اﻟﻔـﻠﻜـــــﺔ -I La sphère اﻟﻔﻠﻜﺔ اﻟﻤﻌﺮﻓﺔ ﺑﻤﺮآﺰهﺎ وﺷﻌﺎﻋﻬﺎ. ﺗﻌﺮﻳﻒ : ﻟﺘﻜﻦ Aﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء ξو Rﻋﺪد ﺣﻘﻴﻘﻲ. اﻟﻔﻠﻜﺔ اﻟﺘﻲ ﻣﺮآﺰهﺎ Aوﺷﻌﺎﻋﻬﺎ Rهﻲ ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ Mﺣﻴﺚ : ) S ( A, R وﻧﺮﻣﺰ ﻟﻬﺎ ﺑــ : . AM = R }S ( A, R ) = {M ∈ ξ / AM = R ﻣﻌﺎدﻟﺔ ﻓﻠﻜﺔ : (1ﻣﻌﺎدﻟﺔ ﻓﻠﻜﺔ ﻣﻌﺮﻓﺔ ﺑﻤﺮآﺰهﺎ وﺷﻌﺎﻋﻬﺎ : اﻟﻔﻀﺎء ξﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ . O, i , j , k ( ) ﻟﺘﻜﻦ S ( Ω, R ) :ﻓﻠﻜﺔ ﻣﺮآﺰهﺎ ) Ω ( x0 , y0 , z0وﺷﻌﺎﻋﻬﺎ Rﺣﻴﺚ M ( x , y , z ) ∈ S ( Ω, R ) ⇔ Ω M = R ﻟﺪﻳﻨﺎ : =R = R2 2 2 ) ( x − x0 ) + ( y − y0 ) + ( z − z0 2 ⇔ 2 ) ( x − x0 ) + ( y − y0 ) + ( z − z0 2 ⇔ 2 ) S ( Ω, R وهﺬﻩ اﻟﻤﻌﺎدﻟﺔ هﻲ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ أﻣﺜﻠــﺔ : (1 0 )Ω ( 3, 0,1 R=2 , S1 : ( x − 3) + ( y ) + ( z − 1) = 4 (2 .R 2 2 )Ω (1, 2, −3 , 2 R =1 S 2 : ( x − 1) + ( y − 2 ) + ( z + 3) = 1 2 2 2 2 ) ⎞1 ⎛ (3 x + 2 + ( y − 1) + ⎜ z − ⎟ = 2 ⎠2 ⎝ ⎞1 ⎛ S1هﻲ ﻓﻠﻜﺔ ﻣﺮآﺰهﺎ ⎟ Ω ⎜ − 2,1,وﺷﻌﺎﻋﻬﺎ . R = 2 ⎠2 ⎝ R =1 و ) Ω ( 0, 0, 0 (4 2 2 S4 : x 2 + y 2 + z 2 = 1 (2ﻣﻌﺎدﻟﺔ ﻓﻠﻜﺔ ﻣﻌﺮﻓﺔ ﺑﺄﺣﺪ أﻗﻄﺎرهﺎ. ﻟﺘﻜﻦ Aو Bﻧﻘﻄﺘﻴﻦ ﻣﺨﺘﻠﻔﺘﻴﻦ ﻣﻦ اﻟﻔﻀﺎء . ξ ﺗﻮﺟﺪ ﻓﻠﻜﺔ وﺣﻴﺪة Sأﺣﺪ أﻗﻄﺎرهﺎ ] . [ AB ﻟﺘﻜﻦ Sﻓﻠﻜﺔ أﺣﺪ أﻗﻄﺎرهﺎ هﻮ ] . [ AB ﻟﺘﻜﻦ : M ∈ S ⇔ AM ⋅ BM = 0 ) B ( xB , y B , z B و ) A ( xA , y A , z A و: ) . M ( x, y , z و Sﻓﻠﻜﺔ أﺣﺪ أﻗﻄﺎرهﺎ هﻮ ] . [ AB ( M ∈ S ⇔ AM ⋅ BM = 0 ﻟﺪﻳﻨﺎ : ⇔ ( x − x A )( x − xB ) + ( y − y A )( y − yB ) + ( z − z A )( z − z B ) = 0 وهﺬﻩ اﻟﻤﻌﺎدﻟﺔ هﻲ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ Sاﻟﺘﻲ أﺣﺪ أﻗﻄﺎرهﺎ هﻮ ] . [ AB ﻣﻼﺣﻈﺔ : إذا آﺎن ] [ ABﻗﻄﺮ ﻟﻠﻔﻠﻜﺔ Sﻓﺈن ﻣﻨﺘﺼﻒ ] [ ABهﻮ ﻣﺮآﺰهﺎ وﺷﻌﺎﻋﻬﺎ هﻮ : (3 دراﺳﺔ اﻟﻤﻌﺎدﻟﺔ ( E ) : x + y + z − 2ax − 2by − 2cz + d = 0 : 2 2 2 ﻟﺪﻳﻨﺎ : ( E ) ⇔ ( x − a ) + ( y − b ) + ( z − c ) = a 2 + b2 + c2 − d اﻟﺤﺎﻟﺔ: 1 a 2 + b2 + c2 − d ≺ 0 ∅= S اﻟﺤﺎﻟﺔ: 2 a + b2 + c2 − d = 0 اﻟﺤﺎﻟﺔ: 3 0 a 2 + b2 + c2 − d ﻧﻀﻊ : R = a +b +c −d 2 }) S = {Ω ( a, b, c 2 2 2 ﺣﻴﺚ 2 R 0 R = a +b +c −d ) S = S ( Ω ( a , b, c ) , R 2 2 2 ﻣﺜـﺎل : + y + z − 2y + z − 3 = 0 2 ﻃـ: 1 ﻟﺪﻳﻨﺎ : 2 2 (E): x a=0 b =1 1 2 d = −3 1 17 إذن : = a 2 + b2 + c2 − d = 1 + + 3 0 4 4 17 ⎞1 ⎛ = .R ⎟ Ω ⎜ 0,1, −وﺷﻌﺎﻋﻬﺎ إذن S :ﻓﻠﻜﺔ ﻣﺮآﺰهﺎ : 2 ⎠2 ⎝ c=− ﻃـ: 2 2 ﻟﺪﻳﻨﺎ : ⎞1 1 ⎛ + ⎜ z + ⎟ = 1+ + 3 ⎠2 4 ⎝ 2 )( E ) : x 2 + ( y − 1 2 1 ⎞ 17 ⎛ = ⎟ x + ( y − 1) + ⎜ z + ⇔ ⎠2 4 ⎝ ⎛ ⎛ ⎞ −1 ⎞ 17 S = S ⎜⎜ Ω ⎜ 0,1, ⎟ , ⎟ ⎠⎟ 2 ⎠ 2 ⎝ ⎝ 2 2 AB 2 . -IIﺗﻘﺎﻃﻊ ﻓﻠﻜﺔ وﻣﺴﺘﻮى : اﻟﻮﺿﻊ اﻟﻨﺴﺒﻲ ﻟﻤﺴﺘﻮى وﻓﻠﻜﺔ : ﻟﻴﻜﻦ Pﻣﺴﺘﻮى و Sﻓﻠﻜﺔ ﻣﺮآﺰهﺎ Ωوﺷﻌﺎﻋﻬﺎ . R ﻟﺪراﺳﺔ اﻟﻮﺿﻊ اﻟﻨﺴﺒﻲ ﻟﻠﻤﺴﺘﻮى Pواﻟﻔﻠﻜﺔ ، S ) ) d = d ( Ω, ( P ﻧﺤﺴﺐ اﻟﻤﺴﺎﻓﺔ dﺑﻴﻦ ) ( Pو . Ω ) ) d ( Ω, ( P اﻟﺤﺎﻟﺔ: 1 R اﻟﺤﺎﻟﺔ: 2 d ( Ω, ( P ) ) = R ∅= S∩P } ( S ) ∩ ( P ) = {H ﺑﺤﻴﺚ Hهﻲ اﻟﻤﺴﻘﻂ اﻟﻌﻤﻮدي ﻟﻠﻨﻘﻄﺔ Ωﻋﻠﻰ ) . ( P ﻓﻲ هﺬﻩ اﻟﺤﺎﻟﺔ ﻧﻘﻮل ان اﻟﻤﺴﺘﻮى ) ( Pﻣﻤﺎس ﻟﻠﻔﻠﻜﺔ ) . ( S d ( Ω, ( P ) ) ≺ R اﻟﺤﺎﻟﺔ: 3 ﻓﻲ هﺬﻩ اﻟﺤﺎﻟﺔ ﺗﻘﺎﻃﻊ ) ( Sو ) ( Pهﻮ داﺋﺮة ﻣﺮآﺰهﺎ . H ) ﺣﻴﺚ Hهﻮ اﻟﻤﺴﻘﻂ اﻟﻌﻤﻮدي ﻟﻠﻨﻘﻄﺔ Ωﻋﻠﻰ ) .( ( Pوﺷﻌﺎﻋﻬﺎ rﺣﻴﺚ : . r = R2 − d 2 d = d ( Ω, ( P ) ) = ΩH ﻋﻠﻤﺎ أن : ﻣﺜـﺎل : ( P ) : 2x − y + z +1 = 0 و: }S {Ω, 2 ﺣﻴﺚ : )Ω (1, −1,1 2 +1+1+1 ﻟﺪﻳﻨﺎ : 4 +1+1 = ) ) d ( Ω, ( P 5 5 6 = 2 6 6 ∅= S∩P إذن : ﻣﻌﺎدﻟﺔ اﻟﻤﺴﺘﻮى اﻟﻤﻤﺎس ﻟﻠﻔﻠﻜﺔ ﻓﻲ ﻧﻘﻄﺔ ﻣﻌﻴﻨﺔ. ﻟﺘﻜﻦ Aﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻠﻜﺔ Sذات اﻟﻤﺮآﺰ Ωواﻟﺸﻌﺎع . R وﻟﻴﻜﻦ ) ( Pاﻟﻤﺴﺘﻮى اﻟﻤﻤﺎس ﻟﻠﻔﻠﻜﺔ Sﻓﻲ . A = ﻟﺪﻳﻨﺎ : ﻣﻼﺣﻈﺔ : ﻣﺜـﺎل : M ∈ P ⇔ AΩ ⋅ AM = 0 ΩAﻣﻨﻈﻤﻴﺔ ﻋﻠﻰ ) . ( P ) ( Sﻓﻠﻜﺔ ﻣﻌﺎدﻟﺘﻬﺎ : و: x + y + z − 2x + 2 y − 2 = 0 2 ) A (1,1, 0 ﺣﺪد ﻣﻌﺎدﻟﺔ اﻟﻤﺴﺘﻮى اﻟﻤﻤﺎس ﻟﻠﻔﻠﻜﺔ Sﻓﻲ . A A∈ S ﻟﺪﻳﻨﺎ : إذن : M ∈ ( P ) ⇔ AΩ ⋅ AM = 0 وﺑﻤﺎأن : ) Ω (1, −,1, 0 ) A (1,1, 0 ) M ( x, y , z 2 2 ) AΩ ( 0, −2, 0 ﻓﺈن : ) AM ( x − 1, y − 1, z −2 ( y − 1) = 0 إذن : وﻣﻨﻪ : y = 1هﻲ ﻣﻌﺎدﻟﺔ اﻟﻤﺴﺘﻮى اﻟﻤﻤﺎس ﻟﻠﻔﻠﻜﺔ Sﻓﻲ اﻟﻨﻘﻄﺔ . A -IIIﺗﻘﺎﻃﻊ ﻓﻠﻜﺔ وﻣﺴﺘﻘﻴﻢ : ﻣﺜــﺎل : 1 أدرس ﺗﻘﺎﻃﻊ اﻟﻔﻠﻜﺔ Sواﻟﻤﺴﺘﻘﻴﻢ ) . ( D ﺣﻴﺚ : ( S ) : x 2 + y 2 + z 2 − 3x + 2 y − 4 z − 5 = 0 ) ∈ (t و: ﻟﺪراﺳﺔ ﺗﻘﺎﻃﻊ اﻟﻔﻠﻜﺔ ) ( Sواﻟﻤﺴﺘﻘﻴﻢ ) ، ( D ) ∈ (t ﻧﺤﻞ اﻟﻨﻈﻤﺔ : ⎧x = t ( D ) : ⎪⎨ y = t + 1 ⎪z = 2 ⎩ ⎧x = t ⎪ y = t +1 ⎪ ⎨ ⎪z = 2 ⎪⎩ x 2 + y 2 + z 2 − 3 x + 2 y − 4 z − 5 = 0 اﻟﺠــﻮاب : t + ( t + 1) + 4 − 3t + 2 ( t + 1) − 8 − 5 = 0 2 2 2t 2 + t − 6 = 0 ) ∆ = 1 − 4 ( 2 ) × ( −6 ﻟﻨﺤﻞ اﻟﻤﻌﺎدﻟﺔ : = 49 0 −1 − 7 إذن : = t1 = −2 4 −1 + 7 3 = t2 = 4 2 وﻣﻨﻪ ﺗﻘﺎﻃﻊ اﻟﻔﻠﻜﺔ Sواﻟﻤﺴﺘﻘﻴﻢ ) ( Dهﻲ اﻟﻨﻘﻄﺘﻴﻦ A ( −2, −1, 2 ) : ⎞ ⎛3 5 ⎟. B⎜ , ,2 ⎠ ⎝2 2 و: ﻣﺜــﺎل : 2 أدرس اﻟﻮﺿﻊ اﻟﻨﺴﺒﻲ ﻟﻠﻤﺴﺘﻘﻴﻢ ) ( Dواﻟﻔﻠﻜﺔ ) . ( S ﺣﻴﺚ : + z 2 = −4 ) ∈ (t 2 )( S ) : ( x − 1) + ( y + 1 2 ⎧x = t +1 ( D ) : ⎪⎨ y = −1 + 2t / ⎪z = t ⎩ اﻟﺠــﻮاب : + t = −4 2 وﻣﻨﻪ : 2 )(1 + t − 1) + ( −1 + 2t + 1 t 2 + 4t 2 + t 2 = −4 6t 2 = −4 6t 2 + 4 = 0 ∆ = −96 ≺ 0 ∅ = )(S ) ∩ ( D 2
© Copyright 2025