שימוש בחישני סביבה וצמח לבקרת השקיה באפרסמון

Comparing Dendrometers, Sap Flow
and Soil Water Sensors in a 3-year
Persimmon Irrigation Trial
Introduction – methods for irrigation control
Method
Basics
Advantages
Disadvantages
Crop factor tables
Relative to potential ET
Quantitative
Inaccurate
Simple to use
Cumulative errors – no
feedback
Soil water sensors
Volumetric water content
Popular and commercial
Large spatial variability
or Soil water potential
Relatively easy and accurate
When but not how much
Stem and Leaf Water
Measure exposed or
Supported by the literature
Slow
potential
covered leaves in pressure
Precise and reliable
Requires skilled manpower
chamber
No automation currently
possible
Dendrometer – MDS,
Daily course of stem
Allows automization
Still being developed
MXTD, MNTD, DG
contraction and growth
Non destructive
Requires calibration of
control treatment
Stem sap flow
Use of heat to follow xylem
Quantitative
Requires skilled manpower
sap flux
Allows automation
for installation, operation
and analysis
Introduction – methods for irrigation control
Method
Basics
Advantages
Disadvantages
Crop factor tables
Relative to potential ET
Quantitative
Inaccurate
Simple to use
Cumulative errors – no
feedback
Soil water sensors
Volumetric water content
Popular and commercial
Large spatial variability
or Soil water potential
Relatively easy and accurate
When but not how much
Stem and Leaf Water
Measure exposed or
Supported by the literature
Slow
potential
covered leaves in pressure
Precise and reliable
Requires skilled manpower
chamber
No automation currently
possible
Dendrometer – MDS,
Daily course of stem
Allows automization
Still being developed
MXTD, MNTD, DG
contraction and growth
Non destructive
Requires calibration of
control treatment
Stem sap flow
Use of heat to follow xylem
Quantitative
Requires skilled manpower
sap flux
Allows automation
for installation, operation
and analysis
Introduction – methods for irrigation control
Method
Basics
Advantages
Disadvantages
Crop factor tables
Relative to potential ET
Quantitative
Inaccurate
Simple to use
Cumulative errors – no
feedback
Soil water sensors
Volumetric water content
Popular and commercial
Large spatial variability
or Soil water potential
Relatively easy and accurate
When but not how much
Stem and Leaf Water
Measure exposed or
Supported by the literature
Slow
potential
covered leaves in pressure
Precise and reliable
Requires skilled manpower
chamber
No automation currently
possible
Dendrometer – MDS,
Daily course of stem
Allows automization
Still being developed
MXTD, MNTD, DG
contraction and growth
Non destructive
Requires calibration of
control treatment
Stem sap flow
Use of heat to follow xylem
Quantitative
Requires skilled manpower
sap flux
Allows automation
for installation, operation
and analysis
Introduction – methods for irrigation control
Method
Basics
Advantages
Disadvantages
Crop factor tables
Relative to potential ET
Quantitative
Inaccurate
Simple to use
Cumulative errors – no
feedback
Soil water sensors
Volumetric water content
Popular and commercial
Large spatial variability
or Soil water potential
Relatively easy and accurate
When but not how much
Stem and Leaf Water
Measure exposed or
Supported by the literature
Slow
potential
covered leaves in pressure
Precise and reliable
Requires skilled manpower
chamber
No automation currently
possible
Dendrometer – MDS,
Daily course of stem
Allows automization
Still being developed
MXTD, MNTD, DG
contraction and growth
Non destructive
Requires calibration of
control treatment
Stem sap flow
Use of heat to follow xylem
Quantitative
Requires skilled manpower
sap flux
Allows automation
for installation, operation
and analysis
Introduction – methods for irrigation control
Method
Basics
Advantages
Disadvantages
Crop factor tables
Relative to potential ET
Quantitative
Inaccurate
Simple to use
Cumulative errors – no
feedback
Soil water sensors
Volumetric water content
Popular and commercial
Large spatial variability
or Soil water potential
Relatively easy and accurate
When but not how much
Stem and Leaf Water
Measure exposed or
Supported by the literature
Slow
potential
covered leaves in pressure
Precise and reliable
Requires skilled manpower
chamber
No automation currently
possible
Dendrometer – MDS,
Daily course of stem
Allows automization
Still being developed
MXTD, MNTD, DG
contraction and growth
Non destructive
Requires calibration of
control treatment
Stem sap flow
Use of heat to follow xylem
Quantitative
Requires skilled manpower
sap flux
Allows automation
for installation, operation
and analysis
Irrigation control of the future?
• Future requirements – Hi Tech system
– Sensors measure soil and plant water status
– Communications with central management
system
Our current focus
– Control algorithm consisting of:
• Algorithm to analyze sensor output based on
models and/or empirical results
• Decision support system
– Economic requirements
• Relatively cheap sensors
A system that integrates different
sensors
• Phyto-monitor
– The pioneers in this
approach are
Phytech. For various
reasons the systems
weren’t widely
implemented in
Israel. But the
concept is correct.
Our research was part of a
Persimmon irrigation experiment
in the Hefer valley
• Persimmon (Diospyros kaki L) –
originally from the central mountains of
China and Japan. Transferred to western
agriculture about 150 years ago.
• Currently 2100 Ha in Israel – 50% for
export. Fourth largest export fruit.
• No previous basic research on irrigation.
Irrigation based on data from other
orchard crops.
• FAO tables don’t include Persimmon.
Research objectives
• To study Persimmon response
to irrigation levels, along with
behavior of soil, plant and
weather sensors.
• On the technical side, study
integration of soil, climate and
weather sensors for a system
for future automatic irrigation
control.
• Evaluation of sensor aspects
and requirements for the
future.
Experimental layout
Met station
Irrigation Head
Tensiometers
Granier
+
Sap Flow
Dendrometers
Dendrometers
Treatments
Irrigation factors
Irrigation factor
1.2
Four irrigation levels relative
to regional seasonal
recommendations (700 mm)
1
0.8
0.6
0.4
0.2
Nov
Oct
Sept
Aug
July
June
May
April
0
Season
Treatment
Factor*
FactorETo
mm
appl
Factor*
FactorETo
Factor* - relative to regional recommended irrigation
mm
appl
Factor*
FactorETo
mm
appl
Measurements and sensors
• Meteorological station – Tair, relative
humidity, Solar radiation, wind speed
• Tensiometers – 24 electronic. 3 depths
(30, 60, 90).
• Sap flow sensors – 32 sensors – 8 trees
per treatment
• 12 LVDT dendrometers
• Heat pulse multi-depth sap flow (8 for 25
days in July)
Measurements and sensors
Plant parameters:
• Stem circumference, Plant area index
• Natural litter fall
• Fruit growth – 500 fruits every 2 weeks
Yield and Fruit quality
• Harvest – yield weight, reject ratio, fruit number and
size.
• Check fruit quality post harvest in storage simulation
Measurements and sensors
Physiological parameters
• Leaf conductance and photosynthesis (LI6400), Stem
water potential (bi-weekly)
• Diurnal courses – stem water potential, leaf
conductance and photosynthesis
Soil parameters:
• Soil samples for mineral and salinity
• Calibration of TDP sap flow sensors on lysimeters
Results - Yield
Yield 2007 - 2009
120
a
b
2008
y = 49.48x + 47.89
R0.95 = ²
100
Yield Function 2007-2009
120
100
80
80
60
40
kg/tree
kg/tree
2009
y = 91.03x + 14.74
R² = 0.98
60
40
2007
y = 83.39x + 17.34
R² = 0.97
20
R² = 0.94
20
Tx/ET0 =
0.5
Tx/ET0 =
1.0
0
0
0.0
0.2
0.4
0.6
0.8
Tx/ET0
2007
2008
1.0
1.2
1.4
0
200
400
600
800
1000
Irrigation (mm)
2009
•Yield increased with irrigation level
•The marginal yield increase was small at higher levels
1200
1400
Results - Yield
‫היקף פרי ממוצע‬
‫מספר פירות כפונקציה של מנת השקיה‬
• Fruit circumference and fruit number increased with irrigation
• For irrigation factor below 0.5 number of rejected increased
Results – sap flow
Daily Curve DOY 212-227
0.35
0.8
0.3
0.7
T mm/hour
0.5
0.2
0.4
0.15
0.3
0.1
E0 mm/hour
0.6
0.25
0.2
0.05
0.1
0
0.0
0
2
4
6
8
T1
10
T2
12
Hour
T3
14
T4
16
18
20
22
24
ET0
• Significant differences between treatments
• The level curve at mid-day compared to PET indicates ‘isohydric’ plant
control of transpiration.
Results – sap flow
Seasonal course of crop factor (sap flow relative to Eto)
0.8
Seasonal Kcb Factor (T/ETo)
0.7
0.6
Kcb
0.5
0.4
0.3
0.2
0.1
0.0
T1
T2
T3
T4
These courses are a basis for building seasonal crop factor tables
Results – water status indicators
Mid-day stem water potential
Canopy resistance vs. VPD
Canopy conductance vs. VPD
a
b
KPa
• Significant differences between treatments in canopy conductance
• Slopes of the resistance curves are related to irrigation treatment
(proportional to hydraulic resistance (?))
• Shape of the curves indicates strong control of water use by stomata
Results – water status indicators
Mid-day stem water potential
Season 2008 SWP
0.70
0.80
SWP (-MPa)
0.90
1.00
1.10
1.20
1.30
1.40
1T
2T
3T
4T
• Significant differences between treatments in most of the seasson
• In June indications of water deficit and later abundance. This led us
to revise the irrigation tables.
Results – water status indicators
Mid-day stem water potential
• Good agreement between SWP and yield
• Correspondence between irrigation level and SWP
Results – water status indicators
Relationship between leaf conductance and stem and leaf water potential
gs Vs. SWP and LWP
b
Leaf conductance
a
Stem water potential MPa-
Leaf water potential
MPa
-
• Leaf conductance is significantly related to stem water potential.
• Leaf water potential similar, but significance level lower.
Results – water status indicators
Annual course of ‘maximum daily stem shrinkage’ (MDS)
3 Day Average MDS, 2008
500
400
micron
Maximum daily shrinkage (MDS)
600
300
200
100
0
MDS1
MDS2
MDS3
MDS4
• Differences in MDS between treatments were significant during
most of the season
Potential Evaporation
Vapor pressure deficit
Stem water potential
Maximum daily shrinkage (MDS)
Results – water status indicators
Vapor pressure deficit
Potential Evaporation
Results – water status indicators
SWP Vs. MDS
0
-0.4
Mid Day SWP (Mpa)
Stem water potential
‫פוטנציאל מים בגזע‬
-0.2
-0.6
y = -1.38x - 0.64
R² = 0.80
-0.8
-1
-1.2
-1.4
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
MDS (mm)
Maximum daily shrinkage
• A highly significant relationship between the two, allowing
prediction of stem water potential from MDS
• The relationship does not change during the season
• No severe water stress, which might mess up the relationship
Results – water status indicators
Signal Intensity
3.0
2.5
20
Signal/Noise Ratio
Signal Intensity
Signal / Noise ratio
25
2.0
1.5
1.0
0.5
15
10
5
0
0.0
180
200
End June
220
DOY
240
260
280
Beginning of
October
SWP
MDS
180
200
220
240
End June
Tensiometers
• Signal strengths: MDS > Tensiometers > SWP
• Signal to noise ratio: SWP > Tensiometers > MDS
260
280
Beginning of
October
Results – water status indicators
‫הפרש בין הטיפולים‬
Summary and Conclusions
Yield
• Vegetative and reproductive parameters of persimmon responded
significantly to irrigation levels
• Influence of irrigation level on yield started early in fruit
development: flower induction, differentiation and fruit set. Fruit
growth was influenced later on.
Water status indicators
• SWP differences apparent all along. Differences significant for
extreme treatments.
• Stem shrinkage (MDS)- significant differences between
treatments.
• Significant relationship between MDS and Stem water potential
with high correlation coefficient.
• Sap flow differences between treatments significant. Can be a
water status indicator.
Conclusions
• Signal strengths: MDS > Tensiometers > SWP
• Signal to noise ratio: SWP > Tensiometers > MDS
• Number of sensors required to sense treatment differences:
Fruit size > MDS > Tensiometers > Sap flow > SWP
116 > 18 reps > 11 reps
> 7 reps > 4.1 leaves
• We found disagreement between the irrigation table and crop
water use during the season. Early in the season irrigation was not
enough and late in the season excessive.
• A new irrigation table is recommend for persimmon, based on Kcb,
and estimations of Ke, Kleaching Ks and a correction factor for
irrigation efficiency and non-uniformity of the irrigation system.
Thanks
• To all participants
–
–
–
–
Tal Kanety
Avraham Grava
Ami Gips and Eldad Sokolovski, Shaham
Hugo Lemcoff, Ron Zeligman, Amos Naor, Yossi Tanny,
Asher Bar-Tal, Uri Dicken, Yehezkel Cohen, …
– Irrigation and Persimmon crew – Gv’aot Hahoresh –
Giv’at Haim
• Chief Scientist of the Ministry of Agriculture
(funding)
Thanks for your attention
Questions?
‫תוצאות – טבלת השקיה‬
Kc
Yearly Irrigation Table
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
1
2
April
3
1
2
May
3
1
2
June
3
1
2
3
July
Corrected
1
2
August
Old
3
1
2
3
September
1
2
3
October
1
2
3
November
‫מבוא‬
‫‪SPAC- Soil Plant Atmosphere Continuum‬‬
‫אטמוספירה‬
‫‪ - Kleaf‬מוליכות הידראולית של עלה‬
‫‪ - Ksoil‬מוליכות הידראולית של קרקע‬
‫‪ - Kroot‬מוליכות הידראולית של שורש‬
‫‪ - Kstem‬מוליכות הידראולית של גזע‬
‫‪ - Kplant‬מוליכות הידראולית של צמח שלם‬
‫‪- Ψstem‬פוטנציאל מים בגזע‬
‫‪ - Ψsoil‬פוטנציאל מים בקרקע‬
‫‪ - Ψxylem‬פוטנציאל מים עצה‬
‫‪ - Ψleaf‬פוטנציאל מים בעלה‬
‫‪ - gs‬מוליכות פיוניות‬
‫‪ - gb‬מוליכות שכבת הגבול‬
‫‪ -E‬טרנספירציה‬
‫‪ - VPD‬גרעון לחץ אדי מים עלה‪-‬אויר‬
‫צמח‬
‫קרקע‬
‫)‪)Sack and Holbrook, 2006‬‬
‫מבוא ‪ -‬שיטות לבקרת השקיה‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫שיטת האצבע‬
‫טבלאות מקדמי השקיה ביחס להתאדות‬
‫פוטנציאלית‬
‫חיישני קרקע‪ -‬תכולת רטיבות‪ ,‬פוטנציאל מים‬
‫מדדי צמח‪-‬‬
‫פוטנציאל מים בעלים (‪)LWP‬‬
‫פוטנציאל מים בגזע (‪)SWP‬‬
‫התכווצות גזע יומית (‪)MDS‬‬
‫חיישני זרימת מים בגזע‪-‬‬
‫• שיטת ‪Cohen, ( ,)Huber,1932( Heat Pulse‬‬
‫‪)1994‬‬
‫• דיסיפצית חום (‪)Granier 1985‬‬
‫חישה מרחוק‬
‫מבוא ‪ -‬שיטות לבקרת השקיה‬
‫מדדי צמח‬
‫תא לחץ‬
‫• שיטה המקובלת מאוד בספרות‬
‫• מדויק ואמין‬
‫• בדיקה איטית‬
‫• דורשת כוח אדם מיומן – יקר‬
‫• לא ניתן לאוטומציה‬
‫שיטות בקרת השקיה‬
‫דנדרומטריה‬
‫• מדידת מהלכים יומיים של‬
‫התכווצות והתרחבות גזע‬
‫• מודד שינויים באוגר המים של‬
‫הרקמה הצמחית‬
‫• מדדים שבשימוש‪:‬‬
‫• התכווצות גזע יומית ‪MDS -‬‬
‫• גידול יומי – ‪DG,MXTD, MNTD‬‬
‫• חיישן המאפשר אוטומציה‬
‫• בדיקה לא הרסנית‬
‫• נמצא עדיין בשלב ההוכחה‬
‫• דורש כיול מול ביקורת‬
‫)‪(Goldhamer and Fereres, 2001‬‬
‫שיטות למדידת זרימת מים בעץ‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫שימוש בחום על מנת לעקוב אחר‬
‫זרימת מים בעצה‪.‬‬
‫גוף חימום וחיישן טמפרטורה‬
‫מוחדרים לתוך הגזע\גבעול‬
‫מדידת קצב התפשטות החום בגזע‬
‫פתרון נוסחה מתמטית ע"מ לקבל‬
‫קצב זרימת המים לפי‪:‬‬
‫– מודל תיאורטי‪ /‬נוסחה אמפירית‬
‫– קבועים מדודים (כגון צפיפות העץ‬
‫ומוליכות חום בהעדר תנועת‬
‫מים)‬
‫– מקדם כיול‬
‫הכפלת קצב‪/‬שטף זרימת המים‬
‫בשטח חתך הגזע\גבעול הפעיל‬
‫בהובלת מים נותנת את כמות המים‬
‫העוברת בגזע\גבעול‬
‫שיטות למדידת זרימת מים בעץ‬
‫‪Heat Pulse‬‬
‫•‬
‫•‬
‫•‬
‫•‬
‫הגוף חימום מופעל לזמן קצר‬
‫מייצר פולס חום חזק‬
‫שישה חיישנים הממוקמים עד‬
‫עומק של ‪ 5‬ס"מ‬
‫מאפשר מדידת התפלגות קצב‬
‫הזרימה בעומקים שונים‬
‫מדויק בזרימה מהירה‬
‫• רגיש מאוד למרחק בין הגוף‬
‫חימום לחיישן‬
‫• החיישנים יקרים ועדינים‬
‫שיטות למדידת זרימת מים בעץ‬
‫דיסיפצית חום ‪Granier‬‬
‫• שני חיישני טמפ' מוחדרים לגזע‬
‫כאשר העליון מלופף בגוף חימום‬
‫המקבל זרם חימום קבוע‬
‫• הפרש הטמפרטורות בין‬
‫החיישנים קשור לקצב זרימת‬
‫המים‬
‫• זול יותר ממערכת פולס חום‬
‫• הנוסחה אמפירית ואין פונקציה‬
‫תיאורטית‬
‫• מיצוע של כל אורך החיישן‬
‫• בכדי למדוד עומקים שונים‬
‫דרושים מספר חיישנים‬
‫שיטת ‪ -Heat Pulse‬רקע תאורטי‬
‫)‪(Marshall, 1958‬‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫‪V = (x2 - 4 k Tm) 0.5 / Tm‬‬
‫‪ - V‬מהירות הזרימה של החום‬
‫‪ - X‬מרחק בין גוף חימום לחיישן‬
‫)‪k - thermal diffusivity of wood (mm2 s-1‬‬
‫‪ - Tm‬זמן ממתן הפולס עד לשיא חישת חימום בחיישן‬
‫ניתן לפתור כאשר אין זרימה ‪:‬‬
‫)‪k = x2/(4Tm‬‬
‫• את זה ניתן למדוד בלילה כאשר אין זרימה‬
‫)‪V = Ji c/(ici‬‬
‫‪ - Ji‬מהירות זרימת המים בעץ‬
‫‪ –c and ci‬חום סגולי של העץ והמים בעצה‬
‫‪ -  and i‬צפיפות העץ והמים בעצה‬
‫שיטות למדידת זרימת מים בעץ‬
‫דיסיפצית חום ‪ -Granier‬רקע תאורטי‬
‫‪Fd = 0.04284 [(Tmax - T)/ T]1.231‬‬
‫כאשר‪:‬‬
‫• ‪ -Fd‬שטף המים ליחידת שטח )‪(kg cm-2 h-1‬‬
‫• ‪ -T‬הפרש טמפרטורות בין הטרמוקופל המחומם לזה שלא‬
‫מחומם‬
‫• ‪ -Tmax‬הפרש טמפרטורה מקסימלי בין הטרמוקופלים‬
‫שמתקבל כשאין זרימה‬
‫(‪( Granier, 1985, 1987‬‬
‫תוצאות – זרימת מים בגזע‬
‫‪VPD‬‬
‫‪DS‬‬
‫‪ET0‬‬
‫‪SR‬‬
‫‪SF4‬‬
‫‪SF1‬‬
‫תוצאות – זרימת מים בגזע‬
Sap Flow Radial Distribution
80
70
60
cm/hour
50
40
30
20
10
0
0
1
2
3
Depth (cm)
4
5
‫התפלגות הרכב החלקיקים בפרופיל הקרקע‬
‫‪%‬‬
‫‪90‬‬
‫‪80‬‬
‫‪70‬‬
‫‪60‬‬
‫‪50‬‬
‫‪40‬‬
‫‪30‬‬
‫‪20‬‬
‫‪10‬‬
‫‪0‬‬
‫‪0‬‬
‫‪10‬‬
‫‪20‬‬
‫‪30‬‬
‫‪50‬‬
‫‪60‬‬
‫)‪Depth (cm‬‬
‫‪40‬‬
‫‪70‬‬
‫‪80‬‬
‫‪90‬‬
‫חול‬
‫סילט‬
‫חרסית‬
‫‪100‬‬