin y + arccos y‬‬
‫‪arccos y , Arc cos y‬‬
‫‪:‬‬
‫ﺭﺳﻢ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ )‪ f ( y‬ﻫﻮ ﻧﻈﲑ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ‬
‫)‪ f ( x‬ﻋﻠﻰ ﻛﻞ ) ‪، D( f‬ﻭ ﺭﺳﻢ ﺑﻴﺎﻥ ‪f −1 ( y) = arccos y‬‬
‫ﻫﻮ ﻧﻈﲑ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ‪ x ∈ [0, π ], f (x) = cos x‬ﺑﺎﻟﻨﺴﺒﺔ‬
‫ﻟﻠﻤﻨﺼﻒ ﺍﻷﻭﻝ‪ ،‬ﻭﻳﺴﻤﻰ ﺍﻟﻔﺮﻉ ﺍﻟﺮﺋﻴﺴﻴﻠﺒﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ‬
‫ﺍﻟﻘﻴﻤﺔ ‪. f ( y) = Arc cos y‬‬
‫ﺍﻟﺘﻔﺴﲑ ﺍﳍﻨﺪﺳﻲ ‪:‬‬
‫ﻧﺄﺧﺬ ﻋﻠﻰ ﳏﻮﺭ ﲤﺎﻡ ﺍﳉﻴﻮﺏ ﰲ ﺩﺍﺋﺮﺓ ﺍﻟﻮﺣﺪﺓ ﻧﻘﻄﺔ ‪. y0‬‬
‫ﻧﺒﺤﺚ ﻋﻦ ﺍﻷﻗﻮﺍﺱ ﺍﻟﱵ ﺟﻴﺐ ﲤﺎﻣﻬﺎ ‪. y0‬‬
‫ﺣﺴﺐ ﺍﻟﺸﻜﻞ‪،‬ﻧﻼﺣﻆ ﺃﻥ ﻛﻞ ﺍﻷﻗﻮﺍﺱ ﺍﻟﱵ ﻣﺒﺪﺅﻫﺎ ﻭ‪‬ﺎﻳﺘﻬﺎ ‪ M‬ﺃﻭ ‪ M ′‬ﻳﻜﻮﻥ ﺟﻴﺐ ﲤﺎﻣﻬﺎ ‪. y0‬‬
‫ﺇﺫﺍ ﻛﺎﻥ ‪ a‬ﺃﺻﻐﺮ ﺍﻷﻗﻮﺍﺱ ﺍﻟﱵ ﺟﻴﺐ ﲤﺎﻣﻬﺎ ‪، y0‬ﻓﺈﻥ ﻛﻞ ﺍﻷﻗﻮﺍﺱ ‪ AM = 2kπ − a , AM = 2kπ + a‬ﺟﻴﺐ ﲤﺎﻣﻬﺎ‬
‫‪، y0‬ﻭﺑﺎﻟﺘﺎﱄ ﻧﻜﻮﻥ ﻗﺪ ﻋﺮﻓﻨﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ‪ ،‬ﺃﻭ ﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ‬
‫ﺍﻟﻘﻴﻤﺔ ‪. x = Arc cos y‬‬
‫ﰲ ﺍﳊﺎﻟﺔ ﺍﳋﺎﺻﺔ‪،‬ﺇﺫﺍ ﺃﺧﺬﻧﺎ ﻓﻘﻂ ﺍﻷﻗﻮﺍﺱ ﺍﳌﻮﺟﻮﺩﺓ ﺩﺍﺧﻞ ﺍ‪‬ﺎﻻﺕ ] ‪، [2kπ , 2kπ + π‬ﺃﻭ ] ‪، [2kπ + π , 4kπ‬ﻓﺈﻧﻪ ﻟﻜﻞ‬
‫‪y = cos x‬‬
‫‪y0‬‬
‫‪،‬ﻭﻫﻲ ﺍﻟﺪﺍﻟﺔ ﻣﺘﻌﺪﺩﺓ‬
‫ﻟﻠﺪﺍﻟﺔ ‪ y = cos x‬ﻭﻫﻲ ‪f −1 ( y) = arccos y‬‬
‫ﻳﻘﺎﺑﻠﻬﺎ ﻗﻮﺱ ﻭﺍﺣﺪ‪،‬ﻭﻣﻨﻪ ﻧﻜﻮﻥ ﻗﺪ ﻋﺮﻓﻨﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ‬
‫‪ -3‬ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪y = f ( x) = tgx‬‬
‫=‪.x‬‬
‫‪π‬‬
‫‪‬‬
‫‪D( f ) = ℜ −  + kπ  , Ε( f ) = ℜ‬‬
‫‪‬‬
‫‪2‬‬
‫ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ ﻧﻼﺣﻆ ﺃﻧﻪ ﻣﻦ ﺃﺟﻞ ﻛﻞ ‪ y0‬ﻣﻦ ‪، ℜ‬ﻟﻠﻤﻌﺎﺩﻟﺔ ‪ y0 = tgx‬ﻣﺎ ﻻ‪‬ﺎﻳﺔ ﻣﻦ ﺍﳊﻠﻮﻝ ‪.‬‬
‫ﻭﻣﻨﻪ ﺍﻟﺪﺍﻟﺔ ‪ y = tgx‬ﻻ ﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻋﻠﻰ ﳎﺎﻝ ﺗﻌﺮﻳﻔﻬﺎ‪،‬ﺑﻞ ﺗﻘﺒﻞ ﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ‪ ،‬ﻳﺮﻣﺰﳍﺎ ﺑﺎﻟﺮﻣﺰ‬
‫‪x = f ( y) = Arctgy‬‬
‫ﻧﻼﺣﻆ ﺃﻥ ﺍﻟﺪﺍﻟﺔ‬
‫‪y = tgx‬‬
‫ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﻣﻦ ﺍﻟﻨﻮﻉ ‪،  − π + kπ , π + kπ ‬ﺗﻜﻮﻥ ﻣﺘﺰﺍﻳﺪﺓ‬
‫ﻭﻣﺴﺘﻤﺮﺓ ‪،‬ﻭﺑﺎﻟﺘﺎﱄ ﻓﻬﻲ ﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ‪ ،‬ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ‬
‫ﰲ ﺍﳊﺎﻟﺔ ‪ k = 0‬ﻋﻠﻰ‬
‫‪‬‬
‫‪f −1 ( y) = arctgy‬‬
‫‪2‬‬
‫=‪.x‬‬
‫‪ 2‬‬
‫‪π‬‬
‫ﺍ‪‬ﺎﻝ‬
‫‪ 2 2 ‬‬
‫‪,‬‬
‫‪  − π‬ﺍﻟﺪﺍﻟﺔ ‪، x = arctgy‬ﺗﺴﻤﻰ ﺍﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﺼﻮﺭﺓ ﺍﻟﻌﻜﺴﻴﺔ ‪. f ( y) = Arctgy‬‬
‫‪77‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺧﺼﺎﺋﺺ ﻭﺭﺳﻢ ﺍﻟﺒﻴﺎﻥ ‪:‬‬
‫‪tg (arctgy) = y‬‬
‫ﺃ‪-‬‬
‫‪, y∈ℜ‬‬
‫ﺏ‪-‬‬
‫‪ π π‬‬
‫‪x∈ − , ‬‬
‫‪ 2 2‬‬
‫ﺩ‪-‬‬
‫‪π‬‬
‫‪π‬‬
‫< ‪< arctgy‬‬
‫‪2‬‬
‫‪2‬‬
‫ﺝ‪-‬‬
‫‪arctg (tgx) = x ,‬‬
‫‪arctg (− y) = −arctgy‬‬
‫‪−‬‬
‫ﺑﻴﺎﻥ ‪ f −1‬ﻳﺴﻤﻰ ﺍﻟﻔﺮﻉ ﺍﻟﺮﺋﻴﺴﻲ ﻣﻦ ﺑﻴﺎﻥ ‪. f‬‬
‫‪ -4‬ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪y = ctgx‬‬
‫}‪ℜ = Ε( f ) , D( f ) = ℜ−{kπ‬‬
‫ﻣﻦ ﺍﻟﺸﻜﻞ ﺍ‪‬ﺎﻭﺭ ﻭﺍﺿﺢ ﺃﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ‬
‫‪ y0 = ctgx , y0 ∈ ℜ‬ﻋﺪﺩ ﻻ‪‬ﺎﺋﻲ ﻣﻦ ﺍﳊﻠﻮﻝ‪،‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﻟﻠﺪﺍﻟﺔ ‪ y = ctgx‬ﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ‪ ،‬ﻳﺮﻣﺰ ﳍﺎ‬
‫ﺑﺎﻟﺮﻣﺰ ‪. x = f ( y) = Arcctgy‬‬
‫ﻧﻼﺣﻆ ﺃﻥ ﻋﻠﻰ ﺍ‪‬ﺎﻻﺕ ﻣﻦ ﺍﻟﻨﻮﻉ [ ‪، ]kπ , kπ + π‬‬
‫ﺍﻟﺪﺍﻟﺔ ‪ y = ctgx‬ﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ‪،‬ﻭﺑﺎﻟﺘﺎﱄ ﻓﻬﻲ‬
‫ﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ‪ ،‬ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ‬
‫‪x = f −1 ( y) = arcctgy‬‬
‫ﰲ ﺍﳊﺎﻟﺔ ﺍﳋﺎﺻﺔ ﻋﻠﻰ ﺍ‪‬ﺎﻝ [ ‪ ]0, π‬ﺍﻟﺪﺍﻟﺔ‬
‫‪ f −1 ( y) = arcctgy‬ﺗﺴﻤىﺎﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﺪﺍﻟﺔ‬
‫ﻣﺘﻌﺪﺩﺓ ﺍﻟﻘﻴﻤﺔ )‪ ، f ( y‬ﻭﻳﻜﻮﻥ ﻋﻨﺪﻫﺎ ‪:‬‬
‫‪Arcctgy = arcctgy + kπ‬‬
‫ﺑﻴﺎﻥ‬
‫‪f −1‬‬
‫ﻳﺴﻤﻰ ﺍﻟﻔﺮﻉ ﺍﻟﺮﺋﻴﺴﻲ ﻣﻦ ﺑﻴﺎﻥ ‪. f‬‬
‫ﻣﻼﺣﻈﺔ ‪:‬‬
‫ﻛﻞ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ ﺇﺫﺍ ﺫﻛﺮﺕ ﻣﻨﻔﺼﻠﺔ ﻋﻦ ﺩﻭﺍﳍﺎ ﺍﻷﺻﻠﻴﺔ‪ ،‬ﻓﺈﻧﻨﺎ ﻧﺒﺪﻝ ﻓﻴﻬﺎ ﺍﳌﺘﻐﲑ ‪ y‬ﺑﺎﳌﺘﻐﲑ ‪ ، x‬ﺃﻱ‬
‫ﻧﻜﺘﺐ‬
‫‪y = arcsin x‬‬
‫‪y = arccos x,‬‬
‫‪y = arctgx,‬‬
‫‪y = arcctgx,‬‬
‫‪ w‬ﳒﻤﻞ ﺃﻫﻢ ﺧﺼﺎﺋﺺ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﻭﺍﻝ ﺍﳌﺜﻠﺜﻴﺔ ﰲ ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ‪:‬‬
‫‪78‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫)‪f ( x‬‬
‫) ‪D( f‬‬
‫) ‪Ε( f‬‬
‫‪y = arcsin x‬‬
‫‪y = arccos x‬‬
‫‪y = arcctgx‬‬
‫‪y = arcctgx‬‬
‫‪−1 ≤ x ≤ 1‬‬
‫‪π‬‬
‫‪π‬‬
‫≤‪− ≤ y‬‬
‫‪2‬‬
‫‪2‬‬
‫‪−1 ≤ x ≤ 1‬‬
‫‪ℜ‬‬
‫‪ℜ‬‬
‫‪0≤ y≤π‬‬
‫‪π‬‬
‫‪π‬‬
‫≤‪≤ y‬‬
‫‪2‬‬
‫‪2‬‬
‫‪0≤ y≤π‬‬
‫‪−‬‬
‫ﺍﻟﺮﺗﺎﺑﺔ‬
‫ﻣﺘﺰﺍﻳﺪﺓ‬
‫ﻣﺘﻨﺎﻗﺼﺔ‬
‫ﻣﺘﺰﺍﻳﺪﺓ‬
‫ﻣﺘﻨﺎﻗﺼﺔ‬
‫ﻧﻘﻂ ﺍﻻﻧﻌﻄﺎﻑ‬
‫)‪(0,0‬‬
‫‪ π‬‬
‫‪ 0, ‬‬
‫‪ 2‬‬
‫)‪(0,0‬‬
‫‪ π‬‬
‫‪ 0, ‬‬
‫‪ 2‬‬
‫∞‪x → −∞ , x → +‬‬
‫\‬
‫\‬
‫‪π π‬‬
‫‪,‬‬
‫‪2 2‬‬
‫‪−‬‬
‫‪π , 0‬‬
‫‪ -8.3‬ﺍﻟﺪﻭﺍﻝ ﺍﻟﺰﺍﺋﺪﻳﺔ‪)،‬ﺍﻟﻘﻄﻌﻴﺔ(‪،‬ﻭﺩﻭﺍﳍﺎ ﺍﻟﻌﻜﺴﻴﺔ ‪:‬‬
‫ﻟﺘﻜﻦ ‪ x2 − y2 = 1‬ﻣﻌﺎﺩﻟﺔ ﻗﻄﻊ ﺯﺍﺋﺪ ﻣﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﲔ ﻭ ‪ m‬ﻧﻘﻄﺔ ﻣﺘﺤﺮﻛﺔ ﻋﻠﻰ ﻓﺮﻉ ﺍﻟﻘﻄﻊ ﺍﻟﺰﺍﺋﺪﺓ‪.‬‬
‫ﻧﺮﻣﺰ ﺑﺎﻟﺮﻣﺰ ‪ t‬ﺇﱃ ﺿﻌﻒ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ ﺍﻟﺬﻱ ﳝﺴﺤﻪ ﺍﻟﺸﻌﺎﻉ‬
‫‪ om‬ﻋﻨﺪﻣﺎ ﺗﺘﺤﺮﻙ ﺍﻟﻨﻘﻄﺔ ‪ m‬ﻣﻦ ﺍﻟﻮﺿﻊ‪ A‬ﺇﱃ ﺍﻟﻮﺿﻊ ‪. M‬‬
‫) ﻧﻌﺘﱪ ﺍﳌﺴﺎﺣﺔ ﻣﻮﺟﺒﺔ ﺇﺫﺍ ﲢﺮﻙ ﺍﻟﺸﻌﺎﻉ ‪ om‬ﺑﻨﻔﺲ ﺍﻻﲡﺎﻩ‬
‫ﺍﳌﻮﺟﺐ ﻟﻠﺰﺍﻭﻳﺔ ﻭﺍﻟﻌﻜﺲ (‪.‬‬
‫ﺗﻌﺎﺭﻳﻒ ‪:‬‬
‫ﺃ‪ -‬ﻳﻌﺮﻑ ﲤﺎﻡ ﺍﳉﻴﺐ ﺍﻟﺰﺍﺋﺪﻱ ﻟﻠﻤﺘﻐﲑ ‪، t‬ﺑﺄﻧﻪ ﻓﺎﺻﻠﺔ ﺍﻟﻨﻘﻄﺔ‬
‫‪، M‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ‪، ch t‬ﻭﻧﻜﺘﺐ ‪OB = x = ch t‬‬
‫ﺏ‪ -‬ﻳﻌﺮﻑ ﺍﳉﻴﺐ ﺍﻟﺰﺍﺋﺪﻱ ﻟﻠﻤﺘﻐﲑ ‪ t‬ﺑﺄﻧﻪ ﺗﺮﺗﻴﺐ ﺍﻟﻨﻘﻄﺔ‬
‫‪، M‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ‪، sh t‬ﻭﻧﻜﺘﺐ ‪BM = y = sh t‬‬
‫ﺝ‪ -‬ﻳﻌﺮﻑ ﺍﻟﻈﻞ ﺍﻟﺰﺍﺋﺪﻱ ﻟﻠﻤﺘﻐﲑ ‪، t‬ﺑﺄﻧﻪ ﺍﳌﻴﻞ ﺍﻟﺰﺍﻭﻱ ﻟﻠﺸﻌﺎﻉ ‪، OM‬ﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ‪، th t‬ﻭﻧﻜﺘﺐ‬
‫ﺩ‪ -‬ﻳﻌﺮﻑ ﺍﻟﺘﻈﻞ ﺍﻟﺰﺍﺋﺪﻱ ﻋﻠﻰ ﺃﻧﻪ ﻣﻘﻠﻮﺏ ﺍﻟﻈﻞ ﺍﻟﺰﺍﺋﺪﻱ‪،‬ﻭ ﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ ‪ cth t‬ﻭﻧﻜﺘﺐ‪:‬‬
‫‪ch t‬‬
‫‪sh t‬‬
‫‪sh t‬‬
‫‪ch t‬‬
‫= ‪AC = th t‬‬
‫= ‪PN = cth t‬‬
‫ﻗﻴﻢ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺰﺍﺋﺪﻳﺔ ‪:‬‬
‫ﻋﻨﺪﻧﺎ ‪ t = 2S‬ﺣﻴﺚ ‪ S‬ﻫﻲ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ ‪ OAM‬ﺍﻟﺬﻱ ﳝﺴﺤﻪ ﺍﻟﺸﻌﺎﻉ ‪ OM‬ﻋﻨﺪﻣﺎ ﺗﺘﺤﺮﻙ ﺍﻟﻨﻘﻄﺔ ‪ m‬ﻣﻦ‪ A‬ﺇﱃ ‪. M‬‬
‫‪ S‬ﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻦ ﻣﺴﺎﺣﺔ ﺍﳌﺜﻠﺚ ‪ OMB‬ﻧﺎﻗﺺ ﻣﺴﺎﺣﺔ ﺍﳌﻘﻄﻊ ‪. AMB‬‬
‫ﻣﺴﺎﺣﺔ ﺍﳌﺜﻠﺚ ﻫﻲ‬
‫‪1‬‬
‫‪1‬‬
‫‪OB ⋅ BM = xy‬‬
‫‪2‬‬
‫‪2‬‬
‫= ‪OMB‬‬
‫ﺣﻴﺚ ‪ y, x‬ﻫﻲ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺍﻟﻨﻘﻄﺔ ‪. M‬‬
‫‪79‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺎ ﻋﺒﺎﺭﺓ ﻋﻦ ﺍﳌﺴﺎﺣﺔ ﺍﻟﱵ ﳛﺼﺮﻫﺎ ﻓﺮﻉ ﺍﻟﻘﻄﻊ ﺍﻟﺰﺍﺋﺪ ﻭﺍﻟﻘﻄﻌﺔ‬‫ﻷ‬،‫ ﳓﺴﺒﻬﺎ ﺑﻮﺍﺳﻄﺔ ﺍﻟﺘﻜﺎﻣﻞ ﺍﶈﺪﻭﺩ‬AMB ‫ﺍﳌﺴﺎﺣﺔ‬
( y = x 2 + 1 ‫ )ﻣﻌﺎﺩﻟﺔ ﺍﻟﻔﺮﻉ ﻫﻲ‬،‫ ﻭﳏﻮﺭ ﺍﻟﻔﻮﺍﺻﻞ‬BM ‫ﺍﳌﺴﺘﻘﻴﻤﺔ‬
x
x
1
1
AMB = ∫ ydx = ∫ x 2 + 1
: ‫ﻧﺴﺘﻌﻤﻞ ﺍﻟﺘﻜﺎﻣﻞ ﺑﺎﻟﺘﺠﺰﺋﺔ ﻧﻀﻊ‬
xdx
v = x , du =
x
x −1
x
x
∫
⇐ dv = dx , u = x 2 − 1
2
1
1
x
∫
1
x2
x2 − 1
x
dx = ∫
(x
∫
1
x2 − 1
1
)
−1 +1
x
x
dx = ∫ x − 1dx + ∫
2
1
1
x
x
1
x
dx
2 ∫ x 2 − 1dx = xy − ∫
1
x2 − 1
1
x
∫
x2 − 1
1
x 2 − 1dx = xy − ∫ x 2 − 1dx − ∫
x
x2
dx = xy − ∫
dx
‫ﺍﻟﺘﻜﺎﻣﻞ‬
x2 − 1
1
x
2
x
x2
x 2 − 1dx = x x 2 − 1 − ∫
(
1
dx
x2 − 1
dx
x2 − 1
= xy − ln x + x 2 − 1
)
x
1
xy 1
− ln ( x + y)
2 2
x 2 − 1dx =
1
(1)
(2)
x2 − y 2 = 1
x + y = et
: ‫ ﳒﺪ‬، 
 x − y = e −t
,
:‫ﺃﻱ ﺃﻥ‬
‫ﰲ ﺍﻟﻨﻬﺎﻳﺔ ﳒﺪ‬
‫ﻣﻦ ﺟﻬﺔ ﺃﺧﺮﻯ ﻋﻨﺪﻧﺎ‬
‫( ﳓﺼﻞ ﻋﻠﻰ‬1) ‫( ﻋﻠﻰ‬2) ‫ﺑﻘﺴﻤﺔ‬
x − y = e −t
e t + e −t
x=
2
:‫ﻭﻣﻨﻪ‬
:‫ﻭﺑﺎﻟﺘﺎﱄ‬
1
1
1

t = 2 S = 2  xy − xy + ln ( x + y) = ln( x + y)
2
2
2

x + y = et
: ‫ﺃﻱ‬
‫ﲝﻞ ﺍﳉﻤﻠﺔ‬
e t − e −t
y=
2
: ‫ﻭﺑﺎﻟﺘﺎﱄ ﻳﻜﻮﻥ‬
sh t =
e t − e −t
e t + e −t
, ch t =
,
2
2
th t =
e t − e −t
e t + e −t
,
cth
t
=
e t + e −t
e t − e −t
80
PDF created with pdfFactory trial version www.pdffactory.com
‫ﻣﻼﺣﻈﺔ ‪ :‬ﺇﺫﺍ ﺍﻋﺘﱪﻧﺎ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺰﺍﺋﺪﻳﺔ ﺩﻭﺍﻝ ﰲ ﺍﳌﺘﻐﲑ ‪، x‬ﻓﺈ‪‬ﺎ ﺗﻜﺘﺐ ﻛﺎﻟﺘﺎﱄ ‪:‬‬
‫‪y = ch x‬‬
‫‪y = th x ,‬‬
‫‪y = sh x ,‬‬
‫‪y = cth x ,‬‬
‫ﺧﻮﺍﺹ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺰﺍﺋﺪﻳﺔ ‪ :‬ﳒﻤﻞ ﺃﻫﻢ ﺍﳋﻮﺍﺹ ﰲ ﺍﳉﺪﻭﻝ ﺍﻟﺘﺎﱄ ‪:‬‬
‫)‪f ( x‬‬
‫‪y = sh x‬‬
‫‪y = ch x‬‬
‫‪y = th x‬‬
‫) ‪D( f‬‬
‫∞‪− ∞ < x < +‬‬
‫∞‪− ∞ < x < +‬‬
‫∞‪− ∞ < x < +‬‬
‫) ‪Ε( f‬‬
‫∞‪− ∞ < y < +‬‬
‫∞‪1 ≤ y < +‬‬
‫‪−1 < y < 1‬‬
‫ﺃﺻﻔﺎﺭ‬
‫‪x=0‬‬
‫ﻻ‬
‫‪x=0‬‬
‫ﺍﳋﻄﻮﻁ ﺍﳌﻘﺎﺭﺑﺔ‬
‫ﻻ‬
‫ﻻ‬
‫‪y = ±1‬‬
‫∞‪x → ±‬‬
‫∞‪±‬‬
‫∞‪+‬‬
‫‪±1‬‬
‫ﺍﻟﺮﺗﺎﺑﺔ‬
‫ﻣﺘﺰﺍﻳﺪﺓ‬
‫ﻧﻘﺎﻁ ﺍﻟﻘﻴﻢ‬
‫ﺍﻟﻘﺼﻮﻯ‬
‫ﻻ‬
‫[‪ ]− ∞,0‬ﻣﺘﻨﺎﻗﺼﺔ‬
‫[∞‪ ]0,+‬ﻣﺘﺰﺍﻳﺪﺓ‬
‫ﺻﻔﺮ‬
‫‪x=0‬‬
‫ﻧﻘﻂ ﺍﻻﻧﻌﻄﺎﻑ‬
‫‪x=0‬‬
‫ﻻ‬
‫ﺍﻟﻔﺮﺩﻱ ﻭﺍﻟﺰﻭﺟﻲ‬
‫ﻓﺮﺩﻳﺔ‬
‫ﺯﻭﺟﻴﺔ‬
‫‪y = cth x‬‬
‫‪x≠0‬‬
‫∞‪− ∞ < x < +‬‬
‫‪− ∞ < y < −1‬‬
‫∞‪+ 1 < y < +‬‬
‫ﻻ‬
‫‪x=0‬‬
‫ﺃﻭ‬
‫‪y = ±1‬‬
‫‪±1‬‬
‫ﻣﺘﺰﺍﻳﺪﺓ‬
‫[‪ ]− ∞,0‬ﻣﺘﻨﺎﻗﺼﺔ‬
‫[∞‪ ]0,+‬ﻣﺘﻨﺎﻗﺼﺔ‬
‫ﻻ‬
‫ﻻ‬
‫‪x=0‬‬
‫ﻻ‬
‫ﻓﺮﺩﻳﺔ‬
‫ﺯﻭﺟﻴﺔ‬
‫‪ch ( x ± y) = ch x ch y ± sh x sh y‬‬
‫‪sh ( x ± y) = sh x ch y ± ch x sh y‬‬
‫ﺍﻟﺮﺳﻢ ‪:‬‬
‫‪ch 2 x − sh 2 x = 1‬‬
‫‪81‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﻭﺍﻝ ﺍﻟﺰﺍﺋﺪﻳﺔ ‪:‬‬
‫‪ -1‬ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪y = f ( x) = sh x‬‬
‫‪D ( f ) = ℜ , Ε( f ) = ℜ‬‬
‫ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ ) ‪ ، D( f‬ﻭﻣﻨﻪ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﻦ ) ‪ Ε( f‬ﰲ ) ‪، D( f‬ﺗﻜﻮﻥ ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ‪،‬ﻳﺮﻣﺰ ﳍﺎ‬
‫ﺑﺎﻟﺮﻣﺰ ‪. x = f −1 ( y) = arsh y‬‬
‫"‪، " ar‬ﻫﻲ ﺍﳊﺮﻭﻑ ﺍﻷﻭﱃ ﻣﻦ ﺍﻟﻜﻠﻤﺔ ﺍﻹﳒﻠﻴﺰﻳﺔ "‪ " area‬ﺗﻌﲏ ﻣﺴﺎﺣﺔ ﻭﻧﻘﺮﺃ ‪ x‬ﻫﻲ ﺃﺭﻳﺎ ﺍﳉﻴﺐ ﺍﻟﺰﺍﺋﺪﻱ ﻟـ ‪، y‬ﺃﻭ‬
‫‪ x‬ﻫﻲ ﺍﳌﺴﺎﺣﺔ ﺍﻟﱵ ﺟﻴﺒﻬﺎ ﺍﻟﺰﺍﺋﺪﻱ ‪. y‬‬
‫ﻋﻨﺪﻧﺎ ‪:‬‬
‫‪e x − e− x‬‬
‫‪2‬‬
‫= ‪y = sh x‬‬
‫‪1‬‬
‫‪1‬‬
‫ﺑﻮﺿﻊ ‪ z = e x‬ﻳﻜﻮﻥ ‪، = e − x‬ﻭﻣﻨﻪ‬
‫‪z‬‬
‫‪z‬‬
‫ﺣﻠﻮﻝ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺴﺎﺑﻘﺔ‬
‫ﲟﺎ ﺃﻥ ‪ e x > 0‬ﻓﺈﻥ‬
‫ﻫﻲ ‪y 2 + 1‬‬
‫‪، 2 y = z −‬ﺃﻱ ‪. z 2 − 2 yz − 1 = 0 :‬‬
‫‪z= y±‬‬
‫‪e x = y + y2 + 1‬‬
‫‪،‬ﺃﻱ‪:‬‬
‫‪y2 + 1‬‬
‫‪ ،‬ﻭﻣﻨﻪ ﻳﻜﻮﻥ‪:‬‬
‫)‬
‫‪.ex = y ±‬‬
‫(‬
‫‪arsh y = x = ln y + 1 + y 2‬‬
‫‪ -2‬ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ ‪y = f ( x) = ch x‬‬
‫‪Ε( f ) = [1,+∞[ ,‬‬
‫‪D( f ) = ℜ‬‬
‫ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ ﻭﺍﺿﺢ ﺃﻥ‬
‫ﻟﻠﻤﻌﺎﺩﻟﺔ ‪y0 ∈ Ε( f ) , y0 = ch x‬‬
‫ﺃﻛﺜﺮ ﻣﻦ ﺣﻞ ‪.‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﻟﻠﺪﺍﻟﺔ ‪ f‬ﺻﻮﺭﺓ ﻋﻜﺴﻴﺔ ﻋﻠﻰ ﻛﻞ ﳎﺎﻝ ﺗﻌﺮﻳﻔﻬﺎ‪ ،‬ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪. x = f ( y) = Arch y‬‬
‫ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﺍ‪‬ﺎﻝ [∞‪ [0,+‬ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ‪ ،‬ﻭﺑﺎﻟﺘﺎﱄ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ‪،‬ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪. x = arch + y‬‬
‫ﻭﻋﻠﻰ ﺍ‪‬ﺎﻝ [‪ ]− ∞,0‬ﻣﺘﻨﺎﻗﺼﺔ ﻭﻣﺴﺘﻤﺮﺓ ‪،‬ﻭﺑﺎﻟﺘﺎﱄ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ‪ ،‬ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ ‪x = arch − y‬‬
‫ﺍﻟﺪﺍﻟﺔ‬
‫ﺍﻟﻌﻜﺴﻴﺔ ‪x = f −1 ( y) = arch + y‬‬
‫ﻋﻨﺪﻧﺎ ‪:‬‬
‫‪e x + e−x‬‬
‫‪2‬‬
‫‪،‬ﺗﺴﻤﻰ ﺍﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﺼﻮﺭﺓ ﺍﻟﻌﻜﺴﻴﺔ ‪. f‬‬
‫= ‪y = ch x‬‬
‫ﺑﻮﺿﻊ ‪، z = e x‬ﳓﺼﻞ ﻋﻠﻰ ﺍﳌﻌﺎﺩﻟﺔ‬
‫‪z 2 − 2 yz + 1 = 0‬‬
‫ﲝﻠﻬﺎ ﳒﺪ ‪، z = e = y ± y − 1‬ﺃﻱ ﺃﻥ‪) :‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﻳﻜﻮﻥ‪x = ln (y + y − 1 ) , x = ln (y − y − 1 ) :‬‬
‫‪‬‬
‫‪‬‬
‫‪1‬‬
‫)‪ = − ln (y + y − 1‬‬
‫‪x = ln‬‬
‫ﻻﺣﻆ ﺃﻥ‪:‬‬
‫‪ y + y −1 ‬‬
‫‪‬‬
‫‪‬‬
‫)‪x = arch y = ln (y + y − 1‬‬
‫‪, x≥0‬‬
‫ﻭﻣﻨﻪ‬
‫‪2‬‬
‫‪y2 − 1‬‬
‫‪x‬‬
‫‪2‬‬
‫‪. x = ln (y ±‬‬
‫‪2‬‬
‫‪1‬‬
‫‪2‬‬
‫‪2‬‬
‫‪2‬‬
‫‪2‬‬
‫‪2‬‬
‫‪+‬‬
‫‪82‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
(
x = arch − y = − ln y −
y2 − 1
)
, x≤0
f ( x) = y = th x ‫ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ‬-3
Ε( f ) = ]− 1,1[ ,
D( f ) = ℜ
‫ﻧﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ‬، Ε( f ) ‫ﻭﺑﺎﻟﺘﺎﱄ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ‬، D( f ) ‫ ﻣﺘﺰﺍﻳﺪﺓ ﻭﻣﺴﺘﻤﺮﺓ ﻋﻠﻰ‬f ‫ﺍﻟﺪﺍﻟﺔ‬
x = f −1 ( y) = arth y
y = th x =
(
e x − e−x
e x + e−x
)
y e x + e − x = e x − e − x ⇒ e x (1 − y) = e − x (1 + y) ⇒ e 2 x =
ex =

1+ y
1 1+ y
⇒  x = arth y = ln
1− y
2 1− y

:‫ﻋﻨﺪﻧﺎ‬
y <1
,
:‫ﻭﻣﻨﻪ ﻳﻜﻮﻥ‬
1+ y
⇒
1− y

y < 1

,
f ( x) = y = cth x ‫ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺪﺍﻟﺔ‬-4
Ε( f ) = ]− ∞,−1[ U ]1,+∞[ ,
D( f ) = ℜ − {0}
‫ ﻳﺮﻣﺰ ﳍﺎ ﺑﺎﻟﺮﻣﺰ‬، Ε( f ) ‫ﻭﺑﺎﻟﺘﺎﱄ ﺗﻮﺟﺪ ﳍﺎ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ‬، D( f ) ‫ ﻣﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ‬f ‫ﺍﻟﺪﺍﻟﺔ‬
x = f −1 ( y) = arcth y
y = cthx =
e x + e −x
e x − e −x
e x ( y − 1) = e − x ( y + 1) ⇒ e 2 x =
y +1
⇒ ex =
y −1

1  y + 1

 x = arcth y = ln
2  y − 1 

,
(
)
y = arsh x = ln x + 1 + x 2
1 1+ x
, x <1
arth x = ln
2 1− x
:‫ﻋﻨﺪﻧﺎ‬
y >1
,
:‫ﻭﻣﻨﻪ ﻳﻜﻮﻥ‬
y +1
⇒
y −1

y > 1

:‫ ﰲ ﻋﺒﺎﺭﺓ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻌﻜﺴﻴﺔ ﻳﻜﻮﻥ‬x ‫ ﺑـ‬y ‫ﻧﺴﺘﺒﺪﻝ‬: ‫ﻣﻼﺣﻈﺔ‬
,
(
)
Arch x = ± ln x + x 2 − 1
1  x + 1
,
arcth x = ln

2  x − 1
(
arch x ± arch y = arch (xy ±
x ≥1
,
x >1
,
)
(x − 1)(y − 1))
arsh x ± arsh y = arsh x 1 + y2 ± y 1 + x2
83
PDF created with pdfFactory trial version www.pdffactory.com
2
2
: ‫ﺧﺼﺎﺋﺺ‬
-1
-2
. arch − x ‫ ﺃﻭ‬، arch + x ‫ﺗﻌﲏ‬
arch x
‫ﺣﻴﺚ‬
 x± y 

arth x ± arth y = arth
 1 ± xy 
 1 ± xy 

arcth x ± arcth y = arcth 
 x± y 
y = arcth x
− ∞ < x < −1
+ 1 < x < +∞
− ∞ < y < +∞
y≠0
x=0
y = 0, x = ±1
x = ±1
x → ±∞, f
‫ﻻ‬
‫ﻓﺮﺩﻳﺔ‬
→0
1 ≤ x < +∞
1 ≤ x < +∞
0 ≤ y < +∞
−∞ < y≤ 0
x =1
x =1
− ∞ < y < +∞
‫ﻻ‬
− ∞ < x < +∞
D( f )
− ∞ < y < +∞
Ε( f )
x=0
‫ﻻ‬
‫ﻻ‬
x → ±∞, f −1 → +∞
lim f −1 ( x) = ±∞
x → ±∞, f −1 → −∞
x→ ±∞
x=0
‫ﻻ‬
x=0
‫ﻓﺮﺩﻳﺔ‬
‫ﻻ‬
‫ﻓﺮﺩﻳﺔ‬
x = arcth y,
x = arth y,
84
PDF created with pdfFactory trial version www.pdffactory.com
-4
y = arsh x
y = arch − x
− 1 < x < +1
‫ﻻ‬
−1
y = arch + x
y = arth x
-3
x = arsh y,
x = arch y
f
‫ﺃﺻﻔﺎﺭ‬
‫ﺧﻂ ﻣﻘﺎﺭﺏ‬
∞
‫ﺍﻟﺴﻠﻮﻙ ﰲ‬
‫ﻧﻘﺎﻁ‬
‫ﺍﻻﻧﻌﻄﺎﻑ‬
‫ﺯﻭﺟﻲ ﻓﺮﺩﻱ‬
: ‫ﺭﺳﻢ ﺍﻟﺪﻭﺍﻝ‬
‫‪ -9.3‬ﻣﻘﺎﺭﻧﺔ ﺍﻟﺪﻭﺍﻝ ﰲ ﺟﻮﺍﺭ ﻧﻘﻄﺔ ﺭﻣﺰ ﺍﻻﻧﺪﻭ "‪"0" ، "º‬‬
‫‪ -1.9.3‬ﺍﻟﺪﻭﺍﻝ ﺍﳌﺘﻜﺎﻓﺌﺔ ‪:‬‬
‫ﺗﻌﺮﻳﻒ ‪ :‬ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺘﲔ‬
‫‪g, f‬‬
‫ﻣﺘﻜﺎﻓﺌﺘﺎﻥ ﻋﻨﺪﻣﺎ ‪، x → a‬ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﻞ ﻣﻦ‬
‫‪g, f‬‬
‫ﻣﻌﺮﻓﺘﲔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ‬
‫ﻟﻠﻨﻘﻄﺔ ‪، Vδ (a ) , a‬ﻭﺇﺫﺍ ﻭﺟﺪﺕ ﺩﺍﻟﺔ ‪ h‬ﻣﻌﺮﻓﺔ ﰲ ) ‪، Vδ (a‬ﲝﻴﺚ ‪:‬‬
‫•‬
‫•‬
‫‪‬‬
‫‪‬‬
‫‪h( x) = 1‬‬
‫‪lim‬‬
‫‪x→ a‬‬
‫)‪f ( x) = g ( x)h( x‬‬
‫‪,‬‬
‫ﻭﻧﻜﺘﺐ )‪ f (x) ≈ g (x‬ﻋﻨﺪﻣﺎ ‪ x → a‬ﺃﻭ ‪ f ≈ g‬ﻋﻨﺪﻣﺎ ‪x → a‬‬
‫ﻣﺜﺎﻝ ‪:‬‬
‫ﺃ‪-‬‬
‫‪f ( x) = sin x‬‬
‫‪g, f‬‬
‫ﻣﺘﻜﺎﻓﺌﺘﺎﻥ ﻋﻨﺪﻣﺎ ‪ ، x → 0‬ﻷﻥ‬
‫ﻣﻊ ﺍﻟﻌﻠﻢ ﺃﻥ‬
‫ﺏ‪-‬‬
‫‪g ( x) = x ,‬‬
‫‪sin x‬‬
‫)‪= g ( x)h(x‬‬
‫‪x‬‬
‫‪f ( x) = sin x = x‬‬
‫‪lim h( x) = lim‬‬
‫‪sin x‬‬
‫‪=1‬‬
‫‪x→0‬‬
‫‪x‬‬
‫‪x4‬‬
‫‪x2 + x‬‬
‫= )‪f (x‬‬
‫‪,‬‬
‫‪x→0‬‬
‫‪g ( x) = x2‬‬
‫‪x2‬‬
‫‪f ( x) = x 2‬‬
‫)‪= g ( x)h( x‬‬
‫‪x +1‬‬
‫ﻣﺘﻜﺎﻓﺌﺘﺎﻥ ﻋﻨﺪﻣﺎ ∞ → ‪، x‬ﻷﻥ‬
‫‪2‬‬
‫ﺧﺼﺎﺋﺺ ‪:‬‬
‫‪،‬ﻭ‬
‫‪x2‬‬
‫‪=1‬‬
‫‪lim h( x) = lim 2‬‬
‫∞→‪x‬‬
‫‪x→∞ x + 1‬‬
‫ﺃ‪ -‬ﺍﻟﻌﻼﻗﺔ "≈" ﻋﻼﻗﺔ ﺗﻜﺎﻓﺆ ‪.‬‬
‫ﺏ‪ f1 ≈ g1 , f ≈ g ) -‬ﻋﻨﺪﻣﺎ ‪ ff1 ≈ gg1 ) ⇐ (x → a‬ﻋﻨﺪﻣﺎ ‪(x → a‬‬
‫ﻧﻈﺮﻳﺔ ‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ‬
‫‪f ≈ f1‬‬
‫‪ g ≈ g 1‬ﻋﻨﺪﻣﺎ ‪ ، x → 0‬ﻓﺈﻧﻪ ﻣﻦ ﻭﺟﻮﺩ ‪‬ﺎﻳﺔ‬
‫‪,‬‬
‫ﻭﺟﻮﺩ ‪‬ﺎﻳﺔ ﺍﻟﻨﺴﺒﺔ )‪ f (x‬ﻋﻨﺪﻣﺎ‬
‫)‪g ( x‬‬
‫ﺍﻟﱪﻫﺎﻥ ‪:‬‬
‫‪x→0‬‬
‫)‬
‫)‪lim h ( x) = 1‬‬
‫‪lim h1 ( x) = 1‬‬
‫‪x→ a‬‬
‫‪2‬‬
‫ﲟﺎ ﺃﻥ‬
‫)‪f1 ( x‬‬
‫)‪g1 ( x‬‬
‫ﻛﻞ ﻣﻦ‬
‫‪lim‬‬
‫‪x→ a‬‬
‫‪g1 , f1 , h1‬‬
‫‪x→ a‬‬
‫‪/‬‬
‫ﻋﻨﺪﻣﺎ ‪، x → 0‬ﻧﺴﺘﻨﺘﺞ‬
‫‪.‬ﻭﻳﻜﻮﻥ ﻋﻨﺪﻫﺎ ‪:‬‬
‫)‪f ( x‬‬
‫)‪f ( x‬‬
‫‪= lim 1‬‬
‫‪x‬‬
‫→‬
‫‪a‬‬
‫)‪g ( x‬‬
‫)‪g1 ( x‬‬
‫‪/‬‬
‫)‪f1 (x‬‬
‫ﺍﻟﻨﺴﺒﺔ‬
‫)‪g1 ( x‬‬
‫‪،‬‬
‫‪lim‬‬
‫‪x→ a‬‬
‫(‬
‫)‪(g ≈ g ) ⇔ (g (x) = g (x)h (x‬‬
‫)‪≈ f1 ) ⇔ f ( x) = f1 ( x)h1 ( x‬‬
‫‪2‬‬
‫‪1‬‬
‫‪(f‬‬
‫‪1‬‬
‫‪، lim‬ﻓﺈﻧﻪ ﻣﻦ ﺧﺼﺎﺋﺺ ‪‬ﺎﻳﺎﺕ ﺍﻟﺪﻭﺍﻝ‪،‬ﻧﺴﺘﻨﺘﺞ ﻭﺟﻮﺩ ‪ (δ > 0), δ‬ﲝﻴﺚ ﺗﻜﻮﻥ‬
‫ﻣﻮﺟﻮﺩﺓ ﻭ ‪h1 ( x) = 1‬‬
‫‪x→ a‬‬
‫ﻣﻌﺮﻓﺔ ‪،‬ﻭ‬
‫‪g 1 ( x) ≠ 0 , h1 ( x) ≠ 0‬‬
‫•‬
‫ﰲ ﺍﳉﻮﺍﺭ ) ‪. Vδ (a‬‬
‫‪85‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫•‬
‫ﻫﺬﺍ ﻳﻌﲏ ﺃﻥ ﺍﻟﺪﺍﻟﺔ )‪ g (x‬ﺣﻴﺚ )‪، g (x) = g1 (x)h1 (x‬ﺗﻜﻮﻥ ﻣﻌﺮﻓﺔ ﰲ ﺍﳉﻮﺍﺭ ) ‪ Vδ (a‬ﻭﲢﻘﻖ ‪. g (x) ≠ 0‬‬
‫)‪f ( x) h1 ( x) f1 ( x‬‬
‫=‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﳝﻜﻦ ﺃﻥ ﻧﻜﺘﺐ‪:‬‬
‫)‪g ( x) h2 ( x) f1 ( x‬‬
‫ﻭﻣﻨﻪ ﻳﻜﻮﻥ‪:‬‬
‫)‪f ( x‬‬
‫)‪f ( x‬‬
‫‪lim‬‬
‫‪= lim 1‬‬
‫)‪x→ a g ( x‬‬
‫)‪x→ a g ( x‬‬
‫‪1‬‬
‫ﻣﺜﺎﻝ ‪ :‬ﺣﺴﺎﺏ )‬
‫(‬
‫‪arcsin x e x − 1‬‬
‫‪lim‬‬
‫‪x→0 cos x − cos 3 x‬‬
‫ﻋﻨﺪﻧﺎ ‪ ، sin x ≈ x‬ﻭ‬
‫ﻫﺬﺍ ﻳﻌﲏ ﺣﺴﺐ ﺍﳋﺎﺻﻴﺔ –ﺏ‪ -‬ﺃﻥ ‪:‬‬
‫‪،‬ﻋﻨﺪﻣﺎ )‪. (x → 0‬‬
‫‪e x − 1 ≈ x , arcsin x ≈ x‬‬
‫)‬
‫(‬
‫‪arcsin x e x − 1 ≈ x2‬‬
‫‪x→0‬‬
‫‪sin 2 x ≈ 2 x‬‬
‫ﻋﻨﺪﻧﺎ‬
‫ﻭﻣﻨﻪ ﻳﻜﻮﻥ‪:‬‬
‫‪cos x − cos 3 x = 2 sin x sin 2 x‬‬
‫‪x→0‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﺗﻜﻮﻥ‪:‬‬
‫‪cos x − cos 3 x ≈ 4 x2‬‬
‫)‬
‫(‬
‫‪arcsin x e x − 1‬‬
‫‪x2‬‬
‫‪1‬‬
‫‪lim‬‬
‫= ‪= lim 2‬‬
‫‪x→0 cos x − cos 3 x‬‬
‫‪x→0 4 x‬‬
‫‪4‬‬
‫‪ -2.9.3‬ﻣﻔﻬﻮﻡ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻼﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﺑﺎﻟﻨﺴﺒﺔ ﻟﺪﺍﻟﺔ ﺃﺧﺮﻯ ‪:‬‬
‫ﺭﻣﺰ ﻻﻧﺪﻭ "‪) "°‬ﺍﻟﺼﻔﺮ ﺍﻟﺼﻐﲑ( ‪:‬‬
‫ﺗﻌﺮﻳﻒ ‪ :‬ﺇﺫﺍ ﻋﺮﻓﺖ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ ﻟﻠﻨﻘﻄﺔ ‪ a‬ﺍﻟﺪﻭﺍﻝ ‪ f , g , α‬ﲝﻴﺚ‬
‫‪f ( x) = g ( x)α ( x) ,‬‬
‫‪lim α ( x) = 0‬‬
‫‪x→a‬‬
‫ﻓﺈﻧﻨﺎ ﻧﻘﻮﻝ ﺇﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺪﺍﻟﺔ ‪ ، g‬ﺃﻭ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﻗﺎﺑﻠﺔ ﻟﻺﳘﺎﻝ ﺃﻣﺎﻡ ﺍﻟﺪﺍﻟﺔ ‪ g‬ﻋﻨﺪﻣﺎ ‪، x → 0‬‬
‫ﻭﻧﻜﺘﺐ ‪:‬‬
‫‪x→a‬‬
‫‪f ( x) = o( g ( x)) ,‬‬
‫ﺃﻭ‬
‫) ‪f = o( g‬‬
‫ﻣﻼﺣﻈﺔ ‪:‬‬
‫ﺃ‪ -‬ﰲ ﺣﺎﻟﺔ ‪، g ≡ 1‬ﺃﻱ )‪ ، x → 0 , f = o(1‬ﺗﻜﻮﻥ ‪ f‬ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ‪.‬‬
‫ﺏ‪ -‬ﰲ ﺣﺎﻟﺔ ‪ g ≡ 0‬ﺍﻟﻌﻼﻗﺔ ) ‪ ، f = o(g‬ﺗﻌﻦ‪. lim o (g ) = 0 :‬‬
‫‪g‬‬
‫ﺝ‪-‬‬
‫‪g, f‬‬
‫‪x→ 0‬‬
‫ﻟﻴﺲ ﺣﺘﻤﺎ ﻻ ﻣﺘﻨﺎﻫﻴﺘﲔ ﰲ ﺍﻟﺼﻐﺮ‪.‬‬
‫‪86‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﻣﺜﺎﻝ‬
‫‪ :1‬ﻟﺘﻜﻦ ‪f ( x) = x 2‬‬
‫‪g ( x) = x 4 ,‬‬
‫ﻭﺍﺿﺢ ﺃﻥ ) ‪ f = o(g‬ﻋﻨﺪﻣﺎ ∞ → ‪. x‬‬
‫ﻟﻜﻦ ‪ g, f‬ﻻ ﻣﺘﻨﺎﻫﻴﺘﺎﻥ ﰲ ﺍﻟﻜﱪ ﻋﻨﺪﻣﺎ ∞ → ‪. x‬‬
‫ﺗﻨﺒﻴﻪ ‪:‬‬
‫ﺃ‪ -‬ﺇﺫﺍ ﻛﺎﻧﺖ ‪ g‬ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ‪،‬ﻳﻘﺎﻝ ﺇﻥ ‪ f‬ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﻣﻦ ﺭﺗﺒﺔ ﺃﻛﱪ ﻣﻦ ﺭﺗﺒﺔ ﺍﻟﻼ ﺗﻨﺎﻫﻲ ﰲ ﺍﻟﺼﻐﺮ ‪. g‬‬
‫‪ k ، lim‬ﺛﺎﺑﺖ‪ ،‬ﻧﻘﻮﻝ ﺇﻥ ‪ f , g‬ﻻ ﻣﺘﻨﺎﻫﻴﺘﺎﻥ ﰲ ﺍﻟﺼﻐﺮ‬
‫ﺏ‪ -‬ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﻞ ﻣﻦ ‪ g, f‬ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﻭ ‪α (x) = k‬‬
‫‪x→ a‬‬
‫ﻣﻦ ﻧﻔﺲ ﺍﻟﺪﺭﺟﺔ‪.‬‬
‫ﻣﺜﺎﻝ‪:2‬‬
‫‪g ( x) = x‬‬
‫‪f ( x) = x 2 ,‬‬
‫ﺃ‪ -‬ﻟﺘﻜﻦ‬
‫ﻭﺍﺿﺢ ﺃﻥ ) ‪ ، x → 0 , f = o(g‬ﺃﻱ ‪ f‬ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ﻣﻦ ﺩﺭﺟﺔ ﺃﻛﱪ ﻣﻦ ﺩﺭﺟﺔ ﺍﻟﻼ ﺗﻨﺎﻫﻲ ﰲ ﺍﻟﺼﻐﺮ ‪. g‬‬
‫ﺏ‪ -‬ﻟﺘﻜﻦ ‪g ( x) = x , f ( x) = 4 + x − 2‬‬
‫ﻻﺣﻆ ﺃﻥ‪:‬‬
‫‪4+ x−2 1‬‬
‫=‬
‫‪x‬‬
‫‪2‬‬
‫ﻣﻼﺣﻈﺔ ‪ :‬ﺍﻟﻜﺘﺎﺑﺔ‬
‫‪lim‬‬
‫‪x→ 0‬‬
‫) ‪, f = o( g‬‬
‫‪،‬ﺃﻱ ﺛﺎﺑﺖ‪،‬ﻭﻣﻨﻪ ‪ g, f‬ﳍﻤﺎ ﻧﻔﺲ ﺩﺭﺟﺔ ﺍﻟﻼ ﺗﻨﺎﻫﻲ ﰲ ﺍﻟﺼﻐﺮ ﻋﻨﺪﻣﺎ ‪. x → 0‬‬
‫‪x→a‬‬
‫ﻻ ﺗﻌﲏ ﺍﳌﺴﺎﻭﺍﺓ ﲟﻌﻨﺎﻫﺎ ﺍﳊﻘﻴﻘﻲ ‪،‬ﻷﻥ ) ‪ o ( g‬ﻳﻌﲎ ﻗﺴﻢ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻼﻣﺘﻨﺎﻫﻴﺔ ﰲ‬
‫ﺍﻟﺼﻐﺮ ﻣﻦ ﺩﺭﺟﺔ ﺃﻛﱪ ﻣﻦ ﺩﺭﺟﺔ ﺍﻟﻼ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ ‪ )، g‬ﻫﺬﺍ ﰲ ﺣﺎﻟﺔ ‪ g‬ﻻ ﻣﺘﻨﺎﻫﻴﺔ ﰲ ﺍﻟﺼﻐﺮ (‪.‬‬
‫ﺃﻣﺎ ﰲ ﺣﺎﻟﺔ ‪ g‬ﻛﻴﻔﻴﺔ ﻓﻬﻮ ﻳﻌﲏ ﻗﺴﻢ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻘﺎﺑﻠﺔ ﻟﻺﳘﺎﻝ ﺃﻣﺎﻡ ‪، g‬ﻭﺑﺎﻟﺘﺎﱄ ﺃﺻﻞ ﺍﻟﻜﺘﺎﺑﺔ ﻫﻮ‪, f ∈ o( g ) :‬‬
‫ﻟﻜﻦ ﻟﺘﺴﻬﻴﻞ ﺍﳊﺴﺎﺑﺎﺕ ﻧﻜﺘﺐ‬
‫) ‪, f = o( g‬‬
‫‪x→a‬‬
‫‪.x→a‬‬
‫ﺧﺼﺎﺋﺺ ﺍﻟﺼﻔﺮ ﺍﻟﺼﻐﲑ)ﻋﻨﺪﻣﺎ ‪:( x → a‬‬
‫‪-1‬‬
‫‪-2‬‬
‫‪-3‬‬
‫‪-4‬‬
‫‪-5‬‬
‫‪-6‬‬
‫‪-7‬‬
‫‪-8‬‬
‫) ‪o (cg ) = o(g‬‬
‫) ‪o ( g ) + o( g ) = o( g‬‬
‫) ‪o ( g + o( g )) = o( g‬‬
‫) (‬
‫‪g n −1 o ( g ) = o g n‬‬
‫‪n ∈ Ν,‬‬
‫) ‪C o ( g ) = o( g‬‬
‫) ‪o (o ( g )) = o( g‬‬
‫( ) () (‬
‫)‬
‫) ‪(o (g )) = o(g‬‬
‫) ‪o (g‬‬
‫‪= o(g ) -9‬‬
‫‪g‬‬
‫‪n, m ∈ Ν, o g n o g m = o g n + m‬‬
‫‪n‬‬
‫‪n −1‬‬
‫‪n‬‬
‫‪n‬‬
‫‪n ∈ Ν,‬‬
‫•‬
‫‪, x ∈ Vδ (a ) , n ∈ Ν ،‬‬
‫‪.g ≠ 0‬‬
‫‪87‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
‫ﺭﻣﺰ ﻻﻧﺪﻭ "‪ "0‬ﺍﻟﺼﻔﺮ ﺍﻟﻜﺒﲑ ‪:‬‬
‫ﺗﻌﺮﻳﻒ ‪ :‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﻭﺍﻝ ‪ ϕ , g, f‬ﻣﻌﺮﻓﺔ ﰲ ﺟﻮﺍﺭ ﻣﺎ ﻣﺜﻘﻮﺏ‬
‫• ‪‬‬
‫‪‬‬
‫ﻟﻠﻨﻘﻄﺔ ‪، Vδ (a )  , a‬ﲝﻴﺚ )‪ f ( x) = g ( x)ϕ (x‬ﻭ )‪ϕ (x‬‬
‫‪‬‬
‫‪‬‬
‫•‬
‫ﳏﺪﻭﺩﺓ ﻋﻠﻰ ) ‪، Vδ (a‬ﺃﻱ ‪:‬‬
‫•‬
‫‪∃c > 1 / ∀x ∈ Vδ (a ) → ϕ ( x) ≤ c‬‬
‫ﻓﺈﻧﻨﺎ ﻧﻘﻮﻝ ﺇﻥ ‪ f‬ﺻﻔﺮ ﻛﺒﲑ ﻣﻦ ‪ g‬ﻋﻨﺪﻣﺎ ‪، x → a‬ﻭﻧﻜﺘﺐ ‪:‬‬
‫‪ f (x) = 0(g (x)) , x → a‬ﺃﻭ‬
‫ﻣﺜﺎﻝ ‪:‬‬
‫ﺃ‪-‬‬
‫‪, f ( x) = x 2 + 2 x 3‬‬
‫) ‪, f = 0( g‬‬
‫‪x→a‬‬
‫‪x → 0 , g ( x) = x 2‬‬
‫ﻭﺍﺿﺢ ﺃﻥ‪:‬‬
‫)‪/ ϕ ( x) = (1 + 2 x‬‬
‫ﻻﺣﻆ‬
‫)‪f ( x) = x 2 + 2 x 3 = x 2 (1 + 2 x) = g ( x)ϕ ( x‬‬
‫‪lim ϕ ( x) = 1‬‬
‫‪x→ 0‬‬
‫•‬
‫)‪Vδ (0‬‬
‫ﻫﺬﺍ ﻳﻌﲏ ﻭﺟﻮﺩ ﺟﻮﺍﺭ‬
‫ﺗﻜﻮﻥ ﻓﻴﻪ )‪ ϕ (x‬ﻣﻌﺮﻓﺔ ﻭﳏﺪﻭﺩﺓ ﻭ‬
‫))‪f ( x) = 0( g ( x‬‬
‫‪, f ( x) = x 2 + 2 x3‬‬
‫ﺏ‪-‬‬
‫ﻭﺍﺿﺢ ﺃﻥ‪:‬‬
‫ﻻﺣﻆ‬
‫‪g, f‬‬
‫ﻣﻌﺮﻓﺘﲔ‪،‬ﻭﻣﻨﻪ ﻳﻜﻮﻥ‪:‬‬
‫‪x → 0,‬‬
‫‪x → 0 , g ( x) = x 3‬‬
‫‪1‬‬
‫‪‬‬
‫‪/ ϕ ( x) =  2 + ‬‬
‫‪x‬‬
‫‪‬‬
‫‪lim ϕ ( x) = 2‬‬
‫‪1‬‬
‫‪‬‬
‫)‪f ( x) = x 2 + 2 x 3 = x 3  2 +  = g ( x)ϕ ( x‬‬
‫‪x‬‬
‫‪‬‬
‫∞ →‪x‬‬
‫•‬
‫ﺃﻱ ﺃﻥ )‪ ϕ (x‬ﳏﺪﻭﺩﺓ ﰲ ﺍﳉﻮﺍﺭ ) ∞( ‪ Vδ‬ﻭ ‪ g, f‬ﻣﻌﺮﻓﺘﲔ ﻓﻴﻪ‪ ،‬ﻭﻣﻨﻪ ﻳﻜﻮﻥ‪:‬‬
‫))‪x → ∞ , f ( x) = 0( g ( x‬‬
‫ﻣﻼﺣﻈﺔ ‪:‬‬
‫ﺃ‪ -‬ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﻭﺍﻝ ‪ ϕ , g, f‬ﻣﻌﺮﻓﺔ ﻋﻠﻰ ﺍ‪‬ﺎﻝ ‪، I‬ﻭ ‪ ϕ‬ﳏﺪﻭﺩﺓ ﻋﻠﻴﻪ‪ ،‬ﻓﺈﻥ‬
‫ﺏ‪ -‬ﺍﻟﻜﺘﺎﺑﺔ )‪ x ∈ I , f (x) = 0(1‬ﺗﻌﲏ ﺃﻥ ﺍﻟﺪﺍﻟﺔ ‪ f‬ﳏﺪﻭﺩﺓ ﻋﻠﻰ ‪. I‬‬
‫) ‪x ∈ I , f = 0( g‬‬
‫‪ -3.9.3‬ﻣﻌﻴﺎﺭ ﺍﻟﺪﻭﺍﻝ ﺍﳌﺘﻜﺎﻓﺌﺔ ‪:‬‬
‫ﻧﻈﺮﻳﺔ ‪ :‬ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺘﺎﻥ‬
‫‪g, f‬‬
‫ﻣﺘﻜﺎﻓﺌﺘﲔ ﻋﻨﺪﻣﺎ ‪ ، x → a‬ﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻛﺎﻥ‬
‫))‪, f ( x) = g ( x) + o( g ( x‬‬
‫‪x → x0‬‬
‫ﺃﻭ‬
‫))‪g ( x) = f (x) + o( f ( x‬‬
‫‪88‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬
( x → a ‫ ﻋﻨﺪﻣﺎ‬f ‫ ﺗﺴﻤﻰ ﺍﳉﺰﺀ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﺪﺍﻟﺔ‬g ‫)ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ‬
x→a
:‫ ﺃﻱ ﺃﻥ‬، x → a , f ≈ g ‫ ]⇐[ ﻧﻔﺮﺽ ﺃﻥ‬: ‫ﺍﻟﱪﻫﺎﻥ‬
, f ( x) = g ( x)h( x)
/ lim h(x) = 1
x→ a
:‫ﻋﻨﺪﻧﺎ‬
f ( x) − g ( x) = g ( x)h( x) − g ( x) = g ( x)(h( x) − 1) = g ( x)α ( x) / α ( x) = h( x) − 1 x→

0
→1
f ( x) − g ( x) = o( g ( x))
x→a
, f ( x) = g ( x) + o( g ( x))
x→a
, f ( x) = g ( x) + o( g ( x))
:‫ﻭﻣﻨﻪ ﻳﻜﻮﻥ‬
:‫ﺃﻱ ﺃﻥ‬
: ‫]⇒[ ﻧﻔﺮﺽ ﺃﻥ‬
: ‫ﻋﻨﺪﻧﺎ‬
o ( g ( x)) = g ( x)α (x) / α ( x) 
→ 0
x→a
:‫ﻭﻣﻨﻪ ﻳﻜﻮﻥ‬
f ( x) = g ( x) + g ( x)α ( x) = g ( x)(1 + α ( x)) = g ( x)h( x) /
h( x) = 1 + α ( x) x
→1
→a
x→a
, f ≈ g :‫ﺃﻥ‬
‫ﺃﻱ‬
(x → 0) : ‫ﺃﻣﺜﻠﺔ‬
sin x = x + o( x) ⇔ sin x ≈ x
tg x = x + o( x) ⇔ tg x ≈ x
arcsin x = x + o( x) ⇔ arcsin x ≈ x
arctg x = x + o( x) ⇔ arctg x ≈ x
e x − 1 = x + o( x ) ⇔ e x − 1 ≈ x
sh x = x + o( x) ⇔ sh x ≈ x
ln(1 + x) = x + o( x) ⇔ ln(1 + x) ≈ x
(1 + x)
α
− 1 = x + o( x) ⇔ (1 + x) − 1 ≈ x
α
-1
-2
-3
-4
-5
-6
-7
-8
:1‫ﻣﺜﺎﻝ‬
ex − 3 1+ x
x→0 2 arctg x − arcsin x
lim
89
PDF created with pdfFactory trial version www.pdffactory.com
: ‫ ﺣﺴﺎﺏ‬-‫ﺃ‬
arctg x = x + o( x)
arcsin x = x + o(x)
،
،
ex − 3 1 − x =
3
x → 0 ‫ﻋﻨﺪﻧﺎ ﳌﺎ‬
e x −1 = x + o( x)
1+ x −1 =
1
x + o( x)
3
2
x + o( x)
3
:‫ﻭﻣﻨﻪ ﻳﻜﻮﻥ‬
2 arctg x − arcsin x = x + o( x)
: ‫ﻭﺑﺎﻟﺘﺎﱄ‬
2 o ( x)
2
x + o( x)
+
ex − 3 1+ x
x =2
lim
= lim 3
= lim 3
x→0 x + o( x)
x→0
x→0 2 arctg x − arcsin x
o ( x) 3
1+
x
1
:‫ ﺣﺴﺎﺏ‬-‫ﺏ‬
2
lim cos x 2 x
x→0
(
) ‫ﻭ‬، cos
ln cos 2 x 1
ln 1 − sin 2 2 x
lim ln cos 2 x = lim
=
lim
x→0
x→0
x2
2 x→0
x2
1
x2
(
1
2
1
x2
2x = e
ln cos x 2 x
‫ﻋﻨﺪﻧﺎ‬
: ‫ﻣﻦ ﻧﺎﺣﻴﺔ ﺛﺎﻧﻴﺔ ﺑﺴﻬﻮﻟﺔ ﳒﺪ‬
)
ln 1 − sin 2 2 x ≈ − sin 2 2 x ≈ −(2 x) = −4 x2
(
2
:‫ﻭﺑﺎﻟﺘﺎﱄ ﺗﻜﻮﻥ‬
)
1
ln 1 − sin 2 2 x
1
4 x2
lim
=
−
lim
= −2
2 x→0
x2
2 x→0 x2
1
lim cos x 2 x = −2
2
x→0
1
lim cos x 2 x = e x→0
2
1
2
lim ln cos x 2 x
x→0
=
1
e2
‫ﺃﻱ ﺃﻥ‬
:‫ ﻓﺈﻥ‬،‫ ﻣﺴﺘﻤﺮﺓ‬e x ‫ﲟﺎ ﺃﻥ ﺍﻟﺪﺍﻟﺔ‬
1
 cos x  x ln (1+ x)
lim

x→0 ch x


: ‫ ﺣﺴﺎﺏ‬-‫ﺝ‬
(cos x − 1 + 1) xln (1+ x) −1
 cos x  x ln (1+ x) lim
lim
= x→0
=e

1
x→0 ch x


lim(ch x − 1 + 1) xln (1+ x)
1
1
x→0
.
x→0 ,
t = ϕ −1 ( x) ‫ﻋﻜﺴﻴﺔ‬
( ) ‫ﻭ‬، ch x − 1 = x2 + o(x )‫ﻭ‬، cos x − 1 = − x2
2
x ln(1 + x) = x2 + o x2
2
2
( ) ‫ﺫﺍﻟﻚ ﻷﻥ‬
+ o x2
: ‫ ﺍﻟﺪﻭﺍﻝ ﺍﳌﻌﻄﺎﺓ ﺑﺸﻜﻞ ﻭﺳﻴﻄﻲ‬-10.3
‫ ﳍﺎ ﺩﺍﻟﺔ‬ϕ ‫ ﻧﻔﺮﺽ ﺃﻥ ﺍﻟﺪﺍﻟﺔ‬، ℜ ‫ ﻣﻦ‬I ‫ ﺩﺍﻟﺘﲔ ﻣﻌﺮﻓﺘﲔ ﻋﻠﻰ ﳎﻤﻮﻋﺔ‬y = ψ (t ),
90
PDF created with pdfFactory trial version www.pdffactory.com
x = ϕ (t )
‫ﻟﺘﻜﻦ‬
‫ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ ) ‪ ، ϕ (I‬ﻭﻣﻨﻪ ﻋﻠﻰ ﺍ‪‬ﻤﻮﻋﺔ ) ‪ ϕ (I‬ﺗﻌﺮﻑ ﺍﻟﺪﺍﻟﺔ ﺍﳌﺮﻛﺒﺔ )‪، y = ψ (ϕ −1 (x)) = f (x‬ﺍﻟﱵ ﺗﺴﻤﻰ ﺍﻟﺪﺍﻟﺔ‬
‫ﺍﳌﻌﻄﺎﺓ ﺑﺎﻟﺸﻜﻞ ﺍﻟﻮﺳﻴﻄﻲ ﺍﻟﺘﺎﱄ‪:‬‬
‫ﻣﺜﺎﻝ ‪:‬‬
‫) ‪x = ϕ (t‬‬
‫‪x = ϕ (t ) = R cos t‬‬
‫ﺃ‪-‬‬
‫‪. y = ψ (t ),‬‬
‫‪y = ψ (t ) = R sin t ,‬‬
‫ﺍﻟﺪﺍﻟﺔ ‪ ϕ‬ﻋﻠﻰ ﺍ‪‬ﺎﻝ ] ‪ [0, π‬ﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ‬
‫‪x‬‬
‫‪R‬‬
‫‪0≤t ≤π ،‬‬
‫‪t = arccos‬‬
‫ﻭﻣﻨﻪ ﻳﻜﻮﻥ‪:‬‬
‫‪x2‬‬
‫‪x‬‬
‫‪x‬‬
‫‪‬‬
‫‪‬‬
‫)‪y = sin  arccos  = R 1 − cos 2  arccos  = R 1 − 2 = R2 − x2 = f ( x‬‬
‫‪R‬‬
‫‪R‬‬
‫‪R‬‬
‫‪‬‬
‫‪‬‬
‫ﺃﻱ ﺃﻥ ﺍﻟﺪﺍﻟﺔ‬
‫‪y = f ( x) = R2 − x2‬‬
‫ﲤﺜﻞ ﻭﺳﻴﻄﻴﺎ ﺑﺎﳌﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪0≤t ≤π‬‬
‫ﺏ‪-‬‬
‫‪x = ϕ (t ) = R cos t‬‬
‫‪y = R sin t‬‬
‫‪y = ψ (t ) = R sin t ,‬‬
‫‪x = R cos t ,‬‬
‫‪،‬‬
‫‪π ≤ t ≤ 2π‬‬
‫ﺍﻟﺪﺍﻟﺔ ‪ ϕ‬ﻋﻠﻰ ﺍ‪‬ﺎﻝ ] ‪ [π ,2π‬ﺗﻘﺒﻞ ﺩﺍﻟﺔ ﻋﻜﺴﻴﺔ ﻣﻌﺮﻓﺔ ﻛﺎﻟﺘﺎﱄ ‪. y = − R2 − x2‬‬
‫ﻭﺑﺎﻟﺘﺎﱄ ﻧﻘﻮﻝ ﺇﺫﺍ ﺗﻐﲑ ‪ t‬ﰲ ﺍ‪‬ﺎﻝ ] ‪ ، [0,2π‬ﻓﺈﻥ ﺍﳌﻌﺎﺩﻻﺕ ‪ y = R sin t , x = R cos t‬ﺗﻌﺮﻑ ﺩﺍﻟﺘﲔ ﺑﻴﺎﻧﻴﻬﻤﺎ ﻫﻮ‬
‫ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﱵ ﻣﻌﺎﺩﻟﺘﻬﺎ ‪. x2 + y2 = R2‬‬
‫ﺃﻭ ﺃﻥ ﺍﻟﺪﺍﻟﺔ ‪ x2 + y2 = R2‬ﲤﺜﻞ ﻭﺳﻴﻄﻴﺎ ﺑﺎﳌﻌﺎﺩﻻﺕ‬
‫‪y = ψ (t ) = b sin t , x = ϕ (t ) = a cos t ، 0 ≤ t ≤ 2π‬‬
‫ﺝ‪-‬‬
‫‪x = R cos t‬‬
‫ﺑﲔ ﺃﻥ ﻫﺬﻩ ﺍﳌﻌﺪﻻﺕ ﲤﺜﻞ ﻭﺳﻴﻄﻴﺎ ﺍﻟﻘﻄﻊ ﺍﻟﻨﺎﻗﺺ ﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ‬
‫‪y = R sin t ,‬‬
‫‪x2 y 2‬‬
‫‪+‬‬
‫‪=1‬‬
‫‪a b2‬‬
‫‪t ∈ [0,2π ],‬‬
‫‪.‬‬
‫‪91‬‬
‫‪PDF created with pdfFactory trial version www.pdffactory.com‬‬