IRF840AS, IRF840AL, SiHF840AS, SiHF840AL Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current • Effective Coss Specified 500 RDS(on) (Ω) VGS = 10 V 0.85 Qg (Max.) (nC) 38 Qgs (nC) 9.0 Qgd (nC) 18 Configuration Single APPLICATIONS • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply • High Speed Power Switching G G COMPLIANT • Lead (Pb)-free Available D D2PAK (TO-263) I2PAK (TO-262) Available RoHS* D TYPICAL SMPS TOPOLOGIES S • Two Transistor Forward • Half Bridge • Full Bridge S N-Channel MOSFET ORDERING INFORMATION Package Lead (Pb)-free SnPb D2PAK (TO-263) D2PAK (TO-263) D2PAK (TO-263) I2PAK (TO-262) IRF840ASPbF IRF840ASTRLPbFa IRF840ASTRRPbFa IRF840ALPbF SiHF840AS-E3 SiHF840ASTL-E3a SiHF840ASTR-E3a SiHF840AL-E3 IRF840AS IRF840ASTRLa IRF840ASTRRa IRF840AL SiHF840AS SiHF840ASTLa SiHF840ASTRa SiHF840AL Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID IDM Linear Derating Factor Single Pulse Avalanche Energyb UNIT V 8.0 5.1 A 32 1.0 W/°C mJ EAS 510 Repetitive Avalanche Currenta IAR 8.0 A Repetitive Avalanche Energya EAR 13 mJ Maximum Power Dissipation TC = 25 °C TA = 25 °C Peak Diode Recovery dV/dtc, e Operating Junction and Storage Temperature Range Soldering Temperature for 10 s PD 125 3.1 dV/dt 5.0 TJ, Tstg - 55 to + 150 300d W V/ns °C Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 16 mH, RG = 25 Ω, IAS = 8.0 A (see fig. 12). c. ISD ≤ 8.0 A, dI/dt ≤ 100 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. e. Uses IRF840A/SiH840A data and test conditions. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91066 S-81412-Rev. A, 07-Jul-08 www.vishay.com 1 IRF840AS, IRF840AL, SiHF840AS, SiHF840AL Vishay Siliconix THERMAL RESISTANCE RATINGS SYMBOL MIN. TYP. MAX. Maximum Junction-to-Ambient (PCB Mount)a PARAMETER RthJA - - 40 Maximum Junction-to-Case (Drain) RthJC - - 1.0 UNIT °C/W Note a. When mounted on 1" square PCB (FR-4 or G-10 material). SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mAd - 0.58 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 500 V, VGS = 0 V - - 25 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 - - 0.85 Ω VDS = 50 V, ID = 4.8 A 3.7 - - S VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - 1018 - - 155 - 8.0 - Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 4.8 Ab VGS = 10 V µA Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Coss Output Capacitance Effective Output Capacitance Total Gate Charge Coss - VDS = 1.0 V, f = 1.0 MHz VGS = 0 V Coss eff. VDS = 400 V, f = 1.0 MHz 42 VDS = 0 V to 480 Vc, d 56 Qg ID = 8.0 A, VDS = 400 V, see fig. 6 and 13b, d - - 38 pF Gate-Source Charge Qgs - - 9.0 Gate-Drain Charge Qgd - - 18 Turn-On Delay Time td(on) - 11 - tr - 23 - - 26 - - 19 - - - 8.0 S - - 32 Vb - - 2.0 V - 422 633 ns - 2.0 3.0 µC Rise Time Turn-Off Delay Time Fall Time td(off) VGS = 10 V 1490 VDD = 250 V, ID = 8.0 A, RG = 9.1 Ω, RD = 31 Ω, see fig. 10b, d tf nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 8.0 A, VGS = 0 TJ = 25 °C, IF = 8.0 A, dI/dt = 100 A/µsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. d. Uses IRF840A/SiHF840A data and test conditions www.vishay.com 2 Document Number: 91066 S-81412-Rev. A, 07-Jul-08 IRF840AS, IRF840AL, SiHF840AS, SiHF840AL Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) 100 10 1 4.5V 20µs PULSE WIDTH TJ = 25 °C 0.1 0.1 1 10 100 TJ = 150 ° C 10 TJ = 25 ° C 1 0.1 4.0 Fig. 1 - Typical Output Characteristics 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 4.5V 1 20µs PULSE WIDTH TJ = 150 °C 10 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91066 S-81412-Rev. A, 07-Jul-08 100 R DS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 10 1 6.0 7.0 8.0 9.0 Fig. 3 - Typical Transfer Characteristics TOP 0.1 0.1 5.0 VGS , Gate-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 100 V DS = 50V 20µs PULSE WIDTH 8.0 ID = 7.4A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRF840AS, IRF840AL, SiHF840AS, SiHF840AL Vishay Siliconix C, Ca pac ita nc e(pF ) ISD , Reverse Drain Current (A) 100 TJ = 150 ° C 10 TJ = 25 ° C 1 0.1 0.2 V GS = 0 V 0.5 0.8 1.1 1.4 VSD ,Source-to-Drain Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 100 8.0 A ID = 7.4 VDS = 400V VDS = 250V VDS = 100V 16 OPERATION IN THIS AREA LIMITED BY RDS(on) 10us I D , Drain Current (A) VGS , Gate-to-Source Voltage (V) 20 Fig. 7 - Typical Source-Drain Diode Forward Voltage 12 8 10 100us 1ms 1 10ms 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 10 20 30 40 Q G , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 0.1 TC = 25 °C TJ = 150 °C Single Pulse 10 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91066 S-81412-Rev. A, 07-Jul-08 IRF840AS, IRF840AL, SiHF840AS, SiHF840AL Vishay Siliconix RD VDS 8.0 VGS D.U.T. I D , Drain Current (A) RG 6.0 + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 4.0 Fig. 10a - Switching Time Test Circuit 2.0 VDS 90 % 0.0 25 50 75 100 TC , Case Temperature 125 150 10 % VGS ( °C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.1 P DM 0.10 t1 0.05 t2 0.02 0.01 0.01 0.00001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC SINGLE PULSE (THERMAL RESPONSE) 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Document Number: 91066 S-81412-Rev. A, 07-Jul-08 www.vishay.com 5 IRF840AS, IRF840AL, SiHF840AS, SiHF840AL Vishay Siliconix Driver L VDS D.U.T. RG + A - VDD IAS 20 V tp V D S a v , A valan che V oltag e ( V ) 15 V 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit VDS tp Fig. 12d - Typical Drain-to-Source Voltage vs. Avalanche Current IAS Fig. 12b - Unclamped Inductive Waveforms QG 10 V QGS EAS , Single Pulse Avalanche Energy (mJ) 1200 TOP 1000 BOTTOM ID 3.6A 5.1A 8.0A QGD VG Charge 800 Fig. 13a - Basic Gate Charge Waveform 600 Current regulator Same type as D.U.T. 400 50 kΩ 12 V 0.2 µF 200 0.3 µF + D.U.T. - VDS 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current VGS 3 mA IG ID Current sampling resistors Fig. 13b - Gate Charge Test Circuit www.vishay.com 6 Document Number: 91066 S-81412-Rev. A, 07-Jul-08 IRF840AS, IRF840AL, SiHF840AS, SiHF840AL Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91066. Document Number: 91066 S-81412-Rev. A, 07-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2024