Electronic Band Structures for Tin Selenide Dr. HoSung Lee April 2, 2015 1 Car et al. (1978) – Istituto di Fisica del Politecnico, Milano Calculated bandgap: 2.1 eV Experimental value (Albers et al. (1962)): 0.9 eV 2 Soliman et al. (1995) – Dept. of Physics, Ain Shams University, Cairo 3 Lefebvre et al. (1998) – IEMN and LPMC, France 4 Makinistian and Albanesi (2009) – Universidad Nacional de Entre Rios, Argentina Indirect bandgap, C1-V1: 1.05 eV 5 Chen et al. (2012) – Tongji University, China Polycrystalline SnSe The band gap can be adjusted by doping element Te from 0.643 (no doping) to 0.608 eV (doping). Band gap: 0.643 eV 6 He et al. (2013) – Dept. of Material Science and Engineering, Nanjing Institute of Technology, China Direct energy gap: 0.8 eV Debye temperature: 215 K Gruneisen parameter: 2.98 7 Sun et al. (2013) – Chinese Academy of Sciences, China 8 Zhao et al. (2014) – Dept. of Chemistry, Northwestern University 9 Zhao et al. (2014) – Dept. of Chemistry, Northwestern University 10 Shi and Kioupakis (2015) – Dept. of Material Science and Engineering, University of Michigan 11 Shi and Kioupakis (2015) 12 Park et al. (2010) – Dept. of Physics, Missouri University of Science and Technology Scheidemantel et al. (2003) – Dept. of Physics, Pen State University 13 Shi and Kioupakis (2015) 14 Shi and Kioupakis (2015) 15 Experiments, Soliman et al. (1995) Ab initio Calculation, Chen et al. (2012) Experiments, Zhao et al.(2014) Ab initio Calculations, Shi and Kioupakis (2015) Semiclassical Nonparabolic Two-Band Kane Model (fit to measurements of Zhao et al. (2014)) Band edge LCB HVB LCB HVB LCB HVB LCB HVB LCB HVB First band, Second band - - - - 1 1 1 1 1 1 1 1 Degeneracy of first band, Degeneracy of second band, - - - - - - 2 2 2 2 2 (4) 2 (4) DE (eV) = First band – second band - - - - - Band gap, Eg (eV) 0.895 0.643 0.61-0.39 0.83-0.46 0.74 – 0.95x10-4T Single DOS effective mass (md) - - 4.02mo 1.06mo - - - 2.4mo 3.0mo 0.74mo 0.34mo 5.35 mo (3.3mo) 0.47 mo (0.3mo) Integral DOS effective mass (m*) - - - - - - - - 8.5 mo 0.75 mo LCB: Lowest conduction band HVB: Highest valence band Note: This work assumes that the multiple bands are equal to multiple valleys. The effective masses are calculated using the relationship of md = (mxmymz)1/3 and m* = Nv2/3 md. 16 Nonparabolic two-band model for p-type SnSe by Dr. HoSung Lee on 7/26/2014 23 J 19 ec 1.6021 10 kB 1.3806 10 C 34 h p 6.6260810 J s 31 me 9.1093910 K 23 NA 6.02213710 2 o 290 0 2 4 12 A s kg Maldelung (1983) Thomas (1991) used 90 for Bi2Te3 density-of-state effective mass of hole for multiple valleys meff_e 8.5 me density-of-state effective mass of electron for multiple valleys meff_h0 ( 300K ) md_h ( T) Nv 0 T 3 m kg Nv 2 meff_h0 0.75 me meff_h ( T) 0 8.854 10 Bejenari (2008) used exponent 0.2 for Bi2Te3 and exponent 0.2 for Si by Barber (1967) and exponent of 0.8 for PbTe by Lyden (1964) 0 2 3 meff_h ( T) mI_h ( T) md_h ( T) md_e Nv 2 3 meff_e Lyden (1964) and Pei et al. (2012) mI_e md_e Chen et al. (2014) Nv 2 m* h 0.75 This work 2 0.75 m*e SPB model calculation Calculation Nv: multiplicity of valleys 17 Debye temperature θ =65K by Zhao et al. (2014), θ =215 K for SnSe by He et al. (2013) D 155K gm d Sn 5.76 d Se 4.81 3 cm MSn 118.71gm gm Mass density= mass/volume = molar mass/(NA*a^3), Goldsmid (1964) and Maldelung (1983) 3 cm MSe 78.96gm Atomic (molecular) masses, Periodic table y 0.5 1 MSn aSn NA d Sn 1 3 10 aSn 3.247 10 MSe aSe NA d Se m 3 10 aSe 3.01 10 m 1 a aSn ( 1 y ) aSe y 3 3 3 10 a 3.133 10 m Atomic size, Vining (1991) Atomic size, 2.9x10^-8 cm used by Larson et al. (2000) Mean atomic mass M SnSe M Sn ( 1 y ) M Se y d M SnSe NA a d 5.339 3 gm mass density, d = 8.219 gm/cm^3 by Malelung (1983) 3 cm 1 v s kB hp 2 3 Da 6 5 cm v s 1.631 10 s Speed of sound, Zhao et al. (2014) gives 2.0 x 10^5 cm/s. 18 Carrier density (cm^-3) 110 nh n1 T i T i n1 110 20 19 Holes (This work) Electrons (This work) Holes, Zhao et al. (2014)) 2 3 3 cm ne n1 T i T i n1 110 18 3 cm p_data 1 4 19 10 110 17 5 200 110 16 200 400 600 T i T i p_data 800 0 110 3 400 600 800 3 110 Temperature (K) n = 3.3 x10^17 cm^-3 T (K) 19 600 0.8 400 k (W/m*K) ( V/K) 500 This work Zhao et al. (2014) 300 200 400 600 3 0.2 0 o 4.5 ec V 400 200 100 1 1 cm 0.4 110 800 T (K) 80 0.6 Z 0.1 This work Zhao et al. (2014) Ka 1 600 800 3 110 T(K) Total thermal conductivity Electronic thermal conductivity Lattice thermal conductivity Zhao et al. (2014) 60 40 20 0 200 400 600 800 110 3 20 800 300 K 900 K 300 K 900 K ni T 1 T 1 ni 600 V K ni T 3 T 3 ni V K 400 ni T 1 T 1 ni 1 1 600 cm 400 ni T 3 T 3 ni 1 1 cm 200 0 16 110 800 200 17 110 110 18 19 110 0 20 110 ni 3 cm Shi and Kioupakis (2015) This work 21 3 3 This work Experiment, Zhao et al. (2014) ZT ni T 2 T 2 ni ZT ni T 3 T 3 ni 1 ZT ni T 1 T 1 ni 2 ZT 2 1 0 16 110 0 200 400 600 110 800 300 K 600 K 900 K 17 110 3 18 110 19 110 20 110 ni 3 cm Temperature (K) 0.3 1.5 gSPM Ei a 3 ec V 1 gSKM Ei E_DOS t i a 3 ec V 0.2 Cv (J/g.K) Parabolic model Kane model Ab Initio calc. He et al. (2013) 1 1 0.1 0.5 Prediction, this work Experiment, Zhao et al. (2014) 0 3 0 2 1 0 Ei Ei 1 ti ec V ec V ec V 2 3 0 200 400 600 T (K) 800 110 3 22 The End 23
© Copyright 2024