ﺗﺼﺤﻴﺢ ﻓﺮض ﺷﻬﺮ أآﺘﻮﺑﺮ 2004 ﻣﻮﻗﻊ اﻟﺮﻳﺎﺿﻴﺎت ﺑﺎﻟﺜﺎﻧﻮي ﺗﻤﺮﻳﻦ1 -1ﻧﺒﻴﻦ ﺑﺎﻟﺘﺮﺟﻊ أن 4n + 6n − 1ﺗﻘﺒﻞ اﻟﻘﺴﻤﺔ ﻋﻠﻰ 9 * ﻣﻦ أﺟﻞ n = 0ﻟﺪﻳﻨﺎ 40 + 6 × 0 − 1 = 0وﻣﻨﻪ 40 + 6 × 0 − 1ﺗﻘﺒﻞ اﻟﻘﺴﻤﺔ ﻋﻠﻰ 9 * ﻟﻨﻔﺘﺮض أن 4n + 6n − 1ﺗﻘﺒﻞ اﻟﻘﺴﻤﺔ ﻋﻠﻰ 9ﻋﺒﺎرة ﺻﺤﻴﺤﺔ ﺣﺘﻰ اﻟﺮﺗﺒﺔ n ﻧﺒﻴﻦ أن 4n+1 + 6 ( n + 1) − 1ﺗﻘﺒﻞ اﻟﻘﺴﻤﺔ ﻋﻠﻰ 9 4n+1 + 6 ( n + 1) − 1 = 4n ⋅ 4 + 6n + 5 = 4 n ⋅ 4 + 6n ⋅ 4 − 3 ⋅ 6 n + 9 − 4 ( ) )= 4 4n + 6n − 1 − 9 ( 2n − 1 ﺑﻤﺎ أن اﻟﻌﺪدﻳﻦ 4n + 6n − 1و ) 9 ( 2n − 1ﻳﻘﺒﻼن ﻣﻌﺎ اﻟﻘﺴﻤﺔ ﻋﻠﻰ 9 ﻓﺎن 4n+1 + 6 ( n + 1) − 1ﺗﻘﺒﻞ اﻟﻘﺴﻤﺔ ﻋﻠﻰ 9 إذن 9 4n + 6n − 1 -2ﻟﻴﻜﻦ * ∈ ∀n un = 77777......7 ∈ nﻧﻀﻊ )(n ) رﻗ ﻢ ﻣﺴ ﺎوﻳﺔ ل 7 ( 7 ﻧﺒﻴﻦ ﺑﺎﻟﺘﺮﺟﻊ أن 10n − 1 9 ) * = un ( ∈ ∀n 7 1 * ﻟﺪﻳﻨﺎ u1 = 7و 10 − 1 = 7 9 7 * ﻧﻔﺘﺮض أن un = 10n − 1ﻋﺒﺎرة ﺻﺤﻴﺤﺔ ﺣﺘﻰ اﻟﺮﺗﺒﺔ nرﻗﻢ ﻣﺴﺎوﻳﺔ ﻟـ7 9 7 ﻧﺒﻴﻦ أن un+1 = 10n+1 − 1 9 = un+1 77777......7 ) ( n+1رﻗ ﻢ ﻣﺴ ﺎوﻳﺔ ل 7 ) ) إذن اﻟﻌﺒﺎرة ﺻﺤﻴﺤﺔ ﻣﻦ أﺟﻞ n = 1 ( ( un+1 = 77777......7 + 7 ⋅ 10n وﻣﻨﻪ )(n 7 7 7 أي أن = 10n − 1 + 7 ⋅ 10n = 10n − 1 + 9 ⋅ 10n = 10 × 10n − 1 9 9 9 رﻗ ﻢ ﻣﺴ ﺎوﻳﺔ ل 7 ) ( ) ( ) 7 n+1 وﻣﻨﻪ 10 − 1 9 7 إذن un = 10n − 1 9 ) ( ) ( un+1 = un+1 ( * ∈ ∀n ﺗﻤﺮﻳﻦ2 ﻟﻴﻜﻦ Aو Bﺟﺰﺋﻴﻦ ﻣﻦ اﻟﻤﺠﻤﻮﻋﺔ Eﺣﻴﺚ A ⊂ B ﻧﺤﻞ ﻓﻲ ) Ρ ( Eاﻟﻤﻌﺎدﻟﺔ X ∩ B = X ∪ A ﻟﺘﻜﻦ Sﻣﺠﻤﻮﻋﺔ ﺣﻠﻮل اﻟﻤﻌﺎدﻟﺔ * ﻟﺪﻳﻨﺎ A ⊂ X ∪ Aو X ⊂ X ∪ A و ﺣﻴﺚ أن X ∩ B = X ∪ Aﻓﺎن A ⊂ X ∩ Bو X ⊂ X ∩ B وﺑﺎﻟﺘﺎﻟﻲ A ⊂ Xو X ⊂ Bوﻣﻨﻪ A ⊂ X ⊂ B 1 Moustaouli Mohamed site http://site.voila.fr/arabmaths وﻣﻨﻪ }S ⊂ { X ∈ P ( E ) / A ⊂ X ⊂ B * ﻟﻴﻜﻦ ) X ∈ P ( Eﺣﻴﺚ A ⊂ X ⊂ B ﻟﺪﻳﻨﺎ X ∪ A = X et X ∩ B = Xوﻣﻨﻪ X ∩ B = X ∪ Aأي Xﺣﻞ ﻟﻠﻤﻌﺎدﻟﺔ و ﺑﺎﻟﺘﺎﻟﻲ { X ∈ P ( E ) / A ⊂ X ⊂ B} ⊂ S إذن }S = { X ∈ P ( E ) / A ⊂ X ⊂ B ﺗﻤﺮﻳﻦ3 3 −1 ﻧﻌﺘﺒﺮ اﻟﺘﻄﺒﻴﻖ fاﻟﻤﻌﺮف ﻣﻦ 2 ; +∞ ﻧﺤﻮ 4 ; +∞ ﺑـ f ( x ) = x 2 + x + 1 ﻧﺒﻴﻦ أن fﺗﻘﺎﺑﻠﻲ و ﻧﺤﺪد اﻟﺘﻘﺎﺑﻞ اﻟﻌﻜﺴﻲ −1 f −1 3 ﻟﻴﻜﻦ x ∈ ; +∞ و y ∈ ; +∞ 2 4 f ( x ) = y ⇔ x2 + x + 1 = y 2 1 3 ⇔ x+ = y− 2 4 3 4 y− 3 1 − 4 2 1 = 2 y− ⇔ x+ =⇔x 3 1 1 3 و ﺣﻴﺚ أن y ∈ ; +∞ ﻓﺎن − ≥ − 4 2 2 4 y− −1 3 ; ∞+ ∈ ﻓﻲ وﺣﻴﺪا ﺣﻼ ﺗﻘﺒﻞ f x = y اﻟﻤﻌﺎدﻟﺔ y ( ) 2 اذن ﻟﻜﻞ 4 ; +∞ 3 −1 fﺗﻘﺎﺑﻞ ﻣﻦ 2 ; +∞ ﻧﺤﻮ 4 ; +∞ 3 1 و − 4 2 f −1 ( x ) = x − 3 ∀x ∈ ; +∞ 4 ﺗﻤﺮﻳﻦ4 → ﻧﻌﺘﺒﺮ اﻟﺘﻄﺒﻴﻘﻴﻦ fو gاﻟﻤﻌﺮﻓﻴﻦ ﺑـ: x → x +1 f : → g: و 0 ;x = 0 x→ x −1 ; x ≥ 1 -1ﻧﺪرس ﺗﺒﺎﻳﻨﻴﺔ و ﺷﻤﻮﻟﻴﺔ و ﺗﻘﺎﺑﻠﻴﺔ آﻞ ﻣﻦ fو g * ﻟﺪﻳﻨﺎ f ( x) = f ( y) ⇒ x + 1 = y + 1 ⇒ x = y 2 ∈ ) ∀ ( x; y إذن fﺗﺒﺎﻳﻨﻲ 2 Moustaouli Mohamed site http://site.voila.fr/arabmaths ﻟﺪﻳﻨﺎ f ( x ) ≠ 0 ∈ ∀xوﻣﻨﻪ 0ﻻ ﻳﻘﺒﻞ ﺳﺎﺑﻘﺎ ﻓﻲ ﺑﻮاﺳﻄﺔ f وﻣﻨﻪ fﻟﻴﺲ ﺷﻤﻮﻟﻲ ،ﻟﻴﺲ ﺗﻘﺎﺑﻠﻲ * -ﻟﺪﻳﻨﺎ و g ( 0 ) = g (1) = 0و 0 ≠ 1إذن g ﻟﻴﺲ ﺗﺒﺎﻳﻨﻲ ،ﻟﻴﺲ ﺗﻘﺎﺑﻠﻲ ∈y -ﻟﻴﻜﻦ g ( x) = y ⇔ x −1 = y ⇔ x = y + 1 ∈ yﻓﺎن وﺣﻴﺚ * ∈ y + 1وﻣﻨﻪ اﻟﻤﻌﺎدﻟﺔ g ( x ) = yﺗﻘﺒﻞ ﻋﻠﻰ اﻷﻗﻞ ﺣﻞ ﻓﻲ إذن gﺷﻤﻮﻟﻲ -2ﻧﺤﺪد f gو g f ∈x ﻟﺘﻜﻦ g f ( x ) = g ( f ( x ) ) = g ( x + 1) = x + 1 − 1 = x * * إذا آﺎن ∈ xﻓﺎن g ( x ) = f ( g ( x ) ) = f ( x − 1) = x − 1 + 1 * f g ( 0) = f (0) = 1 f ﺗﻤﺮﻳﻦ5 -1 ﻧﺤﻞ ﻓﻲ ] ]π ; 4π ) اﻟﻤﺘﺮاﺟﺤﺔ 2 − 3 sin x − 6 ≺ 0 ( 4sin 2 x − 2 ) ﻟﻴﻜﻦ ' ∆ اﻟﻤﻤﻴﺰ اﻟﻤﺨﺘﺼﺮ ﻟﺜﻼﺛﻴﺔ اﻟﺤﺪود 2 − 3 X − 6 2 ) 2+ 3 ( 2 2 = +4 6 = 3 + 2 +2 6 3 2 و وﻣﻨﻪ ﺟﺪرا ﺛﻼﺛﻴﺔ اﻟﺤﺪود هﻤﺎ 2 2 2 ) 2− 3 ( ( 4X 2 − 2 = '∆ − 2 3 2 − 3 X − 6 = 4 X − X+ وﻣﻨﻪ 2 2 ) ( 4X 2 − 2 2 3 2 − 3 sin x − 6 ≺ 0 ⇔ 4 sin x − sin x + و ﺑﺎﻟﺘﺎﻟﻲ ≺ 0 2 2 ) 11π 4 11π 3 =x ou 10π 3 =x =x ou ou 5π 3 =x 2 9π =⇔x 2 4 ou = sin x 3 4π =⇔x 2 3 ( 4sin 2 x − 2 ] x ∈ ]π ; 4π sin x = − ] x ∈ ]π ; 4π ﺟﺪول اﻹﺷﺎرة 3 Moustaouli Mohamed site http://site.voila.fr/arabmaths 4π 3 π x 2 sin x − 2 3 sin x + 2 2 3 4 sin x − sin x + 2 2 - 5π 3 9π 4 - - + 0 - 0 + - 0 + 0 11π 4 0 + 10π 3 0 - + - 0 + 0 11π 3 4π - - + 0 - 0 + - 0 + 0 - 4π 5π 9π 11π 10π 11π S = π ; ∪ ; ∪ ; ; 4π ∪ 3 3 3 3 4 4 1 1 ≥ [ اﻟﻤﺘﺮاﺟﺤﺔ0; 2π ] ﻧﺤﻞ ﻓﻲ-2 cos x sin x π π 3π 3π x ∈ 0; ∪ ; π ∪ π ; ∪ ; 2π ﻟﻴﻜﻦ 2 2 2 2 1 1 1 1 ≥ ⇔ − ≥0 cos x sin x cos x sin x sin x − cos x ⇔ ≥0 cos x ⋅ sin x x ∈ [ 0; 2π ] x 0 sin x 0 π π 4 2 + + cos x + + sin x − cos x - 0 sin x − cos x sin x ⋅ cos x - 0 sin x = cos x ⇔ x = π + 4 3π 2 5π 4 2π - - - - + + + 0 - - + - + 0 - + 0 0 x= ou - π π 5π S = ; ∪ π ; 4 4 2 site http://site.voila.fr/arabmaths 5π 4 π 0 0 + 3π ∪ 2 ; 2π Moustaouli Mohamed 4
© Copyright 2025