Fremgangsmåte (metode) for endringer på et system. For et kontinuerlig system med en inngang og en utgang (SISO-system): Inngang u(t) Utgang x(t) System 1. Bestem balanseligning (diff.ligning) for systemet: • ∆ x = − a∆x + b∆u (1.orden system) Skisser matematisk blokkdiagram: x(0) u d x/dt b x a/b •• • ∆ x = − a∆x − c∆ x + b∆u (2.orden system) Skisser matematisk blokkdiagram: dx(0) dt x(0) 2 u b d dt 2 d x dt x x c/b a/b 2. • Sett ∆x = s∆x(s ) (1.orden) • Transformer ∆x = −a∆x + b∆u ⇒ s∆x( s ) = −a∆x( s ) + b∆u ( s ) ∆x ( s )( s + a ) = b∆u ( s ) Bestem transferfunksjon på standard form: 1 b a ∆x( s) K b = = ⇒ ∆u ( s) s + a 1 Ts + 1 s +1 a b 1 K = og T = a a h( s ) = • •• Sett ∆x = s∆x( s) og ∆ x = s 2 ∆x( s ) (2.orden) •• • Transformer ∆ x = −c∆ x − a∆x + b∆u ⇒ s 2 ∆x( s) = −cs∆x( s ) − a∆x( s ) + b∆u ( s ) ∆x( s)( s 2 + cs + a ) = b∆u ( s) Bestem transferfunksjon på standard form: b ⋅a K ⋅ ω 02 ∆x ( s ) b a = = ⇒ 2 h( s ) = ∆u ( s ) s 2 + cs + a s 2 + cs + a s + 2ζω 0 s + ω 02 K= b c c = , ω 0 = a og ζ = a 2ω 0 2 a ζ = 1 : p = p1 = p 2 = −ω 0 = − a og T1 = T2 = T = − ζ = 1 : h( s ) = b s + 2 a ⋅s+a 2 = b (s − a ) ζ 〉1 : p1, 2 = −ζω 0 ± ω 0 ζ 2 − 1 = − ζ 〉1 : T1, 2 = − ζ 〉1 : h( s ) = c 2 a 2 1 1 = p a b = a( 1 a a± a ( b a = s + 1) 2 ( 1 a s + 1) 2 = K (Ts + 1) 2 c 1 ) 2 − 1 = − (c ± c 2 − 4a ) 2 2 a 1 1 = p1, 2 1 (c ± c 2 − 4a ) 2 b = s + cs + a 2 b 1 1 (c + c 2 − 4a ))( s + (c − c 2 − 4a )) 2 2 b b = ζ 〉1 : h( s ) = 2 1 1 1 1 s + cs + a s + 1)( s + 1) (c + c 2 − 4a ) (c − c 2 − 4a ) ( 1 1 2 2 (c − c 2 − 4 a ) (c + c 2 − 4 a ) 2 2 (s + 2 ζ 〉1 : h( s ) = ζ 〉1 : h( s ) = b = s + cs + a ( 2 1 1 (c + c 2 − 4a ) 2 s + 1)( b 1 1 (c − c 2 − 4a 2 1 s + 1) (c 2 − (c 2 − 4a )) 4 b a b = s + cs + a 2 ( 1 1 (c + c 2 − 4 a ) 2 0〈ζ 〈1 : h( s) = K ⋅ ω 02 s 2 + 2ζω 0 s + ω 02 ζ = 0 : h( s ) = K ⋅ ω 02 K ⋅ ω 02 = s 2 + 2ζω 0 s + ω 02 s 2 + ω 02 s + 1)( 1 1 (c − c 2 − 4a 2 = s + 1) K (T1 s + 1)(T2 s + 1) 3. Skaff greie på ∆u (t ) . Bestem ∆u (s ) . 4. Bestem ∆x( s ) = ∆u ( s ) ⋅ h( s ) 5. Bestem x(t ) = x(0) + L−1 {∆x( s)} fra formelark. For spesialtilfelle: T K K , ( 1 ≈ 10) ≈ ζ 〉1 : h( s ) = ⋅ e −T2 ⋅s (T1 s + 1)(T2 s + 1) T2 T1 s + 1 Responser for endringer i systemet. U for 1.orden system: s U K K ⋅U ∆x( s ) = ∆u ( s ) ⋅ h( s ) = = s Ts + 1 s (Ts + 1) Sprangendring ∆u (t ) = U ⇒ ∆u ( s ) = x(t ) = x(0) + K ⋅ U (1 − e − t T ) Merk av punktene: x(t = 0) = x(0) + K ⋅ U (1 − e − x(t = T ) = x(0) + K ⋅ U (1 − e 0 T − T T x(t = 5T ) = x(0) + K ⋅ U (1 − e ) = x(0) ) = x(0) + 0,63K ⋅ U 5T − T ) = x(0) + K ⋅ U og skisser sprangresponsen. 3 For x(0) = 0, K = U = T = 1: Impulsendring ∆u (t ) = δ (t ) ⇒ ∆u ( s ) = 1 for 1.orden system: For enhetsimpulsen δ (t ) (Dirac-impulsen) er denne definert som en ”spiker” med stor,stor A A amplitude med kort, kort varighet og et areal At1 →0 = ⋅ ∆t = ⋅ t1 = 1 eller ∆t t1 ⎡ t1 ⎤ =1 ⎢ ∫ δ (t )dt ⎥ ⎢⎣ 0 ⎥⎦ t1 →0 t 0 Svært stor amplitude Pulsareal A=1 t 0 t1 4 ∆x ( s ) = u ( s ) h ( s ) = 1 ⋅ K K = Ts + 1 Ts + 1 t x(t ) = x(0) + K −T e T Merk av punktene: 0 K −T K e = x ( 0) + T T T K − K x(t = T ) = x(0) + e T = x(0) + 0,37 T T 5T K − x(t = 5T ) = x(0) + e T = x(0) og skisser impulsresponsen T x(t = 0) = x(0) + For x(0) = 0, K = T = 1: Rampendringendring ∆u (t ) = U ⋅ t ⇒ ∆u ( s ) = ∆x ( s ) = ∆u ( s ) h ( s ) = U for 1.orden system: s2 U K K ⋅U = 2 2 s Ts + 1 s (Ts + 1) x(t ) = x(0) + K ⋅ U (t − T + T ⋅ e − t T ) 5 Merk av punktene: x(t = 0) = x(0) + K ⋅ U (0 − T + T ⋅ e − 0 T ) = x(0) x(t = 0,5T ) = x(0) + K ⋅ U (0,5T − T + T ⋅ e x(t = T ) = x(0) + K ⋅ U (T − T + T ⋅ e − T T x(t = 3T ) = x(0) + K ⋅ U (3T − T + T ⋅ e − 0 , 5Tt T ) = x(0) + 0,1T ⋅ K ⋅ U ) = x(0) + 0,37T ⋅ K ⋅ U − 3Tt T x(t = 10T ) = x(0) + K ⋅ U (10T − T + T ⋅ e ) = x(0) + 2T ⋅ K ⋅ U 10Tt − T ) = x(0) + 9T ⋅ K ⋅ U For x(0) = 0, K = U = T = 1: U for 2.orden system med relativ dempning ζ = 1 : s U K K ⋅U ∆x ( s ) = ∆u ( s ) ⋅ h ( s ) = = 2 s (Ts + 1) s (Ts + 1) 2 Sprangendring ∆u (t ) = U ⇒ ∆u ( s ) = t − t x(t ) = x(0) + K ⋅ U (1 − (1 + ) ⋅ e T ) T Merk av punktene: 6 0 − 0 x(t = 0) = x(0) + K ⋅ U (1 − (1 + ) ⋅ e T ) = x(0) T 2T − 2T ) ⋅ e T ) ≈ x(0) + 0,63K ⋅ U x(t = Tr = 2T ) = x(0) + K ⋅ U (1 − (1 + T 10T − 10T ) ⋅ e T ) = x(0) + K ⋅ U og skisser x(t = 5Tr = 10T ) = x(0) + K ⋅ U (1 − (1 + T sprangresponsen. For x(0) = 0, K = U = T = 1: Impulsendring ∆u (t ) = δ (t ) ⇒ ∆u ( s ) = 1 for 2.orden system med relativ dempning ζ = 1 : ∆x ( s ) = ∆u ( s ) h ( s ) = 1 ⋅ K K = 2 (Ts + 1) (Ts + 1) 2 − − t ( n −1) t ⋅ e T = x ( 0) + K ⋅ 2 ⋅ e T n T (n − 1)! T Merk av punktene: t t x(t ) = x(0) + K ⋅ 7 0 0 −T ⋅ e = x ( 0) T2 T − T K x(t = T ) = x(0) + K ⋅ 2 ⋅ e T = x(0) + 0,37 T T 4T 4T − K x(t = 2Tr = 4T ) = x(0) + K ⋅ 2 ⋅ e T = x(0) + 0,07 T T 10T 10T − x(t = 5Tr = 10T ) = x(0) + K ⋅ 2 ⋅ e T = x(0) T Skisser impulsresponsen. x(t = 0) = x(0) + K ⋅ For x(0) = 0, K = T = 1: Sprangendring ∆u (t ) = U ⇒ ∆u ( s ) = ∆x ( s ) = ∆u ( s ) h ( s ) = K ⋅U s (T1 s + 1)(T2 s + 1) t U for 2.orden system med relativ dempning ζ 〉1 : s t − − 1 x(t ) = x(0) + K ⋅ U (1 − ⋅ (T1e T1 − T2 e T2 )) T2 − T1 Merk av punktene: 8 0 0 − − 1 x(t = 0) = x(0) + K ⋅ U (1 − ⋅ (T1e T1 − T2 e T2 )) = x(0) T2 − T1 − 1 x(t = Tr = T1 + T2 ) = x(0) + K ⋅ U (1 − ⋅ (T1e T2 − T1 T1 +T2 T1 − 1 x(t = 5Tr = 5(T1 + T2 )) = x(0) + K ⋅ U (1 − ⋅ (T1e T2 − T1 Skisser sprangresponsen. − T2 e 5 (T1 +T2 ) T1 − T1 +T2 T2 )) ≈ x(0) + 0,63K ⋅ U − T2 e − 5 (T1 +T2 ) T2 )) = x(0) + K ⋅ U For x(0) = 0, K = U = T1 = 1 og T2 = 3: Impulsendring ∆u (t ) = δ (t ) ⇒ ∆u ( s ) = 1 for 2.orden system med relativ dempning ζ 〉1 : ∆x ( s ) = ∆u ( s ) h ( s ) = K (T1 s + 1)(T2 s + 1) t t − − K x(t ) = x(0) + ⋅ (e T1 − e T2 ) T1 − T2 9 Merk av punktene: 0 0 − − 1 x(t = 0) = x(0) + K ⋅ ⋅ (e T1 − e T2 )) = x(0) T1 − T2 − K x(t = 0,4Tr = 0,4(T1 + T2 )) = x(0) + ⋅ (e T1 − T2 − K x(t = 2Tr = 2(T1 + T2 )) = x(0) + ⋅ (e T1 − T2 − K x(t = 5Tr = 5(T1 + T2 )) = x(0) + ⋅ (e T1 − T2 0 , 4 (T1 +T2 ) T1 2 (T1 +T2 ) T1 5 (T1 +T2 ) T1 −e −e − − −e − 0 , 4 (T1 +T2 ) T2 2 (T1 +T2 ) T2 5 (T1 +T2 ) T2 )) )) )) = x(0) For x(0) = 0, K = T1 = 1 og T2 = 3: Sprangresponsen ∆u (t ) = U ⇒ ∆u ( s ) = dempning 0〈ζ 〈1 : U for 2.orden system med relativ s K ⋅ U ⋅ ω 02 s( s 2 + 2ζω 0 s + ω 02 ) 1 x(t ) = x(0) + K ⋅ U (1 − e −ω0 ⋅ζ ⋅t ⋅ cos(ω 0 1 − ζ 2 ⋅ t − sin −1 ζ )) 2 1−ζ ∆x( s) = ∆u ( s)h( s) = 10 Merk av punktene: x(t = 0) = x(0) + K ⋅ U lim s →∞ [ s Tr ≈ ω 02 ] = x(0) s( s 2 + 2ζω 0 s + ω 02 ) 1,5 ω0 x(t = Tr ) = x(0) + K ⋅ U (1 − Tmaks = 1 1−ζ 2 e −ω0 ⋅ζ ⋅Tr ⋅ cos(ω 0 1 − ζ 2 ⋅ Tr − sin −1 ζ )) ≈ x(0) + 0,63K ⋅ U π ω0 1 − ζ 2 K ⋅ U ⋅ ω 02 ∆x S = lim s →0 [ s ] = K ⋅U s( s 2 + 2ζω 0 s + ω 02 ) x(t = Tmaks ) = x(0) + ∆x S (1 + e Skisser sprangresponsen. − π ⋅ζ 1−ζ 2 ) For x(0) = 0, ω 0 = K = U = 1 og ζ = 0,6 : Tr ≈ 1,5 , x(t = Tr = 1,5) = 0,63 , Tmaks = π 1 − 0,6 2 = 3,9 og x(t = Tmaks = 3,9) = 1 + e − 0 , 6π 1− 0 , 6 2 = 1,1 Impulsresponsen ∆u (t ) = δ (t ) ⇒ ∆u ( s ) = 1 for 2.orden system med relativ dempning 0〈ζ 〈1 : 11 K ⋅ ω 02 s 2 + 2ζω 0 s + ω 02 ∆x( s) = ∆u ( s)h( s) = x(t ) = x(0) + K ⋅ ω0 1−ζ 2 e −ζ ⋅ω0 ⋅t ⋅ sin(ω 0 1 − ζ 2 ⋅ t ) 2π Periodetid T p = ω0 1 − ζ 2 Merk av punktene: K ⋅ ω 0 −ζ ⋅ω ⋅0 x(t = 0) = x(0) + e ⋅ sin(ω 0 1 − ζ 2 ⋅ 0) = x(0) 2 1− ζ K ⋅ ω 0 −ζ ⋅ω ⋅t d d e ⋅ sin(ω 0 1 − ζ 2 ⋅ t )] = 0 gir: Vendepkt.: x(t ) = [ x(0) + 2 dt dt 1−ζ 0 0 1−ζ 2 tg −1 t = Tmaks = ζ2 ω0 1 − ζ 2 K ⋅ ω0 x(t = Tmaks ) = x(0) + 1−ζ Første nullgjennomgang: x(t = T0 ≈ π ω0 1 − ζ Første min.pkt: x(t = Tmin ≈ 2 2 e −ζ ⋅ω0 ⋅Tmaks ⋅ sin(ω 0 1 − ζ 2 ⋅ Tmaks ) ) ≈ x(0) + 1,5π ω0 1 − ζ 2 ) ≈ x(0) + K ⋅ ω0 1− ζ 2 e −ζ ⋅ω0 ⋅T0 ⋅ sin(ω 0 1 − ζ 2 ⋅ T0 ) K ⋅ U ⋅ ω0 1−ζ 2 e −ζ ⋅ω0 ⋅Tmin ⋅ sin(ω 0 1 − ζ 2 ⋅ Tmin ) Skisser impulsresponsen Simulering for x(0) = 0, ω 0 = K = 1 og ζ = 0,6 : 12 U for 2.orden system med relativ dempning ζ = 0 : s K ⋅ U ⋅ ω 02 K ⋅ U ⋅ ω 02 ∆x( s ) = ∆u ( s)h( s) = = s ( s 2 + 2ζω 0 s + ω 02 ) s( s 2 + ω 02 ) K ⋅U x(t ) = x(0) + (1 − cos ω 0 t ) 2 Sprangendring ∆u (t ) = U ⇒ ∆u ( s ) = ω0 Simulering for x(0) = 0, ω 0 = K = U = 1 og ζ = 0 : 13 Impulsendring ∆u (t ) = δ (t ) ⇒ ∆u ( s ) = 1 for 2.orden system med relativ dempning ζ = 0 : K ⋅ ω 02 K ⋅ ω 02 ∆x( s ) = ∆u ( s)h( s) = 2 = s + 2ζω 0 s + ω 02 s 2 + ω 02 x(t ) = x(0) + K ⋅ sin(ω 0 t ) Simulering for x(0) = 0, ω 0 = K = 1 og ζ = 0 : Nullpunktledd i 1.orden system. h( s ) = ∆x( s ) Tn s + 1 = ∆u ( s ) Ts + 1 ∆x( s) = ∆u ( s)h( s) = ∆u ( s) Tn s + 1 Ts + 1 U for nullpunktledd i 1.orden system. s T s +1 T s +1 ∆x ( s ) = ∆u ( s ) h ( s ) = ∆u ( s ) ⋅ K ⋅ n = K ⋅U n Ts + 1 s (Ts + 1) Sprangendring ∆u (t ) = U ⇒ ∆u ( s ) = 19 T2 s + 1 s(T1 s + 1) t T −T − 1 + 2 1 ⋅ e T1 T1 For K = U = Tn = 1 , T = 2 og x(0) = 0 : − 1 − 2 −T x(t ) = 1 + e = 1 − 0,5e 2 2 t t 14 Nullpunktledd i 2.orden system. K ⋅ (Tn s + 1) ∆x( s) = h( s ) = ∆u ( s) (T1 s + 1)(T2 s + 1) K ⋅ (Tn s + 1) ∆x( s) = ∆u ( s)h( s) = ∆u ( s) (T1 s + 1)(T2 s + 1) U for nullpunktledd i 2.orden system. s K ⋅ (Tn s + 1) ∆x( s) = ∆u ( s)h( s) = ∆u ( s) (T1 s + 1)(T2 s + 1) Sprangendring ∆u (t ) = U ⇒ ∆u ( s ) = For K = U = Tn = 1 , T1 = 2, T2 = 4 og x(0) = 0 : K ⋅U 1s + 1 1s + 1 ∆x( s ) = ⋅ = K ⋅U s s(2s + 1)(4 s + 1) (2s + 1)(4 s + 1) 27 T3 s + 1 , T1 ≠ T2 s(T1 s + 1)(T2 s + 1) t − − 2 −1 −2 4 −1 −4 e + e = 1 + 0,5e 2 − 1,5e 4 2−4 2−4 t x(t ) = 1 − t T −T − T − T3 − T2 1 − 1 3 e T1 + 2 e T1 − T2 T1 − T2 t t t 15 x ( 0) = 0 x S = x (∞ ) = 1 Tr = T1 + T2 = 2 + 4 = 6[s] x(t = Tr = 6) = 0,63 ⋅ x S = 0,63 For alle responser er det tillatt å bruke kalkulator for å skissere denne. Har vi responsen x(t) og kjenner pådrag u(t) skal vi bruke ”vedlegg” for å bestemme systemets transferfunksjon h(s) = x(s)/u(s). 16 Endringer i systemer med flere inngangsvariable (MISO-systemer). SYSTEM x h1 y T h2 z h3 Transferfunksjoner: ∆T ( s ) ∆x( s) ∆T ( s) ∆x = ∆z = 0 : h2 ( s ) = ∆y ( s ) ∆T ( s) ∆x = ∆y = 0 : h3 ( s) = ∆z ( s) ∆y = ∆z = 0 : h1 ( s) = Superposisjon: ∆T ( s) ∆T ( s ) ∆T ( s) + + ∆x( s) ∆y ( s) ∆z ( s) ∆y ≠ 0, ∆z ≠ 0, ∆x ≠ 0 : ∆T ( s) = ∆x( s) ⋅ h1 ( s) + ∆y ( s) ⋅ h2 ( s) + ∆z ( s) ⋅ h3 ( s) ∆y ≠ 0, ∆z ≠ 0, ∆x ≠ 0 : h( s ) = h1 ( s) + h2 ( s ) + h3 ( s) = ∆y ≠ 0, ∆z ≠ 0, ∆x ≠ 0 : T (t ) = T (0) + L−1 {∆x( s )h1 ( s ) + ∆y ( s )h2 ( s) + ∆z ( s )h3 ( s )} = T (0) + ∑ ∆T Systemer med negativ tilbakekobling. Vi tar som eksempel en elmaskin med last som skal turtallsreguleres ved settpunktendring: 17 Nett Frekvens- Frekvens f El.maskin w 3 omformer Last Pådragsignal u Turtalls- Målt turtall y regulator Turtallsregulator r(s) e(s) Transmitter Frekvensomformer hr(s) u(s) hf(s) Turtall w Turtalls- Elmaskin+Last f(s) hp(s) Regulert størrelse w Turtalls-Transmitter hm(s) Målt turtall y Når vi tegner blokkdiagram for reguleringssystemet starter vi med regulator (turtallsregulator). Deretter følger vi signalgangen for systemet fra u til y. Alle blokker må modelleres: hr ( s ) = ∆u ( s) ∆f ( s) ∆ω ( s) ∆y ( s ) , h f (s) = , hP ( s ) = , hm ( s) = ∆e( s) ∆u ( s) ∆f ( s) ∆ω ( s) For blokkdiagram får vi: ∆ω ( s ) = ∆e ( s ) ⋅ hr ( s ) ⋅ h f ( s ) ⋅ h P ( s ) ∆ e ( s ) = ∆r ( s ) − ∆y ( s ) : ∆ω ( s ) = ( ∆r ( s ) − ∆y ( s )) ⋅ hr ( s ) ⋅ h f ( s ) ⋅ hP ( s ) = ∆r ( s ) hr ( s ) h f ( s ) hP ( s ) − ∆y ( s )hr ( s ) h f ( s ) hP ( s ) ∆y ( s ) = ∆ω ( s ) ⋅ hm ( s) : ∆ ω ( s ) = ∆ r ( s ) hr ( s ) h f ( s ) h P ( s ) − ∆ ω ( s ) h r ( s ) h f ( s ) h P ( s ) h m ( s ) ∆ ω ( s ) + ∆ ω ( s ) h r ( s ) h f ( s ) h P ( s ) hm ( s ) = ∆ r ( s ) h r ( s ) h f ( s ) h P ( s ) ∆ω ( s )(1 + ∆ω ( s )hr ( s ) h f ( s ) hP ( s ) hm ( s )) = ∆r ( s ) hr ( s ) h f ( s ) hP ( s ) Transferfunksjon for hele reguleringssystemet (ingen lastendring): h( s ) = hr ( s )h f ( s )hP ( s ) ∆ω ( s ) = ∆r ( s ) 1 + hr ( s )h f ( s )h p ( s )hm ( s ) 18 19
© Copyright 2025