ﺛﺎﻧﻮﻳﺔ ﺃﺑﻮ ﺣﻴﺎﻥ ﺍﻟﺘﻮﺣﻴـﺪﻱ ﺍﻟﻨﻬﺎﻳــﺎﺕ ﻭ ﺍﻻﺗﺼـــﺎﻝ ﺍﻻﺳﺘﺎﺫ :ﻣﺤﻤــﺪ ﺣﻤـــﺪﺍﻥ ﺳﻠﺴﻠـﺔ ﺍﻟﺘﻤـﺎﺭﻳـــﻦ ﺍﻟﺴﻨﺔ ﺍﻟﺪﺭﺍﺳﻴﺔ : 2012-2011 ﺍﻟﺜﺎﻧﻴﺔ ﺑﺎﻙ ﻋﻠﻮﻡ ﺭﻳﺎﺿﻴــﺔ ﺍ( ﺃدﺭﺱ ﺍﺗﺼﺎﻝ ﺍﻟﺪﺍﻟﺔ fﻓﻲ ﺍﻟﻨﻘﻄﺔ .xo = 2 ﺗﻤﺮﻳﻦ . 1 √ 2 ﺏ( ﺃدﺭﺱ ﺍﺗﺼﺎﻝ ﺍﻟﺪﺍﻟﺔ fﻓﻲ ﺍﻟﻨﻘﻄﺔ ❶ ﺃدﺭﺱ ﺍﺗﺼﺎﻝ ﺍﻟﺪﺍﻟﺔ fﻋﻨﺪ xﻓﻲ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: o √ 1 + sin x − 1 3 = )f (x ; x 6= 0 f (x) = x − 2x − 1 x x+2 ﻭ f (0) = 1/2 xo = −3 x =0 o )sin(x − 1 x2 − 3x = )f (x √ = )f (x ; x 6= 3 x−1 x+1−2 f (1) = 1ﻭ ﻭ f )(3 = 3 x =1 x =3 o o 3 (cos x) − 1 = ) f (x ; x 6= 0 2 f (x) = |x − 2| + 1 sin x x2 + 1 ﻭ ﻭ f (0) = −3/2 x = 2 o x =0 ﺝ( ﺃدﺭﺱ ﺍﺗﺼﺎﻝ ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ .R ed m ﺍ( ﺑﻴﻦ ﺃﻥ: m x>1 ﺝ( ﺃدﺭﺱ ﺍﺗﺼﺎﻝ fﻋﻠﻰ ﺍﻟﻴﺴﺎﺭ ﻓﻲ .0 د( ﺃﺣﺴﺐ ﺍﻟﻨﻬﺎﻳﺘﻴﻦ: x 6= 1 1−x f (1) = a ﺃﻥ fﻣﺘﺼﻠﺔ ﻓﻲ .1ﺛﻢ ﺑﻴﻦ . ﻭ( ﺑﻴﻦ ﺃﻥ: x+2−2 √ 2x − 2 ﻭ x+2 = ) f (x = )f (x )1 + cos(πx ﺃﻥ: 1 − cos x f (0) = a ❻ ﻧﻌﺘﺒﺮ ﺍﻟﺪﺍﻟﺔ √ x2 + 1 − 1 = ) f (x ; x . f (0) = m ﺃدﺭﺱ ﺍﺗﺼﺎﻝ fﻋﻠﻰ ﻛﻞ ﻣﻦ [ ] − ∞; 0ﻭ [∞.]0; + ﺛﻢ ﺣﺪد mﻟﻜﻲ ﺗﻜﻮﻥ fﻣﺘﺼﻠﺔ ﻋﻠﻰ .R ﺗﻤﺮﻳﻦ . 2 ❶ ﻧﻌﺘﺒﺮ ﺍﻟﺪﺍﻟﺔ hamdane [email protected] = ) f (x x2 − 5x + 4 ﻭ xo = 4 ﺗﻤﺮﻳﻦ . 4 ❶ ﺃدﺭﺱ ﺍﺗﺼﺎﻝ fﻋﻠﻰ ﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﻳﻔﻬﺎ ﻓﻲ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: √ ) f (x) = x x − 1 ؛ π ) f (x) = tan 2x − 1 √ 2 x − 2−x = )f (x ؛ |x + 1| − 2 ) 2 4 6 ؛ 3x2 − 1 = )) f (x x−1 √ ؛f (x) = cos x x2 − 3x = )f (x ؛ √ x ) ) 1 3 5 ❷ ﺑﻴﻦ ﺃﻥ fﻣﺘﺼﻠﺔ ﻋﻠﻰ Iﺛﻢ ﺣﺪد ) f (Iﻓﻲ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ √ x−4 = ) f (xﻭ ]f (x) = x x + 1; I = [0, 1 ]; I = [3, 6 x−2 ﻭ .f (x) = E(x) + (x − E(x))2 ||x + 1| − |x − 1 ﻭ xo = 0 |x2 − 2x| − 8 = ) f (x xo = 1 ﺣﺪد aﻟﻜﻲ ﺗﻜﻮﻥ fﻣﺘﺼﻠﺔ ﻓﻲ .0ﺛﻢ ﺑﻴﻦ ﺃﻥ fﻣﺘﺼﻠﺔ ﻋﻠﻰ [.]0; 2π ﻫﻞ fﻗﺎﺑﻠﺔ ﻟﻠﺘﻤﺪﻳﺪ ﺑﺎﻻﺗﺼﺎﻝ ﻋﻠﻰ ﻳﺴﺎﺭ .2π x 6= 0 ﻭ 3 + cos x − 2 = ) f (x x2 xo = 0 −2x = ) f (x H am ❺ ﻧﻌﺘﺒﺮ ﺍﻟﺪﺍﻟﺔ x 6= 0 ; ﻭ x =2 o )sin(πx . )](∀x ∈ [0; 1 ﺗﻤﺮﻳﻦ . 3 ﻫﻞ ﺍﻟﺪﺍﻟﺔ fﺗﻘﺒﻞ ﺗﻤﺪﻳﺪﺍ ﺑﺎﻻﺗﺼﺎﻝ ﻋﻨﺪ xoﻓﻲ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: √ √ ∞.x→+ lim f (x) = 0 x sin x ∞x→+ )f (f (x)) = f (x xo = −2 = ) f (x ∞.x→− ) lim f (xﻭ )lim f (x ﻩ( ﺃدﺭﺱ ﺍﺗﺼﺎﻝ fﻓﻲ .1 x3 + 8 sin πx = ) f (x ; . ∀x ∈ R∗+ da ﺣﺪد aﻋﻠﻤﺎ x−1 x+b = ) f (x ; x61 2 f (0) = 1 1 − x < f (x) 6 1 ne ❹ ﻧﻌﺘﺒﺮ ﺍﻟﺪﺍﻟﺔ x2 + x + a = ) f (x ; x . ﺏ( ﺍﺳﺘﻨﺘﺞ ﺃﻥ fﻣﺘﺼﻠﺔ ﻓﻲ 0ﻋﻠﻰ ﺍﻟﻴﻤﻴﻦ. M oh a ❸ ﺣﺪد ﺍﻟﻌﺪدﻳﻦ aﻭ bﻟﻜﻲ ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ fﻣﺘﺼﻠﺔ ﻓﻲ :1 1 f (x) = xE ; x 6= 0 ❷ ﻧﻌﺘﺒﺮ ﺍﻟﺪﺍﻟﺔ o ❷ ﺃدﺭﺱ ﺍﺗﺼﺎﻝ fﻋﻠﻰ ﻳﺴﺎﺭ ﻭ ﻳﻤﻴﻦ xoﻓﻲ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: √ x− x |x| + 2x f )(x = ; x < 1 f (x) = 2 ; x 6= 0 x − 1 |x − |x f (0) = −3ﻭ xo = 1ﻭ f (1) = 1/2 √ x − 1 x =0 = ) f (x ;x > 1 o x−1 = .xo f (x) = x + 2; x 6 1 . ] f (x) = 3x2 ; x > 1; I = [−3, 2 ﺍﻟﺼﻔﺤﺔ 1ﻣﻦ 5 www.attossi.webs.com . ﺗﻤﺮﻳﻦ . 5 ❶ ﻓﻲ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ،ﺑﻴﻦ ﺃﻥ ﺍﻟﻤﻌﺎدﻟﺔ ﺗﻘﺒﻞ ﻋﻠﻰ ﺍﻷﻗﻞ ﺣﻼ ﻓﻲ ﺍﻟﻤﺠﺎﻝ :I + cos πx = 0 x4 − 4x = 1 ] I = [−1, 0 x √ 1 + x2 ] I = [0, 1 ﻭ 2 sin x = x π = I ,π ﻭ 3 ﺗﻤﺮﻳﻦ . 7 ﻧﻌﺘﺒﺮ fﺍﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ: ed ﻓﻲ :I 6 3 x−1 = ).f (x ;2 5 4 ﺑﺤﻴﺚ ❷ ﻟﻴﻜﻦ gﻗﺼﻮﺭ ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎﻝ [∞.I =]1; + ﺍ( ﺑﻴﻦ ﺃﻥ gﺗﻘﺎﺑﻞ ﻣﻦ Iﻧﺤﻮ ﻣﺠﺎﻝ Jﻳﻨﺒﻐﻲ ﺗﺤﺪﻳﺪﻩ. ﺏ( ﺣﺪد ) . lim+ g−1 (xﺛﻢ ﺃﺣﺴﺐ ) g−1 (xﻟﻜﻞ xﻣﻦ x→0 .J x + sin x = 1 π I = 0, ﻭ 6 m ] I = [−2, −1 2 cos πx = x 3 π π , = I ﻭ √ x ❶ ﺑﻴﻦ ﺃﻧﻪ ﻳﻮﺟﺪ ﻋﺪد ﺣﻘﻴﻘﻲ αﻣﻦ .f (α) = α ❷ ﻓﻲ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ،ﺑﻴﻦ ﺃﻥ ﺍﻟﻤﻌﺎدﻟﺔ ﺗﻘﺒﻞ ﺣﻼ ﻭﺣﻴﺪﺍ x5 + x2 + 2 = 0 . . ﺗﻤﺮﻳﻦ . 8 ﻧﻌﺘﺒﺮ fﺍﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ ] [0; πﺑـ.f (x) = 2 cos(x)−cos(2x) : ﺗﻐﻴﺮﺍﺕ ﺍﻟﺪﺍﻟﺔ ،fﺛﻢ ﺃﻧﺸﺊ ﻣﻨﺤﻨﺎﻫﺎ ﻓﻲ ﻡ.ﻢ.ﻢ ❶ ﺃدﺭﺱ »#» # . O, i , j m ❸ ] f : [a, b] → [a, bدﺍﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ ] .[a, bﺑﻴﻦ ﺃﻥ fﺗﻘﺒﻞ ﻧﻘﻄﺔ ﺻﺎﻣﺪﺓ) .ﺃﻱ ﺃﻥ ((∃α ∈ [a, b]) f (α) = α ﻣﺘﺼﻠﺔ ﻋﻠﻰ ] [a, bﺑﺤﻴﺚ ) .f (a) = f (bﺑﻴﻦ ❹ fدﺍﻟﺔ π ❷ ﻟﻴﻜﻦ gﻗﺼﻮﺭ ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎﻝ .I = ; π b−a 3 f (x) = f x +ﺗﻘﺒﻞ ﻋﻠﻰ ﺍﻷﻗﻞ ﺣﻼ ﺃﻥ ﺍﻟﻤﻌﺎدﻟﺔ 2 ﺍ( ﺣﺪد Jﺻﻮﺭﺓ ﺍﻟﻤﺠﺎﻝ Iﺑﺎﻟﺪﺍﻟﺔ .g ﻳﻨﺘﻤﻲ ﺇﻟﻰ ].[a, b ❺ aﻭ bﻋﺪدﺍﻥ ﺣﻘﻴﻘﻴﺎﻥ ﺑﺤﻴﺚ a < bﻭ fدﺍﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ ﺏ( ﻟﻴﻜﻦ λﻣﻦ .Jﺑﻴﻦ ﺃﻥ g(x) = λﺗﻘﺒﻞ ﺣﻼ ﻭﺣﻴﺪﺍ 1 1 ﻓﻲ ﺍﻟﻤﺠﺎﻝ .I = ).(∃c ∈]a, b[) f (c + ] .[a, bﺑﻴﻦ ﺃﻥ: a−c b−c . ❻ fﻭ gدﺍﻟﺘﻴﻦ ﻣﻌﺮﻓﺘﻴﻦ ﻣﻦ ] [a, bﻧﺤﻮ Rﻭ ﻣﺘﺼﻠﺘﻴﻦ ﺗﻤﺮﻳﻦ . 9 √ ﻋﻠﻰ ] [a, bﺑﺤﻴﺚ ) .(∀x ∈ [a, b]) f (x) 6 g(xﻟﻴﻜﻦ λﻋﺪدﺍ ﻧﻌﺘﺒﺮ fﺍﻟﻤﻌﺮﻓﺔ ﺑـ.f (x) = tan2 (x) − 2 3 tan(x) : ﺣﻘﻴﻘﻴﺎ ﻣﻦ [.]0; 1 π ;.I = 0 ❶ ﻟﻴﻜﻦ gﻗﺼﻮﺭ ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎﻝ ﺑﻴﻦ ﺃﻧﻪ ﺇﺫﺍ ﻛﺎﻥ ﻟﻜﻞ ﻣﻦ fﻭ gﻧﻘﻄﺔ ﺻﺎﻣﺪﺓ ،ﻓﺈﻥ ﺍﻟﺪﺍﻟﺔ h 3 ﺍﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ ] [a, bﺑﻤﺎ ﻳﻠﻲh(x) = λf (x) + (1 − λ)g(x) : ﺍ( ﺑﻴﻦ ﺃﻥ gﺗﻘﺎﺑﻞ ﻣﻦ Iﻧﺤﻮ ﻣﺠﺎﻝ Jﻳﻨﺒﻐﻲ ﺗﺤﺪﻳﺪﻩ. ﺗﻘﺒﻞ ﺃﻳﻀﺎ ﻧﻘﻄﺔ ﺻﺎﻣﺪﺓ. ﺏ( ﺣﺪد ) g−1 (xﻟﻜﻞ xﻣﻦ .J ❼ ﺃدﺭﺱ ﺗﻐﻴﺮﺍﺕ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﺪدﻳﺔ fﺍﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ Rﺑﻤﺎ ﻳﻠﻲ 7π ′ ;.I = 2π ❷ ﻟﻴﻜﻦ hﻗﺼﻮﺭ ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎﻝ ،f (x) = x + cos xﺛﻢ ﺇﺳﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻤﻌﺎدﻟﺔ f (x) = 0ﺗﻘﺒﻞ 3 ﺣﻼ ﻭﺣﻴﺪﺍ αﻭ ﺍﻋﻂ ﻗﻴﻤﺔ ﻣﻘﺮﺑﺔ ﻟﻪ ﺑﺎﻟﺪﻗﺔ .r = 10−1 ﺍ( ﺑﻴﻦ ﺃﻥ hﺗﻘﺎﺑﻞ ﻣﻦ I ′ﻧﺤﻮ ﻣﺠﺎﻝ J ′ﻳﻨﺒﻐﻲ x ❽ ﻧﻌﺘﺒﺮ ﺍﻟﻤﻌﺎدﻟﺔ .(E) : sin x − = 0 ﺗﺤﺪﻳﺪﻩ. 2 ﺏ( ﺣﺪد ) h−1 (xﻟﻜﻞ xﻣﻦ .J ′ ﺍ( ﺑﻴﻦ ﺃﻥ ﺣﻠﻮﻝ ﺍﻟﻤﻌﺎدﻟﺔ ) (Eﺗﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺠﺎﻝ ][−2, 2 ،ﺛﻢ ﺍﻋﻂ ﻋﺪد ﺣﻠﻮﻝ ﺍﻟﻤﻌﺎدﻟﺔ ) (Eﻣﻌﻠﻼ ﺟﻮﺍﺑﻚ. . ﺗﻤﺮﻳﻦ . 10 M oh a ne da ﺗﻤﺮﻳﻦ . 6 ﻧﻌﺘﺒﺮ fﺍﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ Rﺑﻤﺎ ﻳﻠﻲ: + . √ .f (x) = x − 4 x + 3 ❶ ﺑﻴﻦ ﺃﻥ fﻣﺘﺼﻠﺔ ﻋﻠﻰ .R+ ❷ ﻟﻴﻜﻦ gﻗﺼﻮﺭ ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎﻝ [∞.I = [4; + ﺍ( ﺑﻴﻦ ﺃﻥ gﺗﻘﺎﺑﻞ ﻣﻦ Iﻧﺤﻮ ﻣﺠﺎﻝ Jﻳﻨﺒﻐﻲ ﺗﺤﺪﻳﺪﻩ. ﺏ( ﺣﺪد ) g−1 (xﻟﻜﻞ xﻣﻦ .J hamdane [email protected] H am ﺏ( ﺍﻋﻂ ﻗﻴﻤﺔ ﻣﻘﺮﺑﺔ ﺑﺎﻟﺪﻗﺔ r = 10−1ﻷﻛﺒﺮ ﺣﻞ ﻣﻦ ﺑﻴﻦ ﺣﻠﻮﻝ ﺍﻟﻤﻌﺎدﻟﺔ ).(E 1 4 = Arctg ❶ ﺃﺛﺒﺖ ﺍﻟﻤﺘﺴﺎﻭﻳﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ: 2 3 1 3 π 5Arctg + 2Arctg = 7 79 4 1 1 1 π ﻭ = .2Arctg + Arctg + 2Arctg 5 7 8 4 √ 7π = Arctg(x)+Arctg 3xﻭ ❷ ﺣﻞ ﻓﻲ Rﺍﻟﻤﻌﺎدﻻﺕ : 12 π 1 Arctg(x) = 2Arctgﻭ = )Arctg(2x)+Arctg(3x 4 2 x−1 x+1 π Arctg + Arctg = ﻭ x− 4 2 x + 2 1 x−1 π Arctgﻭ + Arctg = ﻭ x x+1 4 5π = ).Arctg(x − 3) + Arctg(x) + Arctg(x + 3 4 ﺍﻟﺼﻔﺤﺔ 2ﻣﻦ 2Arctg 5 www.attossi.webs.com ❸ ﺑﺴﻂ ﻣﺎ ﻳﻠﻲ: 1−x 1+x ﻭ Arctg 1 − cos x ﻭ ))sin (Arctg(x ﻭ 1 + cos x √ p 1 + x2 − 1 Arctg + Arctg 1 + x2 − x x √ Arctg ﺗﻤﺮﻳﻦ . 15 ﻭ . . ﺗﻤﺮﻳﻦ . 11 ﺃﺣﺴﺐ √ ))cos (Arctg(x √ ﺍﻟﻨﻬﺎﻳﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ: )− x Arctg(2x2 lim x x→0 √ √ √ ❸ ﺭﺗﺐ ﺍﻷﻋﺪﺍد ﺍﻟﺘﺎﻟﻴﺔ ﺗﺮﺗﻴﺒﺎ ﺗﺰﺍﻳﺪﻳﺎ. 2; 3 3; 4 4; 6 6 : ﻭ √ 3 . x+8−2 ﺍﻟﺘﺎﻟﻴﺔ: ﺍﻟﻨﻬﺎﻳﺎﺕ ﺃﺣﺴﺐ x→0 x √ √ √ 3 3 x−43x x−1 x + 25 − 3 limﻭ limﻭ lim 2ﻭ x→8 x→1 x − 1 x→2 x − 3x + 2 x−8 √ √ √ 3 1−x−1 x2 − 1 1− 3x+1 lim √ lim+ﻭ limﻭ 3 x→0 x→0 x→1 sin x x −√1 x √ 3 x x+6− x+2 ﻭ √ lim limﻭ ﻭ x→+∞ 3 x − 1 x→2 x − 2 p √ √ 4 ﻭ lim ﻭ x4 + 1 − x lim 3 x − 3 x − 1 ﻭ lim ed √ )Arctg(x Arctg x−1 1 lim x→0ﻭ lim xArctg limﻭ √ + x→1 x→0 Arctg x x−1 x 1 π 2 Arctg x2 − 2 )Arctg(x + 2x x→+∞ p x→+∞ p ﻭ lim ﻭ lim ﻭ 3 3 2 x→0 x→0 √ x x lim ﻭ 5 − 8x3 − 3x lim x3 + 1 − x ! ∞x→− ∞x→+ 3x 1 √ √ 4 √ lim Arctg √ lim xArctgﻭ x4 + x − 3 ∞ x→−ﻭ x2 + 3 3 3 ∞x→+ x x 1−x ∞.x→− lim ∞ x→−ﻭ √ lim 3 3x 2 − x3 π lim x Arctg(x) − ∞. x→± 2 ﺗﻤﺮﻳﻦ . 16 m m . .ﻟﺘﻜﻦ fدﺍﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ Rﻭ ﻣﻌﺮﻓﺔ ﻣﻦ Rﻧﺤﻮ ∗ Rﺑﻤﺎ ﻳﻠﻲ: ﺗﻤﺮﻳﻦ . 12 ﻧﻌﺘﺒﺮ ﺍﻟﺪﺍﻟﺔ fﺍﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ ] [0; 1ﺑﻤﺎ ﻳﻠﻲ: )f (x M oh a 06x<1 x ; 1−x )f (y s f (x) = Arctg π = ) f (1 . f (0) = 0 da . 32 √ ❶ ﺑﺴﻂ ﻣﺎ ﻳﻠﻲ : 2 64 √ √ √ −1 2 3 15 27 3 .49 2 .16 4 3 3 9( 3)2 = Cﻭ B = √ q√ 2ﻭ √ 2 4 5 27 3 9 3 q √ √ 5 √ 2 3 4 8 2 √q = .D 3 4 √ √ √ ❷ ﺭﺗﺐ ﺍﻷﻋﺪﺍد ﺍﻟﺘﺎﻟﻴﺔ ﺗﺮﺗﻴﺒﺎ ﺗﻨﺎﻗﺼﻴﺎ. 2; 3 7; 4 10 : A ﻭ p 3 8 − x3 f (x) = −2 + H am ﺗﻤﺮﻳﻦ . 14 hamdane [email protected] q ﺗﻤﺮﻳﻦ . 18 ﻧﻌﺘﺒﺮ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﺪدﻳﺔ fﺍﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ: ❹ ﺣﺪد ، f −1ﺛﻢ ﺍﺳﺘﻨﺘﺞ ﺗﻌﺒﻴﺮﺍ ﻣﺒﺴﻄﺎ ﻟـ ).f (x 12 x2 + 8 > x+2 3 ﺣﻴﺚ mﺑﺎﺭﺍﻣﺘﺮ ﺣﻘﻴﻘﻲ. ❸ ﺑﻴﻦ ﺃﻥ fﺗﻘﺎﺑﻞ ﻣﻦ Rﻧﺤﻮ ﻣﺠﺎﻝ Jﻳﺘﻢ ﺗﺤﺪﻳﺪﻩ. 8 1−x p 3 > x+m ❷ ﺃدﺭﺱ ﺭﺗﺎﺑﺔ ﺍﻟﺪﺍﻟﺔ ، fﺛﻢ ﺿﻊ ﺟﺪﻭﻝ ﺍﻟﺘﻐﻴﺮﺍﺕ. √ 5 ﻳﻤﻜﻨﻚ ﻭﺿﻊ 1+x 6 =. t q √ √ 3 1 + (3 + x) x + 3x − 1 − (3 + x) x + 3x ❶ ﺃدﺭﺱ ﺍﺗﺼﺎﻝ fﻓﻲ .0ﺛﻢ ﺑﻴﻦ ﺃﻥ fدﺍﻟﺔ ﻓﺮدﻳﺔ. = √ √ q ❶ ﺣﻞ ﻓﻲ Rﺍﻟﻤﻌﺎدﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ 3 1 − x = 6 x :ﻭ p √ √ √ √ 3 1!+ x+ 3 1 − x = 2ﻭ . 3 1 + x+ 3 1 − x = 6 1 −sx2 ❷ ﺣﻞ ﻓﻲ Rﺍﻟﻤﺘﺮﺍﺟﺤﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ: ﻭ f (x) = Arctg √ q√ q 3 4 . ne x 6= 0 = )f (x + y) + 2f (x − y ∀(x, y) ∈ R2 ﺗﻤﺮﻳﻦ . 17 ﺃدﺭﺱ ﺍﺗﺼﺎﻝ fﻋﻠﻰ ] .[0; 1ﺛﻢ ﺑﻴﻦ ﺃﻥ fﺗﻘﺎﺑﻞ ﻣﻦ ] [0; 1ﻧﺤﻮ ﻣﺠﺎﻝ Jﻳﺘﻢ ﺗﺤﺪﻳﺪﻩ ﻭ ﺣﺪد ) f −1 (xﻟﻜﻞ xﻣﻦ .J ! √ x2 + 1 − 1 ; x ﺃﺣﺴﺐ ) ،f (0ﺛﻢ ﺑﻴﻦ ﺃﻥ fدﺍﻟﺔ ﺛﺎﺑﺘﺔ. 2 ﺗﻤﺮﻳﻦ . 13 fدﺍﻟﺔ ﻣﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ: ﻭ . ❶ ﺣﺪد ،Dfﺛﻢ ﺃدﺭﺱ ﺍﺗﺼﺎﻝ fﻋﻠﻰ ،Df ❷ ﺑﻴﻦ ﺃﻥ fﺗﻨﺎﻗﺼﻴﺔ ﻗﻄﻌﺎ ،ﺛﻢ ﺍﺳﺘﻨﺘﺞ ﺃﻧﻬﺎ ﺗﻘﺎﺑﻞ ﻣﻦ ﻧﺤﻮ ﻣﺠﺎﻝ Jﻳﺘﻢ ﺗﺤﺪﻳﺪﻩ. Df ❸ ﺣﺪد ﺻﻴﻐﺔ ) f −1 (xﻟﻜﻞ xﻣﻦ ﺍﻟﻤﺠﺎﻝ .J √ ❹ ﺣﻞ ﺍﻟﻤﻌﺎدﻟﺔ f −1 (x) = − 3 56ﺣﻴﺚ .x ∈ J ❺ ﺑﻴﻦ ﺃﻥ ﺍﻟﻤﻌﺎدﻟﺔ (x − 1)f (x) = x − 3ﺗﻘﺒﻞ ﺣﻼ ﻋﻠﻰ ﺍﻷﻗﻞ ﻓﻲ ﺍﻟﻤﺠﺎﻝ [.]1; 2 ﺍﻟﺼﻔﺤﺔ 3ﻣﻦ 5 www.attossi.webs.com ﺗﻤﺮﻳﻦ . 19 ﻧﻌﺘﺒﺮ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﺪدﻳﺔ fﺍﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ: √ 3 π + = ) f (x x−1 √ ; 2 √1 + 3 x !− 1 1+ x √ f (x) = arctan 1−x x>1 x<1 ∗،Df = R ❶ ﺑﻴﻦ ﺃﻥ: ed ❷ ﺃﺣﺴﺐ ﺍﻟﻨﻬﺎﻳﺔ .ﺗﻤﺮﻳﻦ . 22 ﺃﻥ f (1) =1 ﻟﺘﻜﻦ fدﺍﻟﺔ ﻣﻌﺮﻓﺔ ﻣﻦ Rﻧﺤﻮ .Rﻧﻔﺘﺮﺽ 1 )= 1; x 6= 0 (1 x f (x + y) = f (x) + f (y) (x, y) ∈ R2 f (x)f ﻭ ﺃﻥ )(2 . ❶ ﺃﺣﺴﺐ ) f (0ﺛﻢ ﺑﻴﻦ ﺃﻥ fدﺍﻟﺔ ﻓﺮدﻳﺔ. ). lim f (x ∞x→+ ❷ ﺃﺛﺒﺖ ﺃﻥ: f (r) = r ❸ ﺗﺤﻘﻖ ﺃﻥ: 2 ﺣﺴﺎﺏ ❸ ﺑﻴﻦ ﺃﻥ ﺍﻟﺪﺍﻟﺔ fﻣﺘﺼﻠﺔ ﻓﻲ ﺍﻟﻨﻘﻄﺔ .x0 = 1 ! ).(∀r ∈ Q ) .(∀x ∈ R) f x2 = f (xﻳﻤﻜﻨﻚ 1 .fﺛﻢ ﺍﺳﺘﻨﺘﺞ ﺃﻥ fﺗﺰﺍﻳﺪﻳﺔ. )x(1 − x m ❹ ﺑﻴﻦ ﺃﻥ ﺍﻟﺪﺍﻟﺔ fﻣﺘﺼﻠﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎﻝ [ .]0; 1ﻣﻌﻠﻼ ﺗﻤﺮﻳﻦ . 23 ﺟﻮﺍﺑﻚ ﻟﺘﻜﻦ fﺍﻟﺪﺍﻟﺔ ﺍﻟﻤﻌﺮﻓﺔ ﻛﻤﺎ ﻳﻠﻲ: m ❺ ﻟﻴﻜﻦ gﻗﺼﻮﺭ ﺍﻟﺪﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎﻝ [∞ .[1; +ﻧﻀﻊ x = ).h(x 1+x ﻋﻠﻰ [∞.[1; + ﺝ( ﺣﺪد ﺗﻌﺒﻴﺮﺍ ﻟـ ) g −1 (xﻟﻜﻞ xﻣﻦ ﺍﻟﻤﺠﺎﻝ .J 1 .f (x) = (4 + sin x) − x . p 2x + 2x − x2 6 2β x+1 a−c ne a − 2b + c ∞x→+ ❹ ﺑﻴﻦ ﺃﻥ .R 6 ﺛﻢ ﺣﺪد ﺇﺷﺎﺭﺓ ) f (xﺗﺒﻌﺎ ﻟﻘﻴﻢ xﻣﻦ .f (x) = Arctg(3x) + 2x − 1 ❶ ﺑﻴﻦ ﺃﻥ fﺗﻘﺎﺑﻞ ﻣﻦ Rﻧﺤﻮ .R ❷ ﺑﻴﻦ ﺃﻥ ﺍﻟﻤﻌﺎدﻟﺔ f −1 (x) = xﺗﻘﺒﻞ ﺣﻼ ﻭﺣﻴﺪﺍ αﻓﻲ R 1 ﻭ ﺃﻥ < .0 < α 3 ❹ ﺑﻴﻦ ﺃﻥ hamdane [email protected] ❺ ﻧﻌﺘﺒﺮ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ (un )n>1 2 2 +Arctg +. . .+Arctg 22 n2 4 f −1 (x) < x 2 < <α+β 2 .− a+b .Arctg(a) + Arctg(b) = Arctg ❸ ﺑﻴﻦ ﺃﻥ: 1 − ab √ √ ❹ ﺍﺳﺘﻨﺘﺞ ﻗﻴﻤﺔ ﺍﻟﻌﺪد )Arctg(2 + 3) − Arctg(2 − 3 ) α = 1 − Arctg(3αﺛﻢ ﺑﻴﻦ ﺃﻥ: ❸ ﺗﺤﻘﻖ ﺃﻥ π 1 < .1 − < α 3 π π H am ﺗﻤﺮﻳﻦ . 21 ﻟﺘﻜﻦ fﺍﻟﺪﺍﻟﺔ ﺍﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ Rﺑﻤﺎ ﻳﻠﻲ: . ❶ ﺑﻴﻦ ﺃﻥ. cos(α + β) = cos(α) cos(β)(1 − ab) : ❷ ﺍﺳﺘﻨﺘﺞ ﺃﻥ: . da ❸ ﺍﺳﺘﻨﺘﺞ ﺃﻥ f (x) = 0ﺗﻘﺒﻞ ﺣﻼ ﻭﺣﻴﺪﺍ αﻓﻲ .R 3 J = ).(∃c ∈ [a, b]) / f (c ﺗﻤﺮﻳﻦ . 24 ﻟﻴﻜﻦ aﻭ bﻋﺪدﻳﻦ ﺣﻘﻴﻘﻴﻴﻦ ﺑﺤﻴﺚ .ab < 1 ﻧﻀﻊ ) α = Arctg(aﻭ ).β = Arctg(b ❷ ﺑﻴﻦ ﺃﻥ fﺗﻘﺎﺑﻞ ﻣﻦ Rﻧﺤﻮ ﻣﺠﺎﻝ Jﻳﺘﻢ ﺗﺤﺪﻳﺪﻩ. 5π 2α 6 ❹ ﻟﻴﻜﻦ ] [a, bﻣﺠﺎﻻ ﺿﻤﻦ Iﺑﻴﻦ ﺃﻧﻪ: ∞ x→−ﻭ ). lim f (x ❶ ﺃﺣﺴﺐ ﺍﻟﻨﻬﺎﻳﺘﻴﻦlim f (x) : <<α s 1 3 ∈ ∀x ; 2 2 ❸ ﺑﻴﻦ ﺃﻥ fﺗﻘﺎﺑﻞ ﻣﻦ ﺍﻟﻤﺠﺎﻝ ] I = [0; 1ﻧﺤﻮ ﻣﺠﺎﻝ ﻳﻨﺒﻐﻲ ﺗﺤﺪﻳﺪﻩ. 2 2π x+1 2 = )f (x ❷ ﺑﻴﻦ ﺃﻧﻪ ﻳﻮﺟﺪ ) (α, βﻣﻦ R2ﺑﺤﻴﺚ: ﺏ( ﺑﻴﻦ ﺃﻥ gﺗﻘﺎﺑﻞ ﻣﻦ ﺍﻟﻤﺠﺎﻝ [∞ [1; +ﻧﺤﻮ ﻣﺠﺎﻝ Jﻳﻨﺒﻐﻲ ﺗﺤﺪﻳﺪﻩ. ﺗﻤﺮﻳﻦ . 20 ﻟﺘﻜﻦ fﺍﻟﺪﺍﻟﺔ ﺍﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ Rﺑﻤﺎ ﻳﻠﻲ: 2x − + 2x s 1 ❶ ﺣﺪد .Dfﺛﻢ ﺑﻴﻦ ﺃﻥ fﻣﺘﺼﻠﺔ ﻋﻠﻰ .Df M oh a ﺍ( √ π 3 ﺗﺤﻘﻖ ﻣﻦ ﺃﻥ x − 1)+ 2 ﺛﻢ ﺍﺳﺘﻨﺘﺞ ﺃﻥ gﺗﺰﺍﻳﺪﻳﺔ ﻗﻄﻌﺎ ((∀x ∈ [1; +∞[) : g(x) = h ! x2 p . .(∀x ∈]α; +∞[) : ﺍﻟﺼﻔﺤﺔ 4ﻣﻦ ﺍﻟﻤﻌﺮﻓﺔ 2 12 .un = Arctg ﺍ( ﺗﺤﻘﻖ ﺃﻧﻪ ﻟﻜﻞ kﻣﻦ ∗ Nﻟﺪﻳﻨﺎ: )= Arctg(k + 1) − Arctg(k − 1 π ﺑﻤﺎ ﻳﻠﻲ: 2 k2 .Arctg ﺏ( ﺍﺳﺘﻨﺘﺞ ﺃﻥ.un = Arctg(n+1)+Arctg(n)− : 4 ﺛﻢ ﺣﺪد . lim un ∞n→+ 5 www.attossi.webs.com ﺗﻤﺮﻳﻦ . 25 ﻧﻌﺘﺒﺮ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻌﺪدﻳﺔ fﺍﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ: p 1 + x2 − x ❶ ﺑﻴﻦ ﺃﻥ: π 2 .ﺗﻤﺮﻳﻦ . 27 ﻟﺘﻜﻦ fﻭ gدﺍﻟﺘﻴﻦ ﻣﺘﺼﻠﺘﻴﻦ ﻋﻠﻰ ﻗﻄﻌﺔ ] [a; bﺑﺤﻴﺚ: ).(ℜ) : (∀x ∈ [a; b]) (∃y ∈ [a; b]) / f (x) = g(y ﺑﻴﻦ ﺃﻧﻪ ﻳﻮﺟﺪ ﻋﻠﻰ ﺍﻷﻗﻞ ﻋﺪد ﺣﻘﻴﻘﻲ cﻣﻦ ] [a; bﺑﺤﻴﺚ: ).f (c) = g(c f (x) = Arctg .(∀x ∈ R) : < )0 < f (x ❷ ﺑﻴﻦ ﺃﻧﻪ ﻟﻜﻞ xﻣﻦ Rﻟﺪﻳﻨﺎ: ﺗﻤﺮﻳﻦ . 28 ﻟﺘﻜﻦ fدﺍﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎﻝ [ ]a; bﺑﺤﻴﺚ: )).1 − tan2 (f (x)) = 2x tan (f (x π )− 2f (x 2 ❹ ﺍﺳﺘﻨﺘﺞ ﺃﻥ : 1 )− Arctg(x 4 2 ed ❸ ﺍﺳﺘﻨﺘﺞ ﺃﻥ : ﻟﺘﻜﻦ fﺍﻟﺪﺍﻟﺔ ﺍﻟﻤﻌﺮﻓﺔ ﺑـ: ! ∞ lim− f (x) = −ﻭ x→b = ).(∀x ∈ R) : f (x . x √ x−1 f (x) = Arctg m 1 π m ﺗﻤﺮﻳﻦ . 26 .(∀x ∈ R) : x = tan ﺍ( ﺣﺪد Dfﺛﻢ ﺃﺣﺴﺐ ﺍﻟﻨﻬﺎﻳﺔ. lim f (x) : ∞x→+ ﺏ( ﺑﻴﻦ ﺃﻥ fﻣﺘﺼﻠﺔ ﻋﻠﻰ ﻛﻞ ﻣﺠﺎﻝ ﺿﻤﻦ .Df . ∞lim f (x) = + x→a+ ﺱ 1ﺑﻴﻦ ﺃﻧﻪ ﻳﻮﺟﺪ αﻭ βﻣﻦ [ ]a; bﺑﺤﻴﺚf (α).f (β) < 0. : ﺱ 2ﺍﺳﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻤﻌﺎدﻟﺔ f (x) = 0ﺗﻘﺒﻞ ﺣﻼ ﻋﻠﻰ ﺍﻷﻗﻞ ﻓﻲ ﺍﻟﻤﺠﺎﻝ [.]a; b ﺱ 3ﻟﺘﻜﻦ gدﺍﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎﻝ ] .[a; bﺑﻴﻦ ﺃﻧﻪ ﻳﻮﺟﺪ ﻣﻦ [ ]a; bﺑﺤﻴﺚ.f (c) = g(c) : M oh a ﺝ( ﻫﻞ ﺍﻟﺪﺍﻟﺔ fﺗﻘﺒﻞ ﺗﻤﺪﻳﺪﺍ ﺑﺎﻻﺗﺼﺎﻝ ﻓﻲ xo = 1؟ ﺱ 4ﺑﻴﻦ ﺃﻧﻪ ﻳﻮﺟﺪ dﻣﻦ [ ]a; bﺑﺤﻴﺚ: ﻋﻠﻞ ﺟﻮﺍﺑﻚ x . 2ﻟﻜﻞ xﻣﻦ Dfﻧﻀﻊ: √ = ) .u(xﺃدﺭﺱ ﺗﻐﻴﺮﺍﺕ x−1 ﺍﻟﺪﺍﻟﺔ uﻋﻠﻰ ، Dfﺛﻢ ﺍﺳﺘﻨﺘﺞ ﺗﻐﻴﺮﺍﺕ fﻋﻠﻰ .Df q )(b − d)(d − a = d−a b−d s − b−d d−a c s 3ﻟﻴﻜﻦ gﻗﺼﻮﺭ fﻋﻠﻰ ﺍﻟﻤﺠﺎﻝ [.I = [0; 1 ﺍ( ﺑﻴﻦ ﺃﻥ gﺗﻘﺒﻞ دﺍﻟﺔ ﻋﻜﺴﻴﺔ g −1ﻣﻌﺮﻓﺔ ﻋﻠﻰ ﻣﺠﺎﻝ Jﻳﻨﺒﻐﻲ ﺗﺤﺪﻳﺪﻩ. ne ﺏ( ﺃﺣﺴﺐ ) g −1 (xﻟﻜﻞ xﻣﻦ .J da H am hamdane [email protected] ﺍﻟﺼﻔﺤﺔ 5ﻣﻦ 5 www.attossi.webs.com
© Copyright 2025