Lecture 10 Capacitor and Inductor Hung-yi Lee Outline • Capacitor (Chapter 5.1) • Inductor (Chapter 5.2) • Comparison of Capacitor and Inductor • Superposition for Dynamic Circuits Outline • Capacitor (Chapter 5.1) • Inductor (Chapter 5.2) • Comparison of Capacitor and Inductor • Superposition for Dynamic Circuits Capacitor – i-v characteristics Dynamic i (t ) v(t ) dv(t ) i (t ) C dt reference current should flow from “+” to “-” If v is constant i=0 Open circuit 1 t 1 t v(t ) i d vt0 i d C C t0 Capacitor – i-v characteristics vt dv(t ) i (t ) C dt Continuity - Capacitor dv(t ) i (t ) C dt • The voltage of capacitor should be continuous Infinite current Current changes Capacitor – Power and Energy Instantaneous consumed power of a capacitor: vc (t ) dvc (t ) p (t ) vc (t ) ic (t ) Cvc (t ) dt Total energy consumed: ic (t ) dvc t E t pt dt Cvc t dt dt p(t ) t t 1 2 Cvc (t ) 2 The energy stored Depend on voltage at t E(t ) Capacitor - Application • Automated external defibrillators (AED) Capacitor - Application • Automated external defibrillators (AED) vc (t ) 5000 vc (t ) 0 5000V 1 2 1 E Cvc (t ) C 5000 2 2 2 1 2 E Cvc (t ) 0 2 Capacitor - Series v v1 v2 v N dv N dv1 dv2 i C1 C2 C N dt dt dt Cser 1 1 1 1 C1 C2 CN dv d v1 v2 v N dt dt dv N dv1 dv2 dt dt dt 1 1 1 i CN C1 C2 1 dv i i Cser Cser dt Capacitor - Parallel Cpar=C1+C2+ ‥ ‥ ‥+CN i i1 i2 iN dv dv dv C2 C N dt dt dt dv C1 C2 C N dt dv C par dt C1 Outline • Capacitor (Chapter 5.1) • Inductor (Chapter 5.2) • Comparison of Capacitor and Inductor • Superposition for Dynamic Circuits Inductor – i-v characteristics Dynamic i (t ) di (t ) v(t ) L dt If i=constant reference current should flow from “+” to “-” v=0 v(t ) short circuit 1 t 1 t i (t ) v d i t0 v d L L t0 Inductor – i-v characteristics i t di (t ) v(t ) L dt Continuity - Inductor di (t ) v(t ) L dt • The current of inductor should be continuous Infinite Voltage Voltage changes Shock by Inductor http://www.allaboutcircuits.com/worksheets/ind.html Inductor – Power and Stored Energy • Instantaneous consumed power of an inductor diL (t ) p ( t ) v L ( t ) iL ( t ) L iL ( t ) dt • Total Energy consumed diL t E t pt dt L iL t dt dt t 1 2 LiL (t ) 2 The energy stored t Depend on current at t Inductor - Series v v1 v2 v N di di di L1 L2 LN dt dt dt di L1 L2 LN dt di Lser dt Lser=L1+L2+ ‥ ‥ ‥+LN Inductor - Parallel i i1 i2 iN diN di1 di2 v L1 L2 LN dt dt dt L par 1 1 1 1 L1 L2 LN di d i1 i2 iN dt dt diN di1 di2 dt dt dt 1 1 1 v LN L1 L2 1 v L par v L par di dt Outline • Capacitor (Chapter 5.1) • Inductor (Chapter 5.2) • Comparison of Capacitor and Inductor • Superposition for Dynamic Circuits Summary - i-v characteristics dv(t ) i (t ) C dt 愛 C V di (t ) v(t ) L dt V L 愛 Summary - Series and Parallel Resistor Capacitor Inductor Series R s Ri 1 1 Cs Ci L s Li Parallel 1 1 Rp Ri C p Ci 1 1 Lp Li i-v v(t ) Rit dv(t ) i (t ) C dt di (t ) v(t ) L dt Outline • Capacitor (Chapter 5.1) • Inductor (Chapter 5.2) • Comparison of Capacitor and Inductor • Superposition for Dynamic Circuits Review y ai xi This equation only for circuits with sources and resistors. i • • y: any current or voltage for an element xi: current of current sources or voltage of voltage sources Proportionality Principle, Superposition Principle Can be used in any circuit in this course Linearity • A circuit is a multiple-input multiple-output (MIMO) system • Input: current of current sources or voltage of voltage sources • Output: the current or voltage for the elements input Circuit (System) + v - i output Linearity • All linear circuits are linear system • Linear Circuit: • Sources • Linear Elements: • Resistor, Capacitor, Inductor v i R All circuits in this course are linear circuits. Linearity • Linear System: • Property 1: Input: g1(t), g2(t), g3(t), …… output: h1(t), h2(t), h3(t), …… Input: Kg1(t), Kg2(t), Kg3(t), …… output: Kh1(t), Kh2(t), Kh3(t), …… Proportionality Principle Linearity • Linear System: • Property 2: Input: a1(t), a2(t), a3(t), …… output: x1(t), x2(t), x3(t), …… Input: b1(t), b2(t), b3(t), …… output: y1(t), y2(t), y3(t), …… Input: a1(t)+ b1(t), a2(t)+ b2(t), a3(t)+ b3(t), …… output: x1(t)+y1(t), x2(t)+y2(t), x3(t)+y3(t), …… Superposition Principle Linearity • Linear System: • Property 2: Input: a1(t), a2(t), a3(t), …… output: x1(t), x2(t), x3(t), …… Input: b1(t), b2(t), b3(t), …… output: y1(t), y2(t), y3(t), …… Input: a1(t)+ b1(t), a2(t)+ b2(t), a3(t)+ b3(t), …… output: x1(t)+y1(t), x2(t)+y2(t), x3(t)+y3(t), …… Superposition Principle vt Linearity vt i t g1 t 0 g t g t g1 t g 2 t Superposition Principle can be applied on all circuits in this course (Textbook: Chapter 6.5). 0 i t g 2 t Announcement • 10/22 (三) 第一次小考 • • • • Ch1. Circuit Variables and Laws (1.4, 1.5) Ch2. Properties of Resistive Circuits (2.3, 2.4, 2.5) Ch3. Applications of Resistive Circuits (3.2) Ch4. Systematic Analysis Methods (4.1, 4.2, 4.3, 4.4) • 助教時間:週一到週四 PM6:30~8:30 • 助教:黃盈庭 [email protected] • 時間:週三PM6:30~8:30 • 地點:電二146 Thank you! Appendix Capacitor – Series (2) If v is constant i=0 Open circuit What are v1, v2 ……? Capacitor Application • How Capacitive Liquid Level Sensors Work • https://www.youtube.com/watch?v=0du-QU1Q0T4 Acknowledgement • 感謝 林楷恩(b02) • 指出投影片中 Equation 的錯誤
© Copyright 2025