Analiza lokalnih specifičnih značilnosti ekoremediacij v občinah Jugovzhodne Slovenije Poročilo za občino Semič Študija v okviru projekta »Trajnostni razvoj JVS z ekoremediacijami« DELOVNO GRADIVO maj, 2011 1. UVOD Zdravo in kakovostno okolje postaja vedno večja vrednota sodobnega človeka. V Sloveniji težimo k doseganju trajnostnega razvoja, ki pa ga omogoča le ravnovesje med okoljem, družbo in gospodarstvom. Na državnem nivoju je nemogoče zagotavljati trajnostni razvoj, če je njegovo ravnovesje porušeno na lokalni ravni. Primeri dobrih praks dokazujejo, da uspešne lokalne skupnosti uporabljajo celostne pristope za upravljanje z okoljem. Na ta način občine hitreje ter učinkoviteje zmanjšujejo in preprečujejo onesnaževanje okolja. V sklopu projekta »Trajnostni razvoj Jugovzhodne Slovenije z ekoremediacijami« v prvem delu izpostavljamo identificirane okoljske probleme v posamezni občini Jugovzhodne Slovenije. V skladu z okoljskimi cilji zastavljenimi v zakonskih in drugih strateških dokumentih Slovenije iščemo trajnostne rešitve za reševanje le-teh problemov, in sicer s pomočjo ekoremediacij. Ekoremediacije predstavljajo ekosistemski pristop reševanja okoljskih problemov, saj temeljijo na poznavanju naravnih procesov in zakonitosti narave ter omogočajo sobivanje človeka z njegovim naravnim okoljem. Študija projekta »Ekoremediacije v Sloveniji« ugotavlja, da imajo ERM tehnologije nadpovprečno vrednost pri doseganju okoljskih ciljev in da so le redka področja, kjer imajo druge metode večji pomen kot ekoremediacije. Največja učinkovitost ERM tehnologij se je izkazala pri ohranjanju biotske raznovrstnosti; zmanjševanju onesnaženosti tal z nitrati; na področju varstva voda na vodovarstvenih in zavarovanih območjih; varstva območij kopalnih voda in varovanja stoječih celinskih voda, kjer lahko dosegajo 80-90 % učinkovitost čiščenja. Na teh področjih je torej razvidno, da bi morale biti ERM edina tehnologija reševanja problematike. Tabela 1. Delež ERM metod pri doseganju okoljskih ciljev glede na učinek ostalih metod 2 V nadaljevanju poročila tako predstavljamo identificirane okoljske probleme občine Semič, zastavljene cilje, ki jih je na posameznem področju potrebno uresničevati ter ekoremediacijske ukrepe, s katerimi lahko dosežemo te cilje. S tem želimo podati ciljne smernice za izboljšanje stanja okolja v občini Semič. Ob predstavitvi posameznega okoljskega problema z ekoremediacijskimi rešitvami hkrati podajamo projektne predloge za uresničitev zastavljenih ciljev. 1.1 Metodologija Podlaga poročila je identifikacija ključnih okoljskih problemov v občini Semič s pomočjo pregleda dokumentacije, kart in poročil, s katerimi razpolaga občina ter osebnih razgovorov s predstavniki občine. Okoljski problemi so bili identificirani na podlagi izhodišč ključnih okoljskih ciljev zastavljenih v Resoluciji nacionalnega programa varstva okolja 2005-2012. Identifikacija okoljskih problemov ter zastavljeni cilji so bili podlaga za opredelitev ekoremediacijskih pristopov in ukrepov za trajnostno reševanje teh problemov ter pripravo projektnih predlogov. V nadaljevanju poročilo sledi v naslednjem sosledju: - identifikacija okoljskega problema, - cilj okoljskega problema, - ekoremediacijski pristopi in ukrepi za reševanje problema ter - projektni predlogi za reševanje okoljskega problema z namenom izboljšanja stanja okolja v občini ter zagotavljanja načel trajnostnega razvoja. 2. EKOREMEDIACIJE – TRAJNOSTNE REŠITVE ZA REŠEVANJE OKOLJSKIH PROBLEMOV Ekoremediacije ponujajo ekosistemski pristop k reševanju okoljskih problemov ter trajnostno upravljanje z naravnimi viri ter ekosistemi, tako vodnimi kot tudi kopenskimi. Izhajajo iz temeljnih principov delovanja ekosistemov, ki imajo izredno pufersko, samočistilno, samoobnovitveno sposobnost ter biotsko raznovrstnost, ki zagotavlja naravno ravnovesje v ekosistemu. Za reševanje okoljskih problemov je razvitih veliko pristopov, ki pogosto vključujejo visoko tehnologijo, vendar so ti pristopi, kljub njihovi učinkovitosti, predragi, operativno prezahtevni ter pogosto dolgoročno ne sledijo načelom trajnostnega razvoja. Na drugi strani ekoremediacije z ekonomskega, ekološkega in predvsem dolgoročnega vidika predstavljajo enega izmed najuspešnejših načinov varovanja okolja. Poleg tega ekoremediacije ponujajo številne preventivne ukrepe, ki preprečujejo in omilijo nastanek vrste ekoloških škod (poplav, suš, erozijo tal, plazove itd). Sanacija le-teh za marsikatero občino namreč lahko predstavlja veliko finančno breme. Ekoremediacijske tehnologije so uporabne pri odstranjevanju posledic onesnaževanja, kot tudi pri preprečevanju nadaljnje degradacije okolja. Z njimi lahko zmanjšujemo in preprečujemo točkovne (npr. industrijski obrati, naselja itd.), linijske (promet) in netočkovne vire (npr. kmetijstvo) onesnaževanja okolja. Na drugi strani z ekoremediacijami obnavljamo degradirane ekosisteme (npr. regulirane rečne struge, onesnažene zemljine, izsušena mokrišča, divja odlagališča itd.), tako da jim povrnemo prvotne t.i. ekosistemske funkcije, kot so: samočistilna sposobnost, visoka puferska sposobnost (zadrževanje vode), biotska pestrost, vezava CO2 ter tvorba kisika in zelene biomase. 3 Med najpogostejše ekoremediacijske pristope za varovanje in obnovo okolja vključujemo: rastlinske čistilne naprave za čiščenje različnih vrst odpadnih voda (komunalne odpadne vode, industrijske odpadne vode, onesnažene vire pitne vode, izcedne vode iz odlagališč odpadkov, izcedne vode iz cestišč itd.), revitalizacije (ekoremediacije) degradiranih vodotokov, jezer, gramoznic, glinokopov, kalov itd., sonaravne sanacije deponij komunalnih odpadkov in blažilne vegetacijske cone in pasove (preprečevanje vetrne in vodne erozije, izboljšanje kakovosti zraka v urbaniziranih območjih, zmanjšanje jakosti vetra …) Poleg naštetega se ekoremediacije uporabljajo prav tako za: čiščenje odpadnih voda iz netočkovnih virov obremenjevanja okolja (meteorne vode, intenzivno kmetijstvo) s sonaravnim vzdrževanjem melioracijskih jarkov, zelenih ponikovalnic, deževnih vrtov, zelenih cestišč itd., terciarno oz. dopolnilno čiščenje komunalnih, živinorejskih, industrijskih in drugih odpadnih voda, kondicioniranje vode za recikliranje in večnamensko uporabo (zalivanje, namakanje, itd.), zaščito naravovarstvenih območij, vodnih zajetij, vodovarstvenih območij, zaščito pred dotokom onesnaženih voda v stoječe in tekoče vode, čiščenje onesnaženih zemljin, izgradnjo oz. obnovo ekosistemov za redke in ogrožene vrste rastlin in živali itd. Ekoremediacije dajejo okolju izredno dodano vrednost in ponujajo vrsto prednosti: so poceni in okolju prijazne (sonaravne v funkcionalnem in estetskem pogledu); imajo večnamenske učinke (zadrževanje vode, zmanjšanje onesnaževanja, obnavljanje in ustvarjanje ekosistemov in biološke pestrosti, vezava CO2, tvorba kisika in večnamensko uporabne zelene biomase); vključujejo preproste, ljudem razumljive in naravovarstveno sprejemljive pristope; delujejo kot dodatek obstoječim sistemom za preprečevanje onesnaženja (npr. terciarno čiščenje, zaprtje greznic in usedalnikov); omogočajo kondicioniranje pitne vode in vode za recikliranje (npr. namakanje, splakovanje stranišč); preprečujejo izsuševanje, uravnavajo zračno vlago in temperaturo; ustvarjajo blažilna (puferska) območja (zračne bariere); sistemsko zadržujejo vodo in bogatijo podtalnico. 3. PREDSTAVITEV OBČINE SEMIČ Občina Semič obsega 146,7 km2 in ima 3.710 prebivalcev (1203 gospodinjstev) v 47 naseljih. 60,87 % občine se nahaja v omrežju Nature 2000 območij. Občina je izpostavila potrebo po pripravi celovite strategije odvajanja in čiščenja odpadnih voda za celotno občino ter zaščito vodnih virov, zlasti s strani negativnih vplivov vinogradniških območij. 4. IDENTIFIKACIJA OKOLJSKIH PROBLEMOV 4.1 Odvajanje in čiščenje odpadnih voda na območjih razpršene poselitve Gostota poselitve v občini Semič znaša zgolj 25 prebivalcev na km2 (Slovenija 100 prebivalcev/km2). Reševanje problematike odvajanja in čiščenja odpadnih voda na nerešenih območjih občine velja za prioriteto. Iz slike 1 območij aglomeracij v občini je razvidno, da gre v občini le za manjši del območij strnjene poselitve in se kaže smiselnost po uveljaviti decentraliziranega sistema odvajanja in čiščenja odpadnih voda. 4 Slika 1. Aglomeracije – območja strnjene poselitve znotraj občine Semič (vir: Atlas okolja) Tabela 2. Naselja v občini Semič s številom prebivalcev in območji Natura 2000 ST . N A S EL J A IM E NA S EL J A ŠT E VIL O P E 1 Bl atn ik pr i Čr m o šn ji ca h 22 2 3 Br e zj e pr i Ro žn em Do lu Br e zj e pr i V in jem V r hu 10 17 4 Br e zo va Re ber 39 5 Br e zo vi ca pr i Čr m o šn ji cah 6 Br sto ve c 41 7 Cer o ve c p r i Čr e šn je vc u 58 8 Čr e šnj ev ec pr i Sem ič u 102 9 Čr m o šn ji ce 134 10 Gab er pr i Čr m ošn ji ca h 11 Gor n je La ze 26 12 13 14 Gr ad ni k Hr i b pr i Cer ov cu Hr i b pr i Ro žne m Do lu 66 10 1 15 Ka l 84 16 Ko m ar n a v as 17 Kr u pa 46 18 Kr vav čj i Vr h 82 6 0 2 NAT U RA 20 00 - K oč ev sko ( SC I) , - K oč ev sko – K ol pa ( S P A) , - Gor ja nc i - B el a Kr a ji na ( S CI) , Gor ja nc i K oč ev sko ( SC I) , K oč ev sko – K ol pa ( S P A) , K oč ev sko - Gr a da c ( S CI) , Kr upa Gr a da c ( S CI) , Kr upa K oč ev sko ( SC I) , K oč ev sko – K ol pa ( S P A) , K oč ev sko Gor ja nc i Gor ja nc i Gor ja nc i – R ado ha ( S CI) , Gor ja nc i - Gor ja nc i Gor ja nc i – R ado ha ( S CI) , Gor ja nc i K oč ev sko ( SC I) , K oč ev sko – K ol pa ( S P A) , K oč ev sko Gr a da c ( S CI) , Kr upa Gr a da c ( S CI) , 5 - Kr upa 19 Lip ove c 36 20 M al ine pr i Štr ek lje v cu 28 21 M aše lj 22 M ove r na va s 29 23 24 25 Ne sto pl ja va s Om ot a Os kor š ni ca 24 55 68 26 Oso jn ik 109 27 Pl an ina 3 28 Po dr eb er 65 29 30 31 Po tok i Pr a pr o če Pr a pr ot 20 19 51 32 Pr e lo ge 3 33 Pr ibi šj e 16 34 35 36 Pu gle d Ro žni D ol Se la pr i Vr č ic ah 19 54 17 37 Se m i č 38 39 So dj i Vr h So vi nek 25 73 40 Sr e dgor a 0 41 Sr e dn ja va s 65 42 St ar i hov Vr h 21 43 Str an ska v as pr i Sem ič u 65 44 45 Štr ek lj eve c T r ebn ji V r h 46 Vi nj i Vr h pr i Se m i ču 49 47 Vr či ce 43 0 1.95 1 - Gor ja nc i – R ado ha ( S CI) , B el a Kr a ji na ( S CI) , Gor ja nc i Gor ja nc i Gr a da c ( S CI) , Lah in ja ( S CI ) , Lah in ja, Kr upa - Gor ja nc i – R ado ha ( S CI) , B el a Kr a ji na ( S CI) , Gor ja nc i K oč ev sko ( SC I) , K oč ev sko – K ol pa ( S P A) , K oč ev sko Gor ja nc i – R ado ha ( S CI) , Gor ja nc i Gor ja nc i - Gor ja nc i – R ado ha ( S CI) , Gor ja nc i Gor ja nc i – R ado ha ( S CI) , Gor ja nc i - Gor ja nc i Gor ja nc i, K oč ev sko ( SC I) , K oč ev sko – K ol pa ( S P A) , Gor ja nc i – R ado ha ( S CI) , K oč ev sko Gor ja nc i - K oč ev sko ( SC I) , K oč ev sko – K ol pa ( S P A) , K oč ev sko K oč ev sko ( SC I) , K oč ev sko – K ol pa ( S P A) , K oč ev sko , Gor ja nc i - Gr a da c ( S CI) , - Kr upa 115 13 - Gr a da c ( S CI) , Kr upa K oč ev sko ( SC I) , K oč ev sko – K ol pa ( S P A) , K oč ev sko , Gor ja nc i Slika 2. Natura 2000 v občini Semič (vir: Atlas okolja) 6 Okoljski cilj: Glede na Pravilnik o odvajanju in čiščenju komunalne odpadne in padavinske vode (Ur. l. RS št. 105/2002 s popravki Ur. l. RS št. 50/2004, 109/2007) bo potrebno s komunalno infrastrukturo in čistilnimi napravami opremiti poselitvena območja med 50 in 2000 PE do konca leta 2017. V primeru občutljivih območij pa mora biti čiščenje komunalne odpadne vode iz območij z več kot 50 PE zagotovljeno že do konca 2015 ter do konca 2018 za individualne stavbe izven naselij. Izhodišča: Novi trendi razvoja sistemov komunalne infrastrukture kažejo potrebo po uvajanju finančno in ekološko vzdržnejših sistemov odvajanja in čiščenja odpadnih voda. Rešitve se kažejo v manjših decentraliziranih sistemih in rastlinskih čistilnih napravah (RČN). Dolga kanalizacijska omrežja, draga črpališča in velike čistilne naprave se kažejo za ekološko in ekonomsko neupravičene. Prednosti, ki se kažejo z razpršenimi, manjšimi kanalizacijskimi sistemi so naslednje: • fazna izgradnja kanalizacijskih sistemov, • manjše investicije, • lokalno reševanje problematike, • manjša čistilna naprava v primeru izpada zahteva lokalno intervencijo in ne povzroči velike ekološke katastrofe kot velik centralni sistem, • večja vključenost lokalnega prebivalstva pri odločitvah postavitve (socialni vidik), • manjši posegi v prostor in okolje, • manjši stroški vzdrževanja in obratovanja itd. 7 Primer prikaza primerjave centraliziranega in decentraliziranega sistema zbiranja in čiščenja odpadnih voda Slika 3. Shema centralnega kanalizacijskega sistema na območju razpršene poselitve. V primeru centralnega reševanja odvajanja in čiščenja odpadnih voda, sistem zahteva takojšnjo veliko investicijo in visoke stroške obratovanja. Ob izpadu delovanja lahko povzroči velik ekološki problem. Kaže se odtujenost uporabnikov v odnosu do okolja itd., medtem ko decentralizirani sistem omogoči reševanje problematike odpadnih voda na samem kraju nastanka oziroma s kratkimi kanalizacijskimi vodi in manjšimi fleksibilnejšimi sistemi čiščenja. Slika 4. Shema faznega reševanja odvajanja in čiščenja odpadnih voda na območju razpršene poselitve z decentraliziranimi sistemi. Nabor ekoremediacijskih tehnologij za reševanje problema Rastlinske čistilne naprave za odvajanje in čiščenje odpadnih voda iz manjših naselij Rastlinske čistilne naprave so primerne za čiščenje komunalnih odpadnih voda iz manjših naselij, individualnih hiš kot tudi ekoloških kmetij in raznih turističnih objektov (term, kampov, hotelov itd.). Prav tako so po svojem principu delovanja izredno primerne za čiščenje odpadnih voda iz počitniških hiš in zidanic, kjer ni stalnega bivanja. Rastlinske čistilne naprave omogočajo terciarno čiščenje odpadnih voda in so tako po Uredbi o emisiji snovi pri odvajanju odpadnih voda iz malih komunalnih čistilnih naprav (Ur. l. RS št. 103/2002) opredeljene kot dodatno 8 čiščenje, kar pomeni, da se lahko implementirajo tudi v primeru neustreznega delovanja klasičnih bioloških sistemov čiščenja kot so SBR sistemi in podobno. Osnovni procesi, ki se v rastlinskih čistilnih napravah dogajajo so adsorpcija, mineralizacija, aerobna in anaerobna razgradnja. Glavni delež čiščenja prispevajo bakterije, ki žive na koreninah ali med njimi ter na substratu. Rastline uvajajo v substrat kisik in tako ustvarjajo aerobne cone. Med aerobnimi conami se nahajajo anaerobne cone. V tako mozaično razporejenih področjih s kisikom in brez prihaja do razgradnje snovi v odpadni vodi in vgrajevanje v mikrobno maso bakterij. Vloga rastlin pa se kaže predvsem v tem, da nudijo s svojimi koreninskimi sistemi podlago bakterijam za pritrjanje in vgrajujejo mineralizirane snovi (npr. fosfate, nitrate ter mnoge strupene snovi) v rastlinsko tkivo. RČN so zelo učinkovite pri odstranjevanju usedljivih in suspendiranih delcev v onesnaženi vodi. Vendar je to lahko hkrati tudi najbolj težaven proces pri učinkovitosti RČN, ki lahko ogrozi njeno delovanje. RČN se namreč lahko zamaši in pride do površinskega toka, zato je ključno ustrezno vzdrževanje usedalnika, ki omogoča mehansko fazo predčiščenja na rastlinski čistilni napravi. Ob propadu rastlin pozimi, se učinkovitost delno zmanjša, vendar po naših izkušnjah ne pade pod 85 %. Izgubo učinkovitosti pozimi izravnavamo z dimenzioniranjem večje površine za približno 20 %. Običajno se dimenzionira RČN s cca 2,5 m2 neto površine za čiščenje odpadne vode za 1 PE (1 oseba). Nasutja substrata, ki sestoji iz različnih frakcij drobljenca, v posameznih gredah variirajo med 0,5 m in 0,8 m globine. Največje prednosti RČN so: • velika učinkovitost čiščenja: 85 – 99 %, • za delovanje običajno ni potrebne energije in strojne opreme, • ob razgradnji se določen del 10 – 20 % hranilnih snovi (npr. fosfor, dušik, ogljik itd.), težkih kovin, pesticidov in drugih toksičnih snovi vgradi v rastlinsko biomaso, ki pri drugih čistilnih napravah, brez dodanih kemikalij za obarjanje, odtečejo v okolje, • energija, ki se je vgradila v rastlinsko biomaso, se lahko ponovno uporabi (briketi, kompost, krma, itd.), • v primeru izpada ali popravila strojnega dela pri drugih čistilnih napravah mikrobna populacija za svojo obnovitev potrebuje nekaj dni, pri čemer surova odpadna voda odteka in onesnažuje okolje, do česar v RČN ne prihaja, • v primerjavi z ostalimi sistemi čiščenja so z vidika obratovanja in vzdrževanja veliko cenejše, • postavitev je enostavna in ne zahteva velikih posegov v prostor, • vzdrževanje je enostavno in poceni, • ne povzroča razvoja smradu in insektov, saj je tok vode podpovršinski, • atraktivne odprte površine v urbaniziranem okolju, ki prispevajo k vrstni biodiverziteti - predstavljajo sonaravne ekosisteme za živali (ptice, dvoživke ...) • se lepo vključuje v okolje in prispeva k lepšemu izgledu degradiranih območij, • prečiščena voda se lahko večnamensko uporabi (npr. za namakanje oziroma zalivanje zelenih površin, gašenje požarov, vodne kulture ...) Primer RČN pod 50 PE Specifika malih komunalnih rastlinskih čistilnih naprav s kapaciteto čiščenja pod 50 PE je, da za izgradnjo ni potrebno pridobiti gradbenega dovoljenja, saj se štejejo kot enostavni objekti. To pomeni, da ni potrebna izdelava nekaterih projektnih dokumentacij, v tem primeru idejnih zasnov (IDZ), idejnega projekta (IDP) in projekta za pridobitev gradbenega dovoljenja (PGD), kar poceni celotno investicijo. Če RČN leži znotraj območja Natura 2000 je potrebno pridobiti naravovarstveno soglasje s strani Agencije za okolje RS. V kolikor leži na vodovarstvenem območju I. in II. varovalnega režima se ne sme graditi nobenih čistilnih. Veljajo pa na področju gradnje v vodovarstvenih pasovih še vedno občinske uredbe, ki pa se lahko od občine do občine razlikujejo. 9 Običajno se gradi RČN s štirimi med sabo zaporedno vezanimi gredami (filtrirna, 2 čistilni ter polirna greda), kar pa ne velja za sisteme, ki imajo manjšo kapaciteto čiščenja od 30 PE. V tem primeru se izgradi sistem z le dvema gredama - filtrirno in čistilno. V vsakem primeru pa je pred RČN vgrajen večprekatni usedalnik, ki služi za primarno čiščenje, to je za odstranjevanje grobih delcev in suspendiranih snovi. KPK in BPK5, kot parametra, ki ju je potrebno spremljati skladno z Uredbo, poleg tega pa tudi dušikove in fosforjeve spojine, se odstranjujejo kasneje v filtrirni in čistilni gredi. Slika 5. Mala komunalna rastlinska čistilna naprava za čiščenje odpadnih voda za turistično kmetijo Loger s kapaciteto čiščenja 30 PE – primer z dvema gredama. Primer RČN nad 50 PE Za RČN nad 50 PE je po Zakonu o graditvi objektov (ZGO-1-UPB1) ter Uredbi o vrstah objektov glede na zahtevnost (Ur. l. RS, št. 37/2008, sprememba Ur.l. RS, št. 99/2008) potrebno pridobiti gradbeno dovoljenje in vsa potrebna soglasja, saj gre za manj zahtevne objekte (RČN med 50 PE in 2000 PE). Prednost RČN nad 50 PE se ne kaže samo kot sistem za terciarno čiščenje po iztoku iz kakega drugega tipa čistilne naprave, kot npr. SBR, ampak je lahko RČN samostojen sistem za čiščenje odpadnih vod tudi na občutljivih območjih (Natura 2000, vodovarstvena območja itd.). Ker morajo biti gradbena dovoljenja skladna s prostorskimi akti občine – kar je v fazi projektiranja razvidno iz lokacijske informacije, je potrebno RČN umeščati na zemljišča, kjer je gradnja dovoljena. Zaželeno je, da ima občina prostorske akte urejene tako, da je tudi na kmetijskih zemljiščih možno graditi okoljsko infrastrukturo. Sistem RČN je izgrajen iz 4 gred (filtrirne, dveh čistilnih in polirne), kjer se voda podpovršinsko pretaka po substratu zasajenim z rastlinami. Ker je za izgradnjo RČN potrebno cca 2,5 m2, kar lahko povzroča težavo, saj je potrebno zagotoviti dovolj velik prostor, je možno RČN dimenzijsko prilagoditi terenu oz. predvideni parceli za gradnjo. 10 Slika 6. Shematski prikaz delovanja RČN nad 50 PE. Slika 7. RČN Sv. Tomaž pri Ormožu s kapaciteto čiščenja 250 PE, izgrajena leta 2001. 11 Primer reševanja odvajanja in čiščenja odpadnih voda iz razpršenih naselij na primeru naselja Stranska vas pri Semiču (65 PE) VARIANTA 1 Varianta 1 Dolžina voda [m] Dolžina voda [m] RČN RČN 450 175 40 15 Stroški [€] 99.000 38.500 26.000 12.750 176.250 VARIANTA 2 Varianta 2 Dolžina voda [m] RČN 750 55 Stroški [€] 165.00 27.500 192.500 Primerjava: varianta 1 varianta 2 176.250 192.500 12 V primeru, da obstoječe čistilne naprave ne zagotavljajo standardom je možno CČN dograditi z rastlinsko čistilno napravo kot dodatno čiščenje, in sicer terciarno čiščenje kot je v skladu z Uredbo o emisiji snovi pri odvajanju in čiščenju odpadne vode iz malih komunalnih čistilnih naprav. V primeru nedelovanja SBR sistema je smiselno SBR sistem preurediti (sanirati) v usedalnik kot mehanski del rastlinski rastlinske čistilne naprave. Rastlinska čistilna naprava v tem primeru prevzame čiščenje odpadne vode in omogoča delno terciarno čiščenje odpadne vode. Projektni predlogi: - Priprava Idejnih rešitev in idejnih zasnov odvajanja in čiščenja odpadnih voda na območjih razpršene poselitve (pod 2000 PE) s pomočjo rastlinskih čistilnih naprav - Priprava idejnih projektov za odvajanje in čiščenje odpadnih voda na območjih razpršene poselitve za posamezna naselja - Izgradnja kanalizacije in rastlinskih čistilnih naprav (investicijski projekti) - Izvajanje izobraževalnih delavnic za lokalno prebivalstvo na območjih razpršene poselitve o rastlinskih čistilnih napravah in pomenu čiščenja odpadnih voda - Sanacije obstoječih SBR sistemov z rastlinsko čistilno napravo 4.2 Zaščita vodnih virov (vpliv vinogradništva) Opredelitev problema Vinogradniška območja v občini predstavljajo velik pritisk na okolje. Problematika se kaže predvsem v neustrezni komunalni infrastrukturi stanovanjskih objektov na vinogradniških območjih kot tudi onesnaženost tal in voda zaradi uporabe FFS ter umetnih gnojil (onesnaženost z nitrati in fosforjem) pri gospodarjenju z vinogradi. Okoljski cilj: zmanjšanje onesnaženost tal z nitrati in uporabe pesticidov, ureditev ustreznega odvajanja in čiščenja odpadnih voda na območju zidanic Ekoremediacijske tehnologije za rešitev problema Rastlinske čistilne naprave za odvajanje in čiščenje odpadnih voda iz zidanic. V primeru izredne razpršene poselitve zidanic se kaže smiselnost reševanja odvajanja in čiščenja odpadnih voda na povsem individualni način, kar pomeni smiselnost gradnje rastlinskih čistilnih naprav za 5-10 PE. Rastlinske čistilne naprave lahko omogočajo hkrati tudi ponovno uporabo vode. Glede na ustrezno reliefno konfiguracijo terena pa se vsekakor lahko na vinogradniških območjih umeščajo brez uporabe strojne ali električne opreme. Za rastlinske čistilne naprave teh velikosti ni potrebno gradbenega dovoljenja in so v velikosti med 10 – 20 m2. Za reševanje problematike onesnaženosti tal z nitrati so predstavljene ekoremediacijske metode z uporabo fitoremediacije pri odstranjevanju organskih in anorganskih onesnaževal v tleh obdelovalnih površin zaradi dolgoletne uporabe gnojil in fitofarmacevtskih sredstev. Opisane so metode neposredne remediacije onesnaženih tal (hiperakumulatorske rastline, rastline z visokim prirastom in visoko evapotranspiracijo) in vode (večnamenski melioracijski jarki, mokrišča) ter metode zaščite okolja pred netočkovnim onesnaževanjem kot posledica kmetijske dejavnosti (vegetacijski pasovi). Trije glavni sestavni deli, substrat, mikrobi in rastline, so sposobni zmanjšati količino hranilnih in strupenih snovi s pomočjo filtracije, različnih razgradnih procesov v anoksičnih ali oksičnih razmerah ter s pomočjo vgradnje v rastlinsko in živalsko biomaso. S pravilno izbiro rastlinskih vrst, z njihovim pravilnim gojenjem in rednim odstranjevanjem prirastka biomase lahko tako kontrolirano odstranjujemo onesnaževala in s tem čistimo vodo in tla pred onesnažili kot so nitrati in pesticidi. Tabela 3. Tipične rastline, ki se jih uporablja pri različnih fitoremediacijskih pristopih. (Schnoor, 1997) 13 Uporaba FITOTRANSFORMACIJA Medij Tla, podtalnica, izcedna voda, čiščenje odpadne vode z vnosom vode v tla RIZOSFERNA BIOREMEDIACIJA Tla sedimenti, čiščenje odpadne vode z vnosom vode v tla Onesnaževalo • Herbicidi (atrazin, alachlor) • Aromatske spojine (BTEX) • Klorirane alifatske spojine (TCE) • Rastlinska hranila (NO3, NH4, PO4) • Razstreliva (TNT, RDX) • Organska onesnaževala (pesticidi, aromatske spojine, PAH FITOSTABILIZACIJA Tla, sedimenti • • Kovine (Pb, Cd, Zn, As, Cu, Cr, Se, U) Hidrofobne organske spojine (PAHi, PBCi, dioxini, furani, pentachlorophenol, DDT, dieldrin) FITOEKSTRAKCIJA Tla, sedimenti, onesnažena industrijska območja • Kovine (Pb, Cd, Zn, Ni, Cu) z dodatkom EDTA tudi Pb Se (izhlapevanje) RIZOFILTRACIJA Podtalnica, voda in odpadna voda v lagunah in grajenih močvirjih – rastlinskih čistilnih napravah • • Kovine (Pb, Zn, Cd, Ni, Cu) Radionuklidi ( 137Cs, 90 Sr, U) Hidrofobne organske spojine • Tipične rastline • Lesne vrste (topol, vrba, trepetlika, jelša) • Trave (Lolium perenne, Festuca, Shorgum, Cynodon dactylon) • Metuljnice (detelja, alfalfa, Vigna unguiculata) murva, jablana, Osage pomaranča - Maclura pomifera • trave z močnim koreninskim sistemom (Lolium perenne, Festuca, Cynodon dactylon • Lesne vrste (topol, vrba, trepetlika, jelša) • Vodne rastline za sedimente • • Lesne vrste z visoko evapotranspiracijo • trave z močnim koreninskim sistemom za preprečevanje erozije • rastline z gostim koreninskim sistemom • Sončnica • Brassica juncea • Brassica napus • trave iz rodu Hordeum, hmelj • Križnice • kopriva, regrat Taraxacum officinale • Vodne rastline (emergentne: Phragmites, Scirpus, Potamogeton, Lemna, Canna; potopljene: alge, Chara, Myriophyllum, Hydrilla) • ERM ureditev melioracijskih jarkov Ustrezna ERM ureditev melioracijskih jarkov omogoča zmanjšan vnos nitratov in pesticidov neposredno v podtalnico in površinske vode. Klasični melioracijski jarki so goli kanali, v katere se steka voda iz kmetijskega zemljišča, običajno onesnažena s pesticidi in gnojili. Taki jarki nimajo sposobnosti zadrževanja in čiščenja vode, prav tako imajo zelo nizko vrstno pestrost. Pesticidi in ostanki gnojil od tu lahko neposredno prehajajo v vodotoke in podtalnico in povzročajo resne okoljske probleme in vplivajo na zdravje ljudi in živali. S sonaravno ureditvijo – zasaditvijo melioracijskih jarkov lahko omenjene težave odpravimo ali vsaj omilimo. Obstoječe jarek razdelimo na štiri odseke, kjer ima vsak odsek specifično funkcijo. Prvi del je oblikovan tako, da omogoča maksimalno zadrževanje vode. V drugi del vgradimo substrat, bariere in zasadimo rastline, kar omogoča čiščenje kmetijskega onesnaženja. Tretji del je namenjen povečevanju biodiverzitete, zato so tu posajene različne vodne in močvirske rastline, ki predstavljajo življenjski prostor različnim živalim. Četrti del pa združuje vse tri funkcije prejšnjih delov in zagotavlja ravnovesje med njimi. Tako oblikovani melioracijski jarek ščiti 14 podtalnico in vodotoke pred kmetijskim onesnaženjem, zmanjšuje vplive suš, vodo, ki se v njem zadržuje, lahko uporabimo za namakanje, zmanjšuje vplive vetra. Zaradi teh funkcij melioracijski jarek indirektno vpliva tudi na povečanje kmetijskega pridelka, pripomore k varovanju zdravja in estetskemu izgledu kmetijske pokrajine. Slika 8. Shema ekoremediacijskega melioracijskega jarka Tabela 4. Prednosti večnamenskih melioracijskih jarkov. Neposredne koristi zasadnje jarkov Izboljšana kakovost površinskih in talnih voda Zmanjšanje nevarnosti suše Možnost recikliranja vode za namakalne namene Zmanjšanje vetra Povečana biološka raznovrstnost Posredne koristi zasadnje jarkov Zmanjšanje nevarnosti za zdravje Povečanje pridelka, biokmetijstvo Večja samovzdržnost, trajnost Estetska podoba kmetijske krajine Izboljšan eko turizem, potencialna gospodarska rast Slika 9. Kanalizirana in revitalizirana struga s samočistilno funkcijo. Vegetacijski pas je pas drevesne in grmovne vegetacije. Vegetacijski pasovi sodijo v širši sklop ekoremediacijskih blažilnih območij (ang. buffer zones) in imajo mnogo funkcij, ki omogočajo izboljšanje kvalitete vode, zaščitijo zrak in tla ter povečajo biološko pestrost, saj izboljšajo prehrambene in nastanitvene lastnosti obvodnega habitata ter omogočajo optimalnejše svetlobne, kisikove in temperaturne razmere za vodne živali in rastline. Ena od pomembnejših iskanih lastnosti je sposobnost čiščenja onesnažene vode in zemljin. Vegetacijski pasovi so namreč sposobni zadržati velike količine hranil – dušika in fosforja, pa tudi drugih snovi kot so npr. nitrati in pesticidi. Z njimi zato lahko ščitimo površinske vode in zajetja pitne vode pred razpršenimi vir onesnaženja, npr. iz kmetijstva. Primerni pa so tudi za preprečevanje onesnaženja iz točkovnih onesnaževalcev kot so posamezne kmetije, farme, predelovalni obrati za FFS itd. 15 Optimalna sestava vegetacije in najbolj efektivna širina vegetacijskega pasu variirajo od primera do primera in so odvisne od kaj in v kakšnem obsegu ščitijo (obremenitev, sestava, dinamika ipd.), količine padavin ter pogojev rasti in uspevanja rastlin. Zmanjšanje tveganj zaradi uporabe nitratov in pesticidov lahko zmanjšamo tudi s postavitvijo rastlinskih čistilnih naprav (RČN) na območjih, kjer nastajajo večje količine iztočnih voda iz kmetijskih površin, kjer nastajajo odpadne vode, ki vsebujejo FFS (npr. ob pranju opreme za nanašanje FFS) ipd. RČN posnemajo samočistilno sposobnost močvirskih sistemov s fizikalnimi in biokemijskimi procesi kot so aerobna in anaerobna razgradnja, filtracija, sedimentacija, in adsorbcija ter zagotavljajo učinkovito čiščenje organskih, dušikovih, fosforjevih snovi, težkih kovin, pesticidov in drugih strupenih snovi, ki nastajajo v kmetijski dejavnosti. Umetna mokrišča imajo pri reševanju problematike onesnaževanja z nitrati in pesticidi vlogo zadrževanja, pretvorbe ali odstranjevanja hranilnih in strupenih snovi v teh ekosistemih. Vtok hranilnih snovi poteka predvsem po hidroloških poteh, medtem ko so aktivni procesi razgradnje odvisni predvsem od učinkovitosti in ravnotežja delovanja mikroorganizmov (bioremediacija) in rastlin (fitoremediacija). Tabela 5. Učinkovitost ekoremediacijskih metod pri odstranjevanju N in P Odstranjevalna učinkovitost varovalnega pasu, RČN % Specifične odstranitve (% m-1) Zadrževanje (kg ha-1yr-1) Obrežna mokrišča % N 81 (80) P 81 (67) 4.1 21 (36) 85 3.4 1.2 (1.6) 70 Atrazin 24 Vir Mander et al., 1997, Runes et al., 2003 Mander et al., 1997 Mander et al., 1997 McCartney et al., 2003 Projektni predlogi: - Idejne rešitve in idejne zasnove odvajanja in čiščenja odpadnih voda iz zidanic na vinogradniških območij ter izgradnja RČN - Delavnice za lokalno prebivalstvo z namenom osveščanja o pomenu čiščenja odpadnih voda - Identifikacija območij onesnaženosti območij z nitrati in pesticidi – vinogradniška območja - Izdelava OP implementacije ERM ukrepov za zmanjševanje onesnaževanja z nitrati in pesticidi 4.4 Varovanje vodnih virov lastne vodooskrbe Za ohranjanje in zagotavljanje zdravstveno ustreznih virov pitne vode je potrebno iskanje ekonomsko in okoljsko ustreznih rešitev, ki zagotavljajo zaščito in preprečevanje onesnaženja površinskih vod kot tudi podtalnice ter odstranjevanje že nastalega onesnaženja. Med pomembnimi problemi na področju vodooskrbe lahko izpostavimo naslednje: 1. Kakovost podtalnice in ostalih virov se povsod ne izboljšuje; prisotno je kemično in mikrobiološko onesnaženje; najbolj ogroženi so kraški izviri; 2. Pomanjkanje pitne vode v sušnem obdobju na vododeficitarnih območjih; 3. Izgube zaradi slabega vzdrževanja vodovodnih omrežij; 4. Del javnih vodovodnih omrežij še vedno nima določenih ustreznih vodovarstvenih območij z ustreznimi režimi upravljanja, poleg tega se taka območja tudi ne nadzorujejo; Poleg podtalnice, je ponekod tudi površinska voda pomemben vir vode za pitje. Tu se srečujemo s podobnimi viri onesnaženja, ki so lahko ponekod še močneje izraženi. Za zagotavljanje zdravstveno ustreznih virov pitne vode, 16 ki izhajajo iz podtalnih vodnih virov, so potrebni celoviti pristopi varovanja in zaščite, upravljanja ter načrtovanja in ne le posamezni sektorski ukrepi. V primeru uvajanja ekoremediacijskih pristopov za namene preprečevanja ali odstranjevanja že nastalega onesnaženja v vodi ali tleh imamo v mislih uvajanje usmerjeno grajenih ekosistemskih rešitev, kjer h končni rešitvi danega okoljskega problema prispevajo tako živi kot neživi dejavniki ekosistema. Gre za skupno delovanje medija (substratov), rastlin, mikrobov in tam živeče favne. Najpogostejši viri onesnaženja podtalnice so: • industrijska dejavnost, premogovništvo in drugi izkopi, • energetika, • izcedna voda iz nezaščitenih odlagališč odpadkov, • onesnažena tla, iz katerih se izceja onesnažena voda, • intenzivno kmetijstvo (rastlinska hranila - nitrati, fosfati, pesticidi), • nezadostna stopnja čiščenja komunalne odpadne vode v komunalnih čistilnih napravah, • onesnaženje iz individualnih prepustnih greznic in zadrževalnikov, • direktni izpusti komunalne odpadne vode v okolje, • meteorni odtok, • atmosferski depoziti, • kontaminacija iz vodnjakov samih, • nesreče z nevarnimi izlitji itd. Ker govorimo o okoljskem problemu varovanja vodnega vira lastne vodooskrbe in ker je poudarek tukaj predvsem na podtalnici bomo opisali trenutno najbolj prespektivno in učinkovito metodo čiščenja podzemnih voda oz. vodnih zajetij – fitoremediacija. V primeru večjega poudarka na vlogo in delovanje mikroorganizmov, pri razgradnji in odstranjevanju onesnaževal, govorimo o bioremediaciji. Ko pa je izpostavljena vloga rastlin pri zadrževanju, pretvorbi in odstranjevanju onesnaževal pa govorimo o fitoremediaciji. Fitoremediacijski in bioremediacijski procesi med seboj niso ločeni in delujejo v povezavi s tam prisotnim medijem ter v okviru danih okoljskih (klimatskih) razmer. Zato je smiselno govoriti o ekoremediacijskih tehnologijah ali fitotehnologijah. S pojmom fitoremediacija torej označujemo način čiščenja onesnaženih zemljin, podtalnice, površinske vode ali sedimentov s pomočjo rastlin na mestu onesnaženja. Ker gre za izbor posebnih vrst rastlin glede na vrsto in mesto onesnaženja, kot tudi za poseben način zasaditve, priprave terena in vzdrževanja nasada, opredeljujemo to tehnologijo kot fitotehnologija. V zadnjem času je fitotehnologija postala privlačna alternativa klasičnim načinom čiščenja zaradi relativno nizkih stroškov kot tudi lepega izgleda zasaditev. Fitoremediacija izkorišča naravno sposobnost rastlin za privzem, zadrževanje, razgradnjo in evapotranspiracijo snovi iz tal in vode. Razvoj sodobnih fitotehnologij je tako omogočil trajnostno ravnanje s številnimi onesnažili, med katerimi so številne kovine, mineralne snovi (soli), radionuklidi, organska onesnažila (naftni ogljikovodiki, klorirane spojine, pesticidi, eksplozivi). Številni primeri uporabe fitotehnologij v praksi kažejo na možnost uspešnega zmanjševanja oziroma omejevanja onesnaževanja okolja. V posameznih okoljskih razmerah lahko onesnaževala v podtalnici odstranjujemo s pomočjo mehanizmov fitorazgradnje, fitoizhlapevanja, hidravlične kontrole, vegetacijskih pokrovov, rastlinskih čistilnih naprav, obrežnih koridorjev, ter drugih vegetacijskih barier in filtrov. Odvzeta voda se lahko čisti z mehanizmom 17 rizofiltracije, torej s prehodom podtalnice skozi obsežen koreninski sistem, ali pa s črpanjem in namakanjem površin s to vodo, ki je nato podvržena rizorazgradnji ter fitorazgradnji. Ključni podatek v primeru onesnažene podtalnice je globina podtalnice in lega oz. globina onesnaženja. V primeru »in-situ« fitoremediacije podtalnice (čiščenja na viru njenega onesnaženja) smo omejeni na globino podtalnice, ki je še v okviru dosega rastlinskih korenin ter na cono onesnaženja, ki se nahaja v vrhnjih delih vodnega stolpca in je dosegljiv rastlinskim koreninam. Projektni predlogi: - Študija vodnih virov lastne vodooskrbe v regiji oz. po občinah - Priprava strategije, karte reševanja in varovanja vodnih virov lastne vodooskrbe - Izvedba sanacij posameznih identificiranih območij 4.5 Poplave in suše Občina je izpostavila tudi problem poplavljanja potokov. Okoljski cilj: celovita obravnava porečja reke Temenice in revitalizacija na identificiranih mestih poplavljanja Nabor ERM rešitev za problem: S pomočjo ekoremediacij lahko uravnavamo vodne količine, kar je zelo pomembno pri uresničevanju preventivnih protipoplavnih ukrepih. Zasaditev obrežne drevesne vegetacije ob potokih in rekah, revitalizacije vodotokov (obnova reguliranih vodotokov) omogočajo zadrževanje vode in s tem preprečevanje poplav v spodnjem delu toka reke. Naravni vodni ekosistemi so v svoji ontogenezi razvili številne remediacijske sisteme, ki jim omogočajo ohranjati dinamično ravnovesje in ublažiti določene ekstremne situacije (npr. poplave, suše itd). Revitalizacija vodotoka pomeni sanacijo nepravilnih posegov v vodotokih oz. regulacije vodotokov v melioracijske sisteme. Z revitalizacijo ali obnovo degradiranih vodotokov lahko ponovno vzpostavimo strukturo in funkcijo vodenega ekosistema z ustreznimi vodnogospodarskimi posegi. Za to se uporabljajo številne tehnike, ki so izvedene v strugi ali na obrežju vodotoka. Na takšne načine ciljano in z določenim namenom obnovimo oziroma ohranimo zgradbo in funkcijo habitatov vodnega in obvodnega biotopa. Z revitalizacijami vodotokov zadržujemo vodo in tako preprečujemo sušo gorvodno in poplave dolvodno, povečamo samočistilno sposobnost vodotoka, ohranjamo biotsko raznovrstnost in izboljšamo ekološko stanje vodotoka. Z revitalizacijami vodotokov hkrati tudi zagotovimo dolgoročno trajnostno in gospodarno upravljanje z vodotokom. Revitalizacije vodotokov in omilitveni ukrepi omogočajo: • izboljšanje kvalitete vode v strugi, • obnovo vodnih in obvodnih habitatov, • zadrževanje vode in preprečevanje poplav, • naravno utrditev brežin in preprečevanje erozije, • izboljšan vizualni izgled in vklapljanje v krajino, možnost večjih odjemov vode za človekove potrebe ob hkratnem zagotavljanju ustreznega ekološkega statusa vodotoka. Na podlagi celovite obravnave porečja vodotoka, ki poplavlja izpostavimo na identificiranih mestih umeščanje sledečih ERM ukrepov v strugi vodotoka: 18 - - - stranski rokavi za kompenziranje vodnih viškov, zadrževanje visokega vala, usedanje delcev in zadrževanje strupenih ter hranilnih snovi. Hkrati pozitivno vpliva na habitatno strukturo, samočistilne sposobnosti in na zmanjševanje poplavnih valov. Tako v sušnih obdobjih bogatimo nizke pretoke v vodotokih ter ohranjamo ekološko sprejemljiv pretok v vodotoku in omogočimo odvzem vode za uporabnike. meandriranje struge: vodotok si z meandri podaljša pot, zmanjša padec, upočasni tok vode, poveča globino vode in količino vode v pokrajini ter podtalnici. Podaljša se tudi obrežni pas, ki je ekosistemsko zelo bogat. Meandri povečajo pogostost preplavljanja struge in tako vzpostavijo stik s poplavnim svetom na identificiranih mestih, kjer je škoda poplavljanja minimalna oziroma z naravovarstvenga vidika zaželjena (ohranjanje mokrotnih travnikov). makrofiti v strugi (zadržujejo vodo, senčijo vodo (preprečujejo pregrevanje), pospešujejo sedimentacijo, umirjajo hitrost toka in zadržujejo vodo) ERM ukrepi na obrežju vodotoka, ki prispevajo k uravnavanju vodnih viškov in s tem preprečujejo poplavljanje: - vegetacijski pasovi : povečajo shrambo vode, ulovijo površinski tok in podaljšajo retenzijski čas (manjše visokovodne konice). Slika 10. Vegetacijski pasovi so lahko v obliki travišča z gosto raslo travo ali večvrstnega grmovnega nasada. V primeru njihove povezovalne vloge govorimo o koridorjih. - grajena mokrišča hidrološko manjši razbremenilnik poplavnega vala ob visokih vodah Slika 11. Učinek mokrišč pri blažitvi poplavnih valov in umirjanju pretoka po nevihti Projektni predlogi: - Izdelava kart poplavne ogroženosti območij ob reki Temenici (identifikacija mest poplavljanja in obravnava celotnega porečja) 19 - Izdelava strategije upravljanja s posameznih porečjem z namenom reševanja problematike poplav, suš OP izvedbe posegov, sanacij, revitalizacij Izvedbe revitalizacijskih ukrepov 4.6 Sanacija odlagališč in starih bremen Okoljski cilje: trajnostna sanacija deponije ob zaprtju ter preprečitev negativnih vplivov na okolico, kjer leži deponija (onesnaževanje tal in podzemnih in površinskih voda) ERM tehnologije za rešitev problema Sonaravna sanacija deponij (LIMNOTOP) Sistem Limnotop sestoji iz prekrivnih plasti z lesno in zeliščno vegetacijo, rastlinske čistilne naprave za čiščenje izcednih vod in namakalnega sistema. Osnovni cilj je, v čim večji meri vodo zadržati ter očistiti na odlagališču, zato se izvaja recikliranje vode. Prestrežena izcedna voda se čisti na RČN, od koder se vrača preko namakalnega sistema na območje posajeno z drevesi. Voda evapotranspirira, del pa skupaj s padavinsko vodo , v taki količini in dinamiki, da dolgoročno telo odlagališča ne more zasititi z vodo, prehaja med odpadke in vrne v opisani cikel. Z nadzorovanim razkrojem organskega dela odpadkov (mineralizacijo) se tako po zaključku razgradnje odlagališčni prostor lahko nameni tudi drugi, npr. komercialni rabi. Slika 12. Poenostavljen prikaz sonaravne sanirne metode deponij odpadkov Projektni predlogi: - Analiza stanja (monitoring) deponije ob zaprtju - Priprava sanacijskega načrta za saniranje deponije z LIMNOTOP sistemom - Izvedba sanacije (investicijski projekt) - Izvedba delavnic za lokalno prebivalstvo za osveščanje in izobraževanje o ločenem zbiranju odpadkov ter pravilne ravnanju z odpadki 20 4.7 Izboljšanje kakovosti zunanjega zraka in posledice prometa Opredelitev problema Najpogostejša onesnaževala zraka so žveplov dioksid, dušikovi oksidi, prašni delci, ozon ogljikov monoksid, benzen, in nekatere težke kovine. Glavni vir onesnaževanja zunanjega zraka z žveplovim dioksidom (SO2) so točkovni viri, kot npr. velike termoelektrarne, toplarne, na urbanih območjih pa tudi manjše kotlovnice, ki kot gorivo uporabljajo premog. Žveplov dioksid lahko nastaja tudi v nekaterih industrijskih procesih (npr. pri proizvodnji celuloze). Na drugi strani na slabšo kakovost zraka vpliva tudi promet. Okoljski cilj: izboljšati kakovost zraka ter zmanjšati negativne vplive prometa v urbanem delu Ekoremediacijske tehnologije za rešitev problema Ekoremediacije (ali fitoremediacije), s katerimi zmanjšujemo onesnaženost zraka, lahko razdelimo v dve osnovni podskupini in sicer neposredne in posredne ekoremediacjske metode za izboljšanje kakovosti zraka. Neposredni ERM postopki za zrak Neposredni ERM postopki za zrak neposredno zmanjšujejo stopnjo onesnaženosti zraka. Uporabljamo jih lahko za zmanjšanje onesnaženosti zraka z dušikovim oksidom (NO2), žveplovim dioksidom (SO2), suspendiranim prahom (TSP) ter težkimi kovinami in obstojnimi organskimi onesnaževali (POPs), ki so vezani na prašne delce. ERM postopki za zrak so najbolj učinkoviti pri zmanjševanju onesnaženosti zraka s prašnimi delci in dušikovim dioksidom, doprinos k zmanjšanju onesnaženosti zraka z SO2 pa je majhen. ERM za zmanjšanje onesnaženosti zraka s suspendiranim prahom (TSP) ter težkimi kovinami in obstojnimi organskimi onesnaževali (POPs), ki so vezani na prašne delce temeljijo na postopku filtracije. Delci, ki so prisotni v zraku, se na rastlinah izločajo predvsem zaradi sedimentacije (gravitacijski procesi) in impakcije - izločanje delcev zaradi trkov s površino rastline. Delci trčijo z rastlino zaradi transporta z vetrom ali zaradi lastnega gibanja delcev v atmosferi. Delci, ki se ustavijo na rastlinah, se z dežjem deloma sperejo na tla, del pa zaradi medmolekularnih sil ostane na rastlinah. Na ta način rastline nastopajo kot naravni ponor prašnih delcev, težkih kovin in POPs iz zraka. Upoštevati moramo, da pri tem ERM postopku polutanti ne spremenijo svoje pojavne oblike in na ta način do neke mere kontaminirajo rastlino in tla okoli nje. Pri ERM za s prahom onesnažen zrak je potrebno upoštevati, da so v te namene primerne samo tiste rastline, ki imajo primeren habitus (primerno rast in obliko listov) in so manj občutljive na prah predvsem v smislu poškodb, ki jih prah povzroča na rastlinah. Praviloma morajo biti te rastline hkrati tolerantne tudi na onesnaženost zraka z dušikovim dioksidom in žveplovim dioksidom. ERM za zmanjševanje onesnaženosti zraka z dušikovim oksidom (in deloma tudi z žveplovim dioksidom) temeljijo na absorpciji in asimilaciji NO2 in SO2 v rastlinah, kar ima za posledico dokončno eliminacijo NO2 in SO2 iz zraka. Žveplov dioksid in dušikov dioksid namreč vstopita v metabolne procese v rastlinah in se pri tem preoblikujeta v druge spojine. Oba plina se v vodi, ki je v rastlinah, tudi raztapljata, pri čemer nastajajo kisline. Raztopljeni SO2 in NO2 in njuni metabolni produkti so lahko za rastline toksični, zato lahko za ERM za zrak uporabljamo samo rastline, ki so na tovrstne učinke omenjenih onesnaževal bolj odporne - bolj tolerantne do onesnaženega zraka. Toleranca teh rastlin ni neomejena, zato so tovrstni ERM možni le do določene stopnje onesnaženosti zraka. Na splošno so rastline bolj tolerantne do onesnaženja zraka z dušikovim dioksidom kot do onesnaženosti z žveplovim dioksidom, zato so ERM za zrak na tistih območjih kjer je zrak močneje onesnažen z žveplovim dioksidom manj uporabni. Ob upoštevanju omejitev (uporaba do onesnaženega zraka bolj tolerantnih rastlin, nižja stopnja onesnaženosti zraka z SO2 in ne previsoka onesnaženost zraka z NO2) ERM za zrak obravnavamo tudi kot naravni ponor za NO2 v zraku. 21 Neposredne ERM za zrak lahko uporabimo predvsem v naslednje namene: • Zniževanje splošne onesnaženosti zraka v urbanih sredinah z ustreznimi ozelenitvami mestnih parkov in drugih zelenih površin. Tovrstne ERM je možno uvesti na že obstoječe zelene površine, še večje učinke pa je možno doseči z ustreznim načrtovanjem urbanih območij, kjer z načrtovanjem ustreznih zelenih površin v prostor vnesemo takšne ozelenitve, ki prispevajo k zmanjšanju onesnaževanja zraka. Največje pozitivne učinke lahko pričakujemo pri zmanjševanju onesnaženosti zraka z dušikovim dioksidom in prašnimi delci. • Omejevanje širjena in čiščenje onesnaženega zraka z zelenimi barierami (mejicami) ob linijskih virih onesnaževanja zraka, predvsem ob cestah z zelo gostim prometom. Največje pozitivne učinke lahko pričakujemo pri zmanjšanju onesnaženosti zraka s (kontaminiranimi) prašnimi delci in dušikovim dioksidom. • Omejevanje širjenja in čiščenje onesnaženega zraka z mejicami okrog točkovnih virov onesnaževanja zraka, kjer so zaradi manipulacij z materialom ali zaradi delovanja sile vetra prisotne bežeče emisije prahu (npr. ob kamnolomih, separacijah peska, deponijah sipkih surovin in odpadkov materialov, livarnah itd.). Tovrstne mejice je možno uporabiti v okolici virov, ki se nahajajo v urbanih sredinah in na ruralnih območjih. Avtohtona neselekcionirana vegetacija v okolici virov onesnaževanja na ruralnih območjih namreč ni nujno vedno tudi uspešna v smislu zmanjševanja onesnaženosti, ki se iz teh virov širi. • Uporaba kot vetrna bariera za zmanjševanje erozije, ki jo povzroča veter na naravnih in umetnih peščenih površinah in s tem zmanjševanje onesnaževanja zraka s prašnimi delci. • Uporaba kot vetrna bariera za omejevanje resuspenzije prahu iz površin na katerih je prah že sedimentiral. Posredni ERM postopki za zrak Posredni ERM postopki za zrak so postopki, ki jih prvenstveno uporabljamo kot ERM postopke za sanacijo tal in vode, posredno pa vplivajo tudi na stopnjo onesnaženosti zraka. Stopnjo onesnaženosti zraka zmanjšujejo na ta način, da zmanjšujejo prehajanje nekaterih onesnaževal iz tal ali iz vode v zrak. Postopki temeljijo na delovanju višjih rastlin in/ali delovanju naravno prisotnih ali inokuliranih posebej prilagojenih mikrorganizmov. Takšni pristopi so npr: • Pospešena bioremediacija. V to skupino sodijo postopki oz. tehnologije, kjer naravno prisotni ali inokulirani mikroorganizmi in drugi organizmi v tleh pospešeno razgrajujejo onesnaževala v tleh ali talni vodi. Pospešeno razgradnjo dosežemo z dovajanjem dodatnega kisika, hranilnih ali drugih snovi v tla ali talno vodo. V to skupino lahko uvrstimo tudi postopke čiščenja odpadnega zraka za obvladovanje emisij vonjev (biobiltri). • Fitoremediacija. To so postopki, kjer za odstranitev, transfer, stabilizacijo in/ali uničenje onesnaževal iz tal ali sedimentov uporabimo rastline. Tovrstni postopki so: pospešena koreninska biodegradacija (rizosferna biodegradacija), rastlinska akumulacija (fitoakumulacija), rastlinska degradacija (fitodegradacija) in rastlinska stabilizacija (fitostabilizacija). V to skupino ne sodi fitovolatilizacija (postopek, ki temelji na pospeševanju izhlapevanja iz tal ali iz vode s pomočjo rastlin). Posredne ERM postopke za zmanjšanje onesnaženosti zraka lahko uporabimo predvsem za sanacije večjih ali manjših območij onesnaženja tal ali podzemne vode, kjer iz onesnaženega območja onesnaževala izhlapevajo. Takšna onesnaževala so npr. halogenirane ali nehalogenirane lahkohlapne in srednje hlapne organske snovi (VOC, SVOC), naftni derivati, pesticidi, sredstva za zaščito lesa, itd., v nekaterih posebnih primerih pa to velja tudi za nekatere kovine (predvsem Se, Hg). S temi metodami je možno izvajati sanacije kot npr.: 22 • • • sanacije območij, ki so bila onesnažena v preteklosti, ti. podedovana bremena, sanacije območij nezgodnih razlitij, sanacije območij v okolici vkopanih netesnih rezervoarjev, itd. Obstajajo številna poročila o pozitivnih učinkih vegetacije pri filtriranju zraka. Podatki so naslednji: Učinki za onesnaženost zraka s prahom: • Meetham (1964) je zabeležil 27 % redukcijo prašnih delcev v Hyde Parku v Londonu, ki jo je zagotovilo zeleno območje veliko 2,5 km2. • V Rusiji je Novoderzikhina (1966) poročala o 2-3-krat redukciji sedimentacije prahu, ki jo je povzročila zasaditev 8 m širokega pasu med cestami in hišami. • Dochinger (1980) je poročal o 42 % zmanjšanju sedimentacije prahu, ki ga je povzročila bariera iglavcev v urbanih območjih v Ohiu v ZDA. • Raziskovalca El-Khatib in El-Swaf (2001) sta poročala, o ugotovljenih visokih koncentracijah prašnih delcev (TSP) na listih rastlin, ki so rasle ob cestah v urbanih in suburbanih območjih. Vegetacijski pasovi (bariere) za izboljšanje kakovosti zraka Z vegetacijskimi pasovi lahko izboljšamo kakovost zraka, saj rastline nase vežejo pomemben toplogredni plin CO2. Zelo smotrna je zasaditev vegetacijskih pasov ob cestah, saj z njimi lahko blažimo onesnaževanje, ki ga povzroča promet. Vegetacijske bariere iz drevesnih vrst lahko v prostoru opravljajo pomembno vlogo fizičnih preprek v izogib škodljivega in/ali nezaželenega delovanja vetra, hrupa, širjenja prahu, smradu ter ostalih aerosolnih spojin in na ta način zmanjšujejo negativni vpliv prometa. Poleg tega se tem pomembnim ERM funkcijam pridruži tudi estetski/krajinski vidik, saj so bariere najpogosteje iz kultiviranih ali avtohtonih rastlin, zasajene po sadilnem vzorcu na meji med problematično lokacijo in njeno okolico. V vegetacijskih barierah se zadrži tudi mnogo škodljivih in nezaželenih snovi, ki se vežejo na roso, oziroma se nalagajo na liste ter kasneje spirajo z dežjem v tla, kjer so podvržene samočistilnim procesom vegetacijske bariere. 23
© Copyright 2025