ﺍﻟﻤﺎﺩﺓ :ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﺘﻤﺎﺭﻴﻥ ﻭ ﺃﻨﺸﻁﺔ ﺩﺭﺱ : ﺍﻟﻤﺴﺘﻭﻯ :ﺍﻟﺜﺎﻨﻴﺔ ﻉ.ﺕ.ﻉ.ﺡ.ﺃ ﺍﻷﺴﺘﺎﺫ :ﻋﻠﻲ ﺍﻟﺸﺭﻴﻑ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﻭ ﺘﻁﺒﻴﻘﺎﺘﻪ ﺜﺎ.ﺍﻟﻤﺨﺘﺎﺭ ﺍﻟﺴﻭﺴﻲ.ﻨﻴﺎﺒﺔ ﺍﻟﺨﻤﻴﺴﺎﺕ أ ﻧﺸﻄﺔ اﻟﺘﺬآﻴﺮ ﻧﺸﺎط ﺗﺬآﻴﺮي رﻗﻢ : 1 اﻟﻤﺴﺘﻮى ) (Pﻣﻨﺴﻮب ﻟﻤﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ . O; i; jﻧﻌﺘﺒﺮ اﻟﻨﻘﻂ . C (5;−1) , B(− 1;−1) , A(1;3) : ) ( (1أ -أﺣﺴﺐ اﻟﺠﺪاء اﻟﺴﻠﻤﻲ . CA.CB : ب -اﺣﺴﺐ اﻟﻤﺴﺎﻓﺘﻴﻦ CBو . CA ج -أﺣﺴﺐ . det CA; CB ) ( ) ( (2ﻧﻌﺘﺒﺮ αﻗﻴﺎس اﻟﺰاوﻳﺔ , CA; CBأﺣﺴﺐ ) cos(α و ) sin (αﺛﻢ ﺁﺳﺘﻨﺘﺞ . α (3ﺑﻴﻦ أن x + y − 4 = 0 :ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ل ) . ( AC (4ﺣﺪد ﻣﻌﺎدﻟﺔ ) (Dواﺳﻂ اﻟﻘﻄﻌﺔ ] . [AB (5أ -أﺣﺴﺐ ﻣﺴﺎﻓﺔ اﻟﻨﻘﻄﺔ Bﻋﻦ اﻟﻤﺴﺘﻘﻴﻢ ) . ( AC ب -ﺑﻴﻦ أن ﻣﺴﺎﺣﺔ اﻟﻤﺜﻠﺚ ABCهﻲ . 12 _____________________________________ ﻧﺸﺎط ﺗﺬآﻴﺮي رﻗﻢ : 2 ﻟﺘﻜﻦ) ζداﺋﺮة ﻣﻌﺎدﻟﺘﻬﺎ .x +y -2x-2y-3=0 : ‐ (1ﺗﺤﻘﻖ أن A(2, 3) :ﺗﻨﺘﻤﻲ اﻟﻰ) (ζﺛﻢ أوﺟﺪ ﻣﻌﺎدﻟﺔ اﻟﻤﻤﺎس ) (ζل ) (ζﻓﻲ . A -(2أدرس ﺗﻘﺎﻃﻊ اﻟﺪاﺋﺮة و اﻟﻤﺴﺘﻘﻴﻢ ) (Dدو اﻟﻤﻌﺎدﻟﺔ : 2x+y-1=0 _______________________________________ ﻧﺸﺎط ﺗﺬآﻴﺮي رﻗﻢ :3 2 2 ( 1ﻓﻲ اﻟﻤﺴﺘﻮى ) , ( ABCأﺣﺴﺐ ﺑﺪﻻﻟﺔ aاﻟﺠﺪاءات اﻟﺴﻠﻤﻴﺔ اﻟﺘﺎﻟﻴﺔ . AJ.CK , AC.KJ , AB. AK , AB. AJ : ( 2ﺑﺂﻋﺘﺒﺎر ﻣﺴﺘﻮى ﻣﻨﺎﺳﺐ ﻓﻲ آﻞ ﺣﺎﻟﺔ ﻣﻦ اﻟﺤﺎﻻت اﻟﺘﺎﻟﻴﺔ , أﺣﺴﺐ ﺑﺪﻻﻟﺔ aاﻟﺠﺪاءات اﻟﺴﻠﻤﻴﺔ اﻟﺘﺎﻟﻴﺔ : . AB. AG , AC. AG , AB. AF ( 3أ – ﺑﻴﻦ أ ن اﻟﻤﺘﺠﻬﺎت BH :و BFو CGﻣﺴﺘﻮاﺋﻴﺔ . ب – أ ﺣﺴﺐ ﺑﺪﻻﻟﺔ اﻟﺠﺪاء اﻟﺴﻠﻤﻲ , BH.BF ﺛﻢ ﺁﺳﺘﻨﺘﺞ BH.CG ( 4ﻟﻴﻜﻦ θﻗﻴﺎﺳﺎ ﻟﻠﺰاوﻳﺔ اﻟﻬﻨﺪﺳﻴﺔ JIBأ ﺣﺴﺐ اﻟﺠﺪاء اﻟﺴﻠﻤﻲ IB.IJﺛﻢ ﺁﺳﺘﻨﺘﺞ ) . cos(θ ________________________________________ ☺ ﻧﺸﺎط ﺑﻨﺎﺋﻲ رﻗﻢ ) : 2اﻷﺳﺎس و اﻟﻤﻌﻠﻢ اﻟﻤﺘﻌﺎﻣﺪان اﻟﻤﻤﻨﻈﻤﺎن( ABCDEFGHﻣﻜﻌﺐ ﺣﻴﺚ . AB = 2 :ﻟﺘﻜﻦ اﻟﻨﻘﻂ Iو J و Kﻋﻠﻰ اﻟﺘﻮاﻟﻲ ﻣﻨﺘﻀﻔﺎت اﻟﻘﻄﻊ ] [ABو ] [ADو ] . [AE ﻓﻲ اﻟﻔﻀﺎء ) (ζاﻟﻤﻨﺴﻮب إ ﻟﻰ ﻣﻌﻠﻢ .م.م ) (O, i, j , kاﻟﻨﻘﻂ : )D(2,0,4) ; C (−1,1,1) ; B(2,0,3) ; A(0,0,1 (1أ – ﺑﻴﻦ أ ن اﻟﻨﻘﻂ Aو Bو Cﻏﻴﺮ ﻣﺴﺘﻘﻴﻤﻴﺔ . ب -ﺑﻴﻦ أ ن x + y − z + 1 = 0 :هﻲ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى ) . ( ABC (2ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى ) (Qاﻟﻤﺎر ﻣﻦ Aو اﻟﻤﻮﺟﻪ )v(2,0,3 ﺑﺎﻟﻤﺘﺠﻬﺘﻴﻦ u (3,−1,2) : و (3أ – أ آﺘﺐ ﺗﻤﺜﻴﻼ ﺑﺎراﻣﺘﺮﻳﺎ ﻟﻠﻤﺴﺘﻘﻴﻢ ) ∆( اﻟﻤﺎر ﻣﻦ D و اﻟﻤﻮﺟﻪ ﺑﺎﻟﻤﺘﺠﻬﺔ ). w( 4,−2,1 ب -ﺣﺪد إ ﺣﺪاﺛﻴﺎت اﻟﻨﻘﻄﺔ Eﺗﻘﺎﻃﻊ ) ∆( و اﻟﻤﺴﺘﻮى ) . ( ABC ج -ﺑﻴﻦ أ ن (∆) ⊂ (Q) : (4ﺁﺳﺘﻨﺘﺞ ﺗﻘﺎﻃﻊ اﻟﻤﺴﺘﻮﻳﻴﻦ ) ( ABCو ). (Q أﻧﺸﻄﺔ ﺑﻨﺎﺋﻴﺔ ☺ ﻧﺸﺎط ﺑﻨﺎﺋﻲ رﻗﻢ ) : 1ﺗﻘﺪﻳﻢ اﻟﺠﺪاء اﻟﺴﻠﻤﻲ ﻓﻲ اﻟﻔﻀﺎء ( ABCDEFGHﻣﻜﻌﺐ ﻃﻮل ﺿﻠﻌﻪ . A ﻟﺘﻜﻦ اﻟﻨﻘﻂ Iو Jو Kﻋﻠﻰ اﻟﺘﻮاﻟﻲ ﻣﻨﺘﻀﻔﺎت اﻟﻘﻄﻊ ] [AEو ] [ABو ] . [BC ) ( ( 1ﺑﻴﻦ أ ن AI ; AJ ; AK :أﺳﺎس ﻟﻠﻔﻀﺎء . ( 2أ – ﺗﺤﻘﻖ ﻣﻦ أ ن AI . AJ = 0 :و AI . AK = 0 و AJ . AK = 0و . AI = AJ = AK = 1 ) ( ب-هﻞ اﻟﻤﻌﻠﻢ A; AI ; AJ ; AEﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ﻟﻠﻔﻀﺎء ؟ ج – ﺣﺪد ﻣﻌﻠﻤﺎ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ﻟﻠﻔﻀﺎء أﺻﻠﻪ . D ________________________________________ ☺ ﻧﺸﺎط ﺑﻨﺎﺋﻲ رﻗﻢ ) :3اﻟﺼﻴﻐﺔ اﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻠﺠﺪاء اﻟﺴﻠﻤﻲ و ﻣﻨﻈﻢ ﻣﺘﺠﻬﺔ و ﻣﺴﺎﻓﺔ ﻧﻘﻄﺘﻴﻦ ( ﻓﻲ اﻟﻔﻀﺎء ) (ζاﻟﻤﻨﺴﻮب إ ﻟﻰ ﻣﻌﻠﻢ .م.م ) (O, i, j , kﻧﻌﺘﺒﺮ اﻟﻤﺘﺠﻬﺘﻴﻦ u = x.i + y. j + z.kو v = x′.i + y′. j + z ′.k ( 1ﺑﻴﻦ أ ن . u.v = x.x′ + y. y′ + z.z ′ : ( 2أ ﺣﺴﺐ ﺛﻢ ﺁﺳﺘﻨﺘﺞ أ ن . u = x 2 + y 2 + z 2 : (3ﻧﻌﺘﺒﺮ اﻟﻨﻘﻄﺘﻴﻦ A( x A ; y A ; z A ) :و ) . B ( xB ; y B ; z B أ – ﺣﺪد ﻣﺜﻠﻮث إﺣﺪاﺛﻴﺎت اﻟﻤﺘﺠﻬﺔ . AB ب – ﺁﺳﺘﻨﺘﺞ اﻟﻤﺴﺎﻓﺔ . AB ﺍﻟﻤﺎﺩﺓ :ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﺘﻤﺎﺭﻴﻥ ﻭ ﺃﻨﺸﻁﺔ ﺩﺭﺱ : ﺍﻟﻤﺴﺘﻭﻯ :ﺍﻟﺜﺎﻨﻴﺔ ﻉ.ﺕ.ﻉ.ﺡ.ﺃ ﺍﻷﺴﺘﺎﺫ :ﻋﻠﻲ ﺍﻟﺸﺭﻴﻑ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﻭ ﺘﻁﺒﻴﻘﺎﺘﻪ ﺜﺎ.ﺍﻟﻤﺨﺘﺎﺭ ﺍﻟﺴﻭﺴﻲ.ﻨﻴﺎﺒﺔ ﺍﻟﺨﻤﻴﺴﺎﺕ ☺ ﻧﺸﺎط ﺑﻨﺎﺋﻲ رﻗﻢ ) :4اﻟﻤﺘﺠﻬﺔ اﻟﻤﻨﻈﻤﻴﺔ ﻋﻠﻰ ﻟﻤﺴﺘﻮى – اﻟﻤﻌﺎدﻟﺔ اﻟﺪﻳﻜﺎرﺗﻴﺔ ﻟﻤﺴﺘﻮى ﻣﺤﺪد ﺑﻨﻘﻄﺔ و ﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ( ☺ ﻧﺸﺎط ﺑﻨﺎﺋﻲ رﻗﻢ ) :7دراﺳﺔ ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ) M ( x; y; z ﺑﺤﻴﺚ ( x 2 + y 2 + z 2 + ax + by + cz + d = 0 ﻧﻌﺘﺒﺮ اﻟﻨﻘﻂ A(2;1;0) :و ) B (−1;1;2و )C (1;0;1 ( 1ﺑﻴﻦ أ ن اﻟﻨﻘﻂ Aو Bو Cﺗﺤﺪد ﻣﺴﺘﻮى ) . (P اﻟﻔﻀﺎء ) (ζاﻟﻤﻨﺴﻮب إ ﻟﻰ ﻣﻌﻠﻢ .م.م ) . (O, i, j , k ﻟﺘﻜﻦ aو bو cو dأﻋﺪاد ﺣﻘﻴﻘﻴﺔ ﺑﺤﻴﺚ )(a; b; c) ≠ (0;0;0 ﻧﻌﺘﺒﺮ اﻟﻤﺠﻤﻮﻋﺔ ) (Eﺑﺤﻴﺚ : ﻓﻲ اﻟﻔﻀﺎء ) (ζاﻟﻤﻨﺴﻮب إ ﻟﻰ ﻣﻌﻠﻢ .م.م ) (O, i, j , k ( 2ﻧﻌﺘﺒﺮ اﻟﻤﺘﺠﻬﺔ ). n(2;1;3 أ – ﺑﻴﻦ أ ن أ ن n. AB = 0و . n. AC = 0 ب – ﺁ ﺳﺘﻨﺘﺞ أ ن ﺟﻤﻴﻊ اﻟﻤﺴﺘﻘﻴﻤﺎت اﻟﻤﻮﺟﻬﺔ ﺑﺎﻟﻤﺠﻬﺔ nﻋﻤﻮدﻳﺔ ﻋﻠﻰ اﻟﻤﺴﺘﻮى ) . (P (3أ -ﻟﺘﻜﻦ Mﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء . ﺑﻴﻦ أ ن . M ∈ (P ) ⇔ n. AM = 0 : ب – ﺁﺳﺘﻨﺘﺞ أ ن 2 x + y + 3 z − 5 = 0 :هﻲ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى ) . (P ________________________________________ ☺ ﻧﺸﺎط ﺑﻨﺎﺋﻲ رﻗﻢ ) :5ﻣﺴﺎﻓﺔ ﻧﻘﻄﺔ ﻋﻦ ﻣﺴﺘﻮى ( اﻟﻔﻀﺎء ) (ζاﻟﻤﻨﺴﻮب إ ﻟﻰ ﻣﻌﻠﻢ .م.م ) . (O, i, j , k ﻟﻴﻜﻦ ) (Pﻣﺴﺘﻮى ﻣﻦ اﻟﻔﻀﺎء و Bﻧﻘﻄﺔ ﻣﻦ ) (Pو nﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻋﻠﻰ اﻟﻤﺴﺘﻮى ) . (Pﻟﺘﻜﻦ Aﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء و Hﻣﺴﻘﻄﻬﺎ اﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻮى ) . (P ( 1أ .ﺑﻴﻦ أ ن AB.n = AH .n :ﻻﺣﻆ )(AB = AH + HB ب – ﺁﺳﺘﻨﺘﺞ أ ن : AB.n = . AH n ج – أﺣﺴﺐ ﻣﺴﺎﻓﺔ اﻟﻨﻘﻄﺔ ) A(− 3;1;−4ﻋﻦ اﻟﻤﺴﺘﻮى ) (P اﻟﻤﺎر ﻣﻦ اﻟﻨﻘﻄﺔ ) B(1;−1;2و ) n(2;1;−2ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ . ( 2ﻟﻴﻜﻦ ) (xB ; y B ; z Bﻣﺜﻠﻮث إﺣﺪاﺛﻴﺎت اﻟﻨﻘﻄﺔ, B و ax + by + cz + d = 0ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى ) . (P أ – ﺗﺤﻘﻖ ﻣﻦ أ ن d = −(axB + by B + cz B + d ) : ب – ﺑﻴﻦ أن ﻣﺴﺎﻓﺔ اﻟﻨﻘﻄﺔ ) A(x A ; y A ; z Aﻋﻦ اﻟﻤﺴﺘﻮى ) (P axB + by B + cz B + d = AH هﻲ : a2 + b2 + c2 ________________________________________ ☺ ﻧﺸﺎط ﺑﻨﺎﺋﻲ رﻗﻢ ) :6ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ( اﻟﻔﻀﺎء ) (ζاﻟﻤﻨﺴﻮب إ ﻟﻰ ﻣﻌﻠﻢ .م.م ) . (O, i, j , k ﻧﻌﺘﺒﺮ اﻟﻔﻠﻜﺔ ) (Sاﻟﺘﻲ ﻣﺮآﺰهﺎ ) Ω(−1;1;2و ﺷﻌﺎﻋﻬﺎ . 3 ( 1ﻣﻦ ﺑﻴﻦ اﻟﻨﻘﻂ اﻟﺘﺎﻟﻴﺔ ﺣﺪد اﻟﻨﻘﻂ اﻟﺘﻲ ﺗﻨﺘﻤﻲ إﻟﻰ اﻟﻔﻠﻜﺔ ) : (S ). D(1;3;3) , C (−1;0;4) , B(1;1;1) , A(2;1;2 (2ﻟﺘﻜﻦ ) M ( x; y; zﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء . أ – أﺣﺴﺐ اﻟﻤﺴﺎﻓﺔ ΩMﺑﺪﻻﻟﺔ xو yو. z ب – ﺑﻴﻦ أ ن Mﺗﻨﺘﻤﻲ إﻟﻰ اﻟﻔﻠﻜﺔ ) (Sإذا وﻓﻘﻂ إذاآﺎن : x2 + y 2 + z 2 + 2x − 2 y − 4z − 3 = 0 }(E) = {M ( x; y; z) / x2 + y 2 + z 2 + ax + by + cz + d = 0 ( 1أ – ﺑﻴﻦ أ ن اﻟﻤﻌﺎدﻟﺔ ) (Eﺗﻜﺎﻗﺊ : 2 2 2 2 2 2 ⎛ a ⎞ ⎛ b ⎞ ⎛ c ⎞ a + b + c − 4d =0 ⎜x + ⎟ +⎜ y + ⎟ +⎜z + ⎟ − ⎠2⎠ ⎝ 2 4 ⎝ ⎠⎝ 2 a 2 + b 2 + c 2 − 4d = kو ﺑﺂﻋﺘﺒﺎر اﻟﻨﻘﻄﺔ ب – ﺑﻮﺿﻊ : 4 a b c ) . Ω(− ;− ;−ﺁﺳﺘﻨﺘﺞ أن ﻟﻜﻞ ﻧﻘﻄﺔ ) M ( x; y; zﻣﻦ 2 2 2 2 اﻟﻔﻀﺎء ﻟﺪﻳﻨﺎ . M ( x; y; z ) ∈ ( E ) ⇔ ΩM = k : ج -ﺣﺪد ﺗﺒﻌﺎ ﻟﻘﻴﻢ إﺷﺎرة kﻃﺒﻴﻌﺔ اﻟﻤﺠﻤﻮﻋﺔ ) . (E ________________________________________ ﺗﻤﺎرﻳﻦ ﺗﻄﺒﻴﻘﻴﺔ اﻟﻔﻀﺎء ) (ζاﻟﻤﻨﺴﻮب إ ﻟﻰ ﻣﻌﻠﻢ .م.م ) . (O, i, j , k ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ : 1 (Iأ ﺣﺴﺐ اﻟﺠﺪاء اﻟﺴﻠﻤﻲ u.vﻓﻲ اﻟﺤﺎﻻت اﻟﺘﺎﻟﻴﺔ : u (−1;2;−3) ( 1و ). v(−2;2;2 (2 )u (5;1;−5 و ). v(1;−3;7 u ( 3; 2 ;1) ( 3و ). v(− 3; 2 ;1 ________________________________________ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :2 ﺣﺪد ﻗﻴﻤﺔ xاﻟﺘﻲ ﻣﻦ أ ﺟﻠﻬﺎ اﻟﻤﺘﺠﻬﺘﻴﻦ uو vﻣﺘﻌﺎﻣﺪﺗﻴﻦ . ) u ( x;1;−5و ). v( x;−3; x _______________________________________ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :3 ﻧﻌﺘﺒﺮ اﻟﻤﺘﺠﻬﺎت ) u (1;−2;5و ) v(0;1;2و ). w(4;−3;−2 ( 1أ ﺣﺴﺐ u.vو . v.w ( 2أ ﺣﺴﺐ uو . v ( 3ﺑﻴﻦ أ ن :اﻟﻤﺘﺠﻬﺘﻴﻦ uو . v ________________________________________ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :4 ( 1ﻧﻌﺘﺒﺮ اﻟﻨﻘﻂ اﻟﺘﺎﻟﻴﺔ ) A(3;3;−5و ) B(4;−1;3و )C (5;2;2 أ ﺣﺴﺐ AB. ACو ABو . AC ﺍﻟﻤﺎﺩﺓ :ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﺘﻤﺎﺭﻴﻥ ﻭ ﺃﻨﺸﻁﺔ ﺩﺭﺱ : ﺍﻟﻤﺴﺘﻭﻯ :ﺍﻟﺜﺎﻨﻴﺔ ﻉ.ﺕ.ﻉ.ﺡ.ﺃ ﺍﻷﺴﺘﺎﺫ :ﻋﻠﻲ ﺍﻟﺸﺭﻴﻑ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﻭ ﺘﻁﺒﻴﻘﺎﺘﻪ ﺜﺎ.ﺍﻟﻤﺨﺘﺎﺭ ﺍﻟﺴﻭﺴﻲ.ﻨﻴﺎﺒﺔ ﺍﻟﺨﻤﻴﺴﺎﺕ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :5 ( 1ﻧﻌﺘﺒﺮ اﻟﻨﻘﻂ اﻟﺘﺎﻟﻴﺔ B (− 1;−2;−1) , A(5;−5;3) : ) . D(2;8;2 ) , C (8;5;6 أ – ﺑﻴﻦ أ ن . AC = BD : ب – ﺑﻴﻦ أن اﻟﻤﺘﺠﻬﺘﻴﻦ ABو ACﻣﺘﻌﺎﻣﺪﺗﻴﻦ . ج – ﺣﺪد ﻃﺒﻴﻌﺔ اﻟﺮﺑﺎﻋﻲ . ABCD ( 2ﻧﻌﺘﺒﺮ اﻟﻨﻘﻂ اﻟﺘﺎﻟﻴﺔ C (1;−2;2 ) , B(2;0;−2 ) , A(1;1;1) : ﺑﻴﻦ أ ن اﻟﻤﺜﻠﺚ ABCﻗﺎﺋﻢ اﻟﺰاوﻳﺔ . ________________________________________ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :6 أﻋﻂ ﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻋﻠﻰ اﻟﻤﺴﺘﻮى ) (Pﻓﻲ آﻞ ﺣﺎﻟﺔ : (P ) : x − y + 2 = 0 ( 2 , (P ) : 2 x + y − z + 7 = 0 ( 1 (P ) : z = 2 (P ) : x = 0 ( 3 (4, ________________________________________ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :7 ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى ) (Pاﻟﻤﺎر ﻣﻦ اﻟﻨﻘﻄﺔ Aو اﻟﻤﺘﺠﻬﺔ nﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ : (1 )A(1;−2;3 ; ) n(1;−3;−2 )A(2;−1;1 ; ) n(1;0;2 (2 (3 ) n(0;0;1) ; A(− 1;2;4 ________________________________________ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :8 ﺣﺪد ﻓﻲ آﻞ ﺣﺎﻟﺔ ﺗﻤﺜﻴﻞ ﺑﺎراﻣﺘﺮي ﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﺎر ﻣﻦ اﻟﻨﻘﻄﺔ Aو اﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻮى ) . (P )(P ) : 2 x − 3 y + z + 1 = 0 ; A(− 1;1;2 (1 (P ) : x + y − 1 = 0 ) ; A(0;0;2 (2 (P ) : y − 4 = 0 ) ; A(4;−3;2 (3 ________________________________________ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :9 ( 1ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى ) (Pﻓﻲ آﻞ ﺣﺎﻟﺔ : أ (P ) -ﻣﺎر ﻣﻦ اﻟﻨﻘﻄﺔ ) A(4;−3;2و ﻋﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻘﻴﻢ ذي ⎧x − y + 2z − 3 = 0 اﻟﻤﻌﺎدﻟﺘﻴﻦ : ⎨ ⎩2 x − y − 3 z = 0 ب ( ) (Pﻣﺎر ﻣﻦ اﻟﻨﻘﻄﺔ ) A(4;1;0و ﻋﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻘﻴﻢ ⎧ x = 2 − 3t ⎪ ) (Dاﻟﻤﻌﺮف ﻳﺎﻟﺘﻤﺜﻴﻞ اﻟﺒﺎراﻣﺘﺮي ⎨ y = −3 + t (t ∈ IR ) : ⎪ z = 4 − 2t ⎩ ج ( ) (Pﻣﺎر ﻣﻦ اﻟﻨﻘﻄﺘﻴﻦ ) A(0;−2;0و ) B (2;2;2و ﻋﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻮى . (Q ): x − 2 y + 3 z − 7 = 0 : ( 2ﺣﺪد ﻣﺜﻠﻮث إﺣﺪاﺛﻴﺎت اﻟﻨﻘﻄﺔ Hاﻟﻤﺴﻘﻂ اﻟﻌﻤﻮدي ﻟﻠﻨﻘﻄﺔ ) A(0;1;2ﻋﻠﻰ اﻟﻤﺴﺘﻮى . (P ): 2 x + y − z + 2 = 0 ( 3ﻧﻌﺘﺒﺮ اﻟﻨﻘﻂ ) A(1;0;−1و ) B (2;2;3و ) C (3;1;−2 أ – ﺗﺤﻘﻖ ﻣﻦ أ ن اﻟﻨﻘﻂ Aو Bو Cﻏﻴﺮ ﻣﺴﺘﻘﻴﻤﻴﺔ . ب -ﺑﻴﻦ أ ن اﻟﻤﺘﺠﻬﺔ ) n(2;−3;1ﻣﻨﻈﻤﻴﺔ ﻋﻠﻰ اﻟﻤﺴﺘﻮى ) ( ABC ﺛﻢ ﺁﺳﺘﻨﺘﺞ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى ) . ( ABC ج – ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى ) (Pاﻟﻤﺎر ﻣﻦ اﻟﻨﻘﻄﺔ ) D(− 2;2;−1و اﻟﻤﻮازي ﻟﻠﻤﺴﺘﻮى ) . ( ABC ________________________________________ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :10 ( 1أﺣﺴﺐ ﻣﺴﺎﻓﺔ اﻟﻨﻘﻄﺔ ) A(0;−2;−1ﻋﻦ اﻟﻤﺴﺘﻮى (P ): x + y − z + 1 = 0 ( 2ﻧﻌﺘﺒﺮ اﻟﻨﻘﻄﺘﻴﻦ ) A(1;−2;1و ) B(1;2;3و اﻟﻤﺘﺠﻬﺔ ) n(− 1;1;2أ ﺣﺴﺐ ﻣﺴﺎﻓﺔ اﻟﻨﻘﻄﺔ Aﻋﻦ اﻟﻤﺴﺘﻮى ) (Pاﻟﻤﺎر ﻣﻦ اﻟﻨﻘﻄﺔ Bو nﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ . ________________________________________ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :11 ( 1أآﺘﺐ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ) (Sاﻟﺘﻲ ﻣﺮآﺰهﺎ ) Ω(1;−2;1و ﺷﻌﺎﻋﻬﺎ . R = 6 ( 2أآﺘﺐ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ) (Sاﻟﺘﻲ ﻣﺮآﺰهﺎ )Ω(− 1;4;5 و ﺗﻤﺮ ﻣﻦ اﻟﻨﻘﻄﺔ ) . A(3;5;2 ( 3أآﺘﺐ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ) (Sاﻟﺘﻲ أ ﺣﺪ أﻗﻄﺎرهﺎ ] [AB ﺑﺤﻴﺚ ) A(− 1;0;3و ). B(1;2;5 ________________________________________ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :12 ﺣﺪد ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ) M ( x; y; zاﻟﺘﻲ ﺗﺤﻘﻖ اﻟﻤﻌﺎدﻟﺔ ,إذا آﺎﻧﺖ ﻓﻠﻜﺔ ﺣﺪد ﺷﻌﺎﻋﻬﺎ و ﻣﺮآﺰهﺎ . 2 2 2 (1 x + y + z − 2x − 4 y + 4 = 0 11 x2 + y 2 + z 2 − x + 2 y − 2z + = 0 ( 2 4 2 2 2 (3 x + y + z + 4x + 2z + 5 = 0 ________________________________________ ﺗﻤﺮﻳﻦ ﺗﻄﺒﻴﻘﻲ رﻗﻢ :13 ( 1ﺑﻴﻦ أن اﻟﻤﺴﺘﻮى ) (Pﻣﻤﺎس ﻟﻠﻔﻠﻜﺔ ) S (Ω; Rﺑﺤﻴﺚ : (P ) : x + 2 y + 2 z − 1 = 0و ) Ω(2;1;0و R = 1 ( 2ﺗﺤﻘﻖ ﻣﻦ أ ن اﻟﻨﻘﻄﺔ ) A(− 3;1;0ﺗﻨﺘﻤﻲ إﻟﻰ اﻟﻔﻠﻜﺔ (S ): x 2 + y 2 + z 2 + 6 x − y + 9 = 0ﺛﻢ ﺣﺪد ﻣﻌﺎدﻟﺔ اﻟﻤﺴﺘﻮى اﻟﻤﻤﺎس ﻟﻠﻔﻠﻜﺔ ) (Sﻓﻲ اﻟﻨﻘﻄﺔ . A ( 3أدرس اﻟﻮﺿﻊ اﻟﻨﺴﺒﻲ ﻟﻠﻔﻠﻜﺔ ) (Sاﻟﺘﻲ ﻣﻌﺎدﻟﺘﻬﺎ اﻟﺪﻳﻜﺎرﺗﻴﺔ هﻲ (S ): x 2 + y 2 + z 2 − 4 x − 2 y + 4 = 0ﻣﻊ آﻞ ﻣﻦ اﻟﻤﺴﺘﻮﻳﺎت اﻟﺘﺎﻟﻴﺔ : (P1 ) : x + y + z − 4 = 0 أ- (P2 ) : 2 x + + y + z + 1 = 0 ب- (P3 ) : 2 x + y − 2 z − 8 = 0 ج-
© Copyright 2024