IRF730AS, SiHF730AS, IRF730AL, SiHF730AL Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 400 RDS(on) (Max.) (Ω) VGS = 10 V 1.0 Qg (Max.) (nC) 22 Qgs (nC) 5.8 Qgd (nC) 9.3 Configuration RoHS* • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness COMPLIANT • Fully Characterized Capacitance and Avalanche Voltage and Current • Effective Coss Specified Single • Lead (Pb)-free Available D I2PAK (TO-262) Available APPLICATIONS D2PAK (TO-263) • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply G G • High Sspeed Power Switching D S TYPICAL SMPS TOPOLOGIES S • Single Transistor Flyback Xfmr. Reset N-Channel MOSFET • Single Transistor Forward Xfmr. Reset (Both US Line Input Only) ORDERING INFORMATION Package Lead (Pb)-free SnPb D2PAK (TO-263) D2PAK (TO-263) D2PAK (TO-263) I2PAK (TO-262) IRF730ASPbF SiHF730AS-E3 IRF730AS SiHF730AS IRF730ASTRLPbFa IRF730ASTRRPbFa SiHF730ASTL-E3a IRF730ASTRLa SiHF730ASTLa SiHF730ASTR-E3a - IRF730ALPbF SiHFL014T-E3 - Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 400 Gate-Source Voltage VGS ± 30 VGS at 10 V Continuous Drain Current TC = 25 °C ID TC = 100 °C Pulsed Drain Currenta, e UNIT V 5.5 3.5 A IDM 22 0.6 W/°C Single Pulse Avalanche Energyb, e EAS 290 mJ Avalanche Currenta IAR 5.5 A Repetiitive Avalanche Energya EAR 7.4 mJ PD 74 W V/ns Linear Derating Factor Maximum Power Dissipation TC = 25 °C dV/dtc, e dV/dt 4.6 Operating Junction and Storage Temperature Range TJ, Tstg - 55 to + 150 Peak Diode Recovery Soldering Recommendations (Peak Temperature) for 10 s Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 19 mH, RG = 25 Ω, IAS = 5.5 A (see fig. 12). c. ISD ≤ 5.5 A, dI/dt ≤ 90 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. e. Uses IRF730A/SiHF730A data and test condition 300d °C * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91046 S-Pending-Rev. A, 30-May-08 WORK-IN-PROGRESS www.vishay.com 1 IRF730AS, SiHF730AS, IRF730AL, SiHF730AL Vishay Siliconix THERMAL RESISTANCE RATINGS SYMBOL TYP. MAX. Maximum Junction-to-Ambient (PCB Mounted, steady-state)a PARAMETER RthJA - 40 Maximum Junction-to-Case (Drain) RthJC - 1.7 UNIT °C/W Note a. When mounted on 1" square PCB (FR-4 or G-10 material). SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 400 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mAd - 0.5 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.5 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 400 V, VGS = 0 V - - 25 VDS = 320 V, VGS = 0 V, TJ = 125 °C - - 250 Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 3.3 Ab VGS = 10 V VDS = 50 V, ID = 3.3 Ad µA - - 1.0 Ω 3.1 - - S - 600 - - 103 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Coss VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5d VGS = 0 V Coss eff. Total Gate Charge Qg Gate-Source Charge Qgs VGS = 10 V - 4.0 - VDS = 1.0 V, f = 1.0 MHz - 890 - VDS = 320 V, f = 1.0 MHz - 30 - VDS = 0 V to 320 Vc, d - 45 - - - 22 ID = 3.5 A, VDS = 3200 V, see fig. 6 and 13b, d - - 5.8 pF nC Gate-Drain Charge Qgd - - 9.3 Turn-On Delay Time td(on) - 10 - - 22 - - 20 - - 16 - - - 5.5 - - 22 - - 1.6 - 370 550 ns - 1.6 2.4 µC Rise Time Turn-Off Delay Time Fall Time tr td(off) VDD = 200 V, ID = 3.5 A, RG = 12 Ω, RD = 57 Ω, see fig. 10b, d tf ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 5.5 A, VGS = 0 Vb TJ = 25 °C, IF = 3.5 A, dI/dt = 100 A/µsb, d V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. d. Uses IRF730A/SiHF730A data and test conditions. www.vishay.com 2 Document Number: 91046 S-Pending-Rev. A, 30-May-08 IRF730AS, SiHF730AS, IRF730AL, SiHF730AL Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 0.1 4.5V 10 1 10 100 0.1 4.0 VDS, Drain-to-Source Voltage (V) 2.5 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 4.5V 0.1 20µs PULSE WIDTH TJ= 150 °C 1 10 Fig. 2 - Typical Output Characteristics Document Number: 91046 S-Pending-Rev. A, 30-May-08 100 RDS(on), Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 VDS, Drain-to-Source Voltage (V) 5.0 6.0 7.0 8.0 9.0 10.0 Fig. 3 - Typical Transfer Characteristics TOP 0.01 0.1 VDS = 50V 20µs PULSE WIDTH VGS, Gate-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 10 TJ = 25 °C 1 20µs PULSE WIDTH TJ= 25 °C 0.01 0.1 100 TJ = 150 °C ID = 5.5 A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 VGS, Gate-to-Source Voltage (V) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRF730AS, SiHF730AS, IRF730AL, SiHF730AL Vishay Siliconix 100 100000 Crss = Cgd 10000 C, Capacitance (pF) ISD, Reverse Drain Current (A) VGS = 0V, f = 1 MHz Ciss = Cgs + Cgd, Cds SHORTED Coss = Cds + Cgd 1000 Ciss Coss 100 10 Crss TJ = 150 °C 10 TJ = 25 °C 1 VGS = 0 V 1 1 10 100 0.1 0.4 1000 ID = 5.5 A 16 0.8 1.0 1.2 Fig. 7 - Typical Source-Drain Diode Forward Voltage 100 OPERATION IN THIS AREA LIMITED BY RDS(on) VDS = 320V VDS = 200V VDS = 80V 10us ID, Drain Current (A) VGS, Gate-to-Source Voltage (V) 20 0.6 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 12 8 10 100us 1ms 1 10ms 4 0 FOR TEST CIRCUIT SEE FIGURE 13 0 5 10 15 20 25 VSD, Source-Drain Diode Forward Voltage Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 TC = 25 °C TJ = 150 °C Single Pulse 0.1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91046 S-Pending-Rev. A, 30-May-08 IRF730AS, SiHF730AS, IRF730AL, SiHF730AL Vishay Siliconix RD VDS 6.0 VGS ID, Drain Current (A) 5.0 D.U.T. RG 4.0 + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 3.0 Fig. 10a - Switching Time Test Circuit 2.0 VDS 90 % 1.0 0.0 25 50 75 100 125 10 % VGS 150 TC, Case Temperatrure td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (ZthJC) 10 1 D = 0.50 0.20 0.10 PDM 0.05 0.1 t1 0.02 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) 0.01 0.00001 0.0001 Notes: 1. Duty factor D = t1 / t2 2. Peak TJ = PDM x ZthJC + TC 0.001 0.01 0.1 1 t1, Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T RG IAS 20 V tp Driver + A - VDD IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91046 S-Pending-Rev. A, 30-May-08 Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRF730AS, SiHF730AS, IRF730AL, SiHF730AL Vishay Siliconix 610 TOP 600 BOTTOM ID 2.5A 3.5A 5.5A 500 400 300 200 100 600 VDSav, Avalanche Voltage (V) EAS, Single Pulse Avalanche Energy (mJ) 700 590 580 570 560 550 540 0 25 50 75 100 125 150 0.0 1.0 Starting TJ, Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current 2.0 3.0 4.0 5.0 6.0 IAV, Avalanche Current (A) Fig. 12d - Typical Drain-to-Source Voltage vs. Avalanche Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Maximum Avalanche Energy vs. Drain Current www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91046 S-Pending-Rev. A, 30-May-08 IRF730AS, SiHF730AS, IRF730AL, SiHF730AL Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91046. Document Number: 91046 S-Pending-Rev. A, 30-May-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2024