ﺗﻤﺮﻳﻦ 1 fو gداﻟﺘﺎن ﺧﻄﻴﺘﺎن ﻣﻌﺮﻓﺘﺎن آﻤﺎ ﻳﻠﻲ : x و f : x → −2x → g :x 2 أﺣﺴﺐ ﻣﺎ ﻳﻠﻲ : ⎞⎛1 ) f ( −2 و ⎟ ⎜ f ) g ( −5و و f − 3 و ⎠⎝2 ) ⎦⎤ ) f ⎡⎣f ( 5 و ( ⎦⎤ )g ⎡⎣ g ( −1 و ⎦⎤ ) f ⎡⎣ g ( −8 و )g ( 0 و ⎞⎛ 2 ⎜g ⎟ 2 ⎝ ⎠ ⎤ ⎞ ⎡ ⎛ −3 ⎥ ⎟ ⎜ g ⎢f ⎦⎠ ⎣ ⎝ 4 ﺗﻤﺮﻳﻦ 2 fداﻟﺔ ﺧﻄﻴﺔ و gداﻟﺔ ﺗﺂﻟﻔﻴﺔ ﺑﺤﻴﺚ f ( x ) = −3x : – (1أآﺘﺐ ) g ( xﺑﺪﻻﻟﺔ . x و g (x ) = f (x ) −1 ⎞⎛3 ⎞⎛ 1 – (2أﺣﺴﺐ f ⎜ − ⎟ : و ⎟ ⎜. g ⎠⎝2 ⎠⎝ 2 – (3أﻧﺸﺊ اﻟﺘﻤﺜﻴﻠﻴﻦ اﻟﻤﺒﻴﺎﻧﻴﻴﻦ ﻟﻜﻞ ﻣﻦ fو gﻋﻠﻰ ﻧﻔﺲ اﻟﻤﻌﻠﻢ اﻟﻤﺘﻌﺎﻣﺪ اﻟﻤﻤﻨﻈﻢ ) . (O ; I ; J ﺗﻤﺮﻳﻦ 3 ﻧﻌﺘﺒﺮ اﻟﻤﺴﺘﻮى ﻣﻨﺴﻮﺑﺎ إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ) . (O ; I ; J ) A ( 2;3و ) B ( −1; 2و ) C ( −3; −1ﻧﻘﻂ ﻣﻦ اﻟﻤﺴﺘﻮى. – (1ﻋﺮ ف اﻟﺪاﻟﺔ اﻟﺘﺂﻟﻔﻴﺔ fاﻟﺘﻲ ﺗﻤﺜﻴﻠﻬﺎ اﻟﻤﺒﻴﺎﻧﻲ ﻳﻤﺮ ﻣﻦ ) A ( 2;3و ) . B ( −1;2 – (2ﻋﺮف اﻟﺪاﻟﺔ اﻟﺘﺂﻟﻔﻴﺔ gاﻟﺘﻲ ﺗﻤﺜﻴﻠﻬﺎ اﻟﻤﺒﻴﺎﻧﻲ ﻳﻤﺮ ﻣﻦ ) B ( −1; 2و ).C ( −3; −1 – (3ﻋﺮف اﻟﺪاﻟﺔ اﻟﺘﺂﻟﻔﻴﺔ hاﻟﺘﻲ ﺗﻤﺜﻴﻠﻬﺎ اﻟﻤﺒﻴﺎﻧﻲ ﻳﻤﺮ ﻣﻦ ) A ( 2;3و ). C ( −3; −1 – (4أﻧﺸﺊ ﻋﻠﻰ ﻧﻔﺲ اﻟﻤﻌﻠﻢ اﻟﺘﻤﺜﻴﻞ اﻟﻤﺒﻴﺎﻧﻲ ﻟﻜﻞ ﻣﻦ اﻟﺪوال fو gو . h ﺗﻤﺮﻳﻦ 4 ﻧﻌﺘﺒﺮ اﻟﻤﺴﺘﻮى ﻣﻨﺴﻮﺑﺎ إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ) . (O ; I ; J 1 ﻟﺘﻜﻦ fداﻟﺔ ﺗﺂﻟﻔﻴﺔ ﺑﺤﻴﺚ . f ( x ) = x − 1 : 2 ⎞ 3 أﻧﺸﺊ اﻟﻨﻘﻂ A ( −2; f (0) ) :و ) B ( f (−2);4و ⎟ ) ( (−5); f ⎠ 2 ⎛ . C ⎜f ⎝ _www.anissmaths.ift.cxﻣﻮﻗﻊ اﻟﺮﻳﺎﺿﻴﺎت ﺑﺎﻟﺜﺎﻧﻮي اﻹﻋﺪادي ﻟﻸﺳﺘﺎذ اﻟﻤﻬﺪي ﻋﻨﻴﺲ /أﺳﺘﺎذ ﺑﺎﻟﺜﺎﻧﻮﻳﺔ اﻹﻋﺪادﻳﺔ اﺑﻦ رﺷﻴﻖ – ﻧﻴﺎﺑﺔ اﻟﻤﺤﻤﺪﻳﺔ_ اﻟﻌﻨﻮان 143 :ﺣﻲ رﻳﺎض اﻟﺴﻼم -اﻟﻄﺎﺑﻖ - 2اﻟﻤﺤﻤﺪﻳﺔ /اﻟﻬﺎﺗﻒ اﻟﻨﻘﺎل / 063 15 37 85 :اﻟﻌﻨﻮان اﻹﻟﻜﺘﺮوﻧﻲ [email protected] : ﺗﻤﺮﻳﻦ 5 fداﻟﺔ ﺗﺂﻟﻔﻴﺔ و ) ( Δﺗﻤﺜﻴﻠﻬﺎ اﻟﻤﺒﻴﺎﻧﻲ . ﻟﺘﻜﻦ ) M ( −2;3و ) N ( 5; −4ﻧﻘﻄﺘﻴﻦ ﻣﻦ ) . ( Δ – (1أﺛﺒﺖ أن :ﻣﻌﺎﻣﻞ اﻟﺪاﻟﺔ fﻳﺴﺎوي . −1 – (2اﺳﺘﻨﺘﺞ ﺗﻌﺮف اﻟﺪاﻟﺔ . f – (3أﻧﺸﺊ ) . ( Δ ﺗﻤﺮﻳﻦ 6 −2 . ﻟﺘﻜﻦ fداﻟﺔ ﺧﻄﻴﺔ ﻣﻌﺎﻣﻠﻬﺎ 3 ⎞ ⎛ −3 و ⎟ ⎜ f و )f ( 0 – (1أﺣﺴﺐ f ( 2 ) : f −1 + 3 f 2 و و ⎠ ⎝ 2 – (2أﻧﺸﺊ ) ( Dاﻟﺘﻤﺜﻴﻞ اﻟﻤﺒﻴﺎﻧﻲ ﻟﻠﺪاﻟﺔ fﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ) . (O ; I ; J – (3ﻟﺘﻜﻦ gداﻟﺔ ﺧﻄﻴﺔ ﻣﻌﺎﻣﻠﻬﺎ . a أﺛﺒﺖ أﻧﻪ ﻣﻬﻤﺎ ﻳﻜﻦ xو yﻋﺪدﻳﻦ ﺣﻘﻴﻘﻴﻴﻦ : ) g (x + y ) = g (x ) + g ( y ) ( ( ) ) g ( a.x ) = a.g ( x ﺗﻤﺮﻳﻦ 7 ﻟﺘﻜﻦ f ﻋﻼﻗﺔ ﺑﺤﻴﺚ : f ( x ) = x + ax ﺣﺪد اﻟﻌﺪد اﻟﺤﻘﻴﻘﻲ aﺑﺤﻴﺚ fﺗﺤﻘﻖ : 2 و aﻋﺪد ﺣﻘﻴﻘﻲ . f ( x ) − f ( −x ) = x و .x ≠ 0 ﺗﻤﺮﻳﻦ 8 ﻟﺘﻜﻦ أﺛﺒﺖ أن : fداﻟﺔ ﺗﺂﻟﻔﻴﺔ . )' ⎛ x + x ' ⎞ f ( x ) + f ( x ⎜ . f =⎟ 2 ⎠ ⎝ 2 ﺗﻤﺮﻳﻦ 9 ﻟﺘﻜﻦ gﻋﻼﻗﺔ ﺑﺤﻴﺚ ﻟﻜﻞ ﻋﺪد ﺣﻘﻴﻘﻲ 7 + 2 ( x − 1) − 3g ( x ) = 5 (1 − 2 g ( x ) ) : x – (1ﺑﻴﻦ أن gداﻟﺔ ﺧﻄﻴﺔ . ) – (2أﺛﺒﺖ أن 2.x = 2.g ( x ) : ( ، gﻣﻬﻤﺎ ﻳﻜﻦ اﻟﻌﺪد اﻟﺤﻘﻴﻘﻲ . x – (3ﺣﺪد اﻟﻌﺪدﻳﻦ aو bإذا ﻋﻠﻤﺖ أن اﻟﺘﻤﺜﻴﻞ اﻟﻤﺒﻴﺎﻧﻲ ﻟﻠﺪاﻟﺔ gﻳﻤﺮ ﻣﻦ اﻟﻨﻘﻄﺘﻴﻦ : ⎞ ⎛ −1 ⎟ ; A ⎜ aو ) . B ( 2;b ⎠ ⎝ 2 ﺗﻤﺮﻳﻦ 10 ﻟﺘﻜﻦ fداﻟﺔ ﺗﺂﻟﻔﻴﺔ ﻣﻌﺮﻓﺔ آﻤﺎ ﻳﻠﻲ . f ( x ) = 3x − 3 : ⎞ ⎛x ﻋﺒﺮ ﻋﻦ ) f ( x + yو ) f ( x − yو ) f ( x . yو ⎟ ⎜ ≠ 0 ) f ⎠ ⎝y (y ﺑﺪﻻﻟﺔ xو . y _www.anissmaths.ift.cxﻣﻮﻗﻊ اﻟﺮﻳﺎﺿﻴﺎت ﺑﺎﻟﺜﺎﻧﻮي اﻹﻋﺪادي ﻟﻸﺳﺘﺎذ اﻟﻤﻬﺪي ﻋﻨﻴﺲ /أﺳﺘﺎذ ﺑﺎﻟﺜﺎﻧﻮﻳﺔ اﻹﻋﺪادﻳﺔ اﺑﻦ رﺷﻴﻖ – ﻧﻴﺎﺑﺔ اﻟﻤﺤﻤﺪﻳﺔ_ اﻟﻌﻨﻮان 143 :ﺣﻲ رﻳﺎض اﻟﺴﻼم -اﻟﻄﺎﺑﻖ - 2اﻟﻤﺤﻤﺪﻳﺔ /اﻟﻬﺎﺗﻒ اﻟﻨﻘﺎل / 063 15 37 85 :اﻟﻌﻨﻮان اﻹﻟﻜﺘﺮوﻧﻲ [email protected] :
© Copyright 2025