Developing a Novel Cloud Model for Exoplanets

Bridging the Theory Gap: Developing a Novel Cloud Model for Exoplanets Tyler D. Robinson (Sagan Fellow) Image credit: Penn State/NASA/JPL-­‐Caltech Clouds and hazes are ubiquitous in the Solar System… Venus Jupiter Earth Saturn Mars Uranus Titan Neptune adapted from Sánchez-­‐Lavega (2003), images courtesy NASA …and strongly influence many exoplanet observaYons. data Best-­‐fit models for HR 8799 planets require clouds. model Marley et al. (2012) data Kreidberg et al. (2014) Best explanaYon for flat transmission spectrum for GJ 1214b is high-­‐alYtude cloud/haze. { models Can we develop new dynamical and efficient cloud models to help beder interpret exoplanet observaYons? coagulation(&(
fragmentation(
Number density and parYcle size profiles from the steady-­‐state Ackerman and Marley (2001) model. Altitude(
(((((((((((((((Pressure(
advection((
&(diffusion(
sedimentation(
nucleation(&(
condensation(
evaporation(
Temperature(
schemaYc credit T. Robinson (2014) D u s t p a r Y c l e n u m b e r density contours from the complex, 3-­‐D models of Helling et al. (2001)