Document 11345

 References Abd-Elsalam, H. E., E. E. Hafez, A. A. Hussain, A. G. Ali and A. A. El-Hanafy.
2009. Isolation and identification of three-rings polyaromatic hydrocarbons
(anthracene and phenanthrene) degrading bacteria. American-Eurasian J. Agric.
Environ. Sci. 5(1): 31-38
Aguinaga, N., N. Campillo, P. Vinas and M. H. Cordoba. 2007. Determination of 16
polycyclic aromatic hydrocarbons in milk and related products using solid-phase
microextraction coupled to gas chromatography–mass spectrometry. Analytica
Chimica Acta. 596: 285-290
Aitken, M. D., W. T. Stringfellow, R. D. Nagel, C. Kazunga and S. H. Chen. 1998.
Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated
with polycyclic aromatic hydrocarbons. Can. J. Microbiol. 44: 743-752
Alexander, M. 1999. Cometabolism. In: M. Alexander (Ed.), Biodegradation and
bioremediation (pp. 249–267). New York: Academic Press.
Al-Thani, R. F., D. A. M. Abd-El-Haleem and M. Al-Shammri. 2009. Isolation and
characterization of polyaromatic hydrocarbons-degrading bacteria from different
Qatari soils. Afr. J. Microbiol. Res. 3(11): 761-766
Al-Turki, A. I. 2009. Microbial polycyclic aromatic hydrocarbons degradation in soil.
Res. J. Environ. Toxicol. 3(1): 1-8
Al-Turki, A. I. and W. A. Dick. 2003. Myrosinase activity in soil. Soil Sci. Soc. Am. J.
67: 139-145
Annweiler, E., H. H. Richnow, G. Antranikian, S. Hebenbrock, C. Garms, S. Franke,
W. Francke and W. Michaelis. 2000. Naphthalene degradation and incorporation of
naphthalene-derived
carbon
into
biomass
by
the
thermophile
Bacillus
thermoleovorans. Appl. Environ. Microbiol. 66(2): 518-523
Arora, P. K., M. Kumar, A. Chauhan, G. P. S. Raghava and R. K. Jain. 2009.
OxDBase: a database of oxygenases involved in biodegradation. BMC Research
Notes. 2:67.online http://www.biomedcentral.com/1756-0500/2/67
103 References Bach, Q. D., S. J. Kim, S. C. Choi and Y. S. Oh. 2005. Enhancing the intrinsic
bioremediation of PAH-contaminated anoxic estuarine sediments with biostimulating
agents. J. Microbiol. 43(4): 319-324
Baek, K. H., H. S. Kim, H. M. Oh, B. D. Yoon, J. Kim and I. S. Leel. 2004. Effects of
crude oil, oil components, and bioremediation on plant growth. J. Environ. Sci.
Health. 39(9): 2465-2472
Bamforth, S. M. and I. Singleton. 2005. Bioremediation of polycyclic aromatic
hydrocarbons: current knowledge and future directions. A Review. J. Chem. Technol.
Biotechnol. 80: 723-736
Banat, I. M., R. S. Makkar and S. S. Cameotra. 2000. Potential commercial
applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53: 495-508
Basta, N. T., J. A. Ryan and R. L. Chaney. 2005. Trace element chemistry in residualtreated soil: key concepts and metal bioavailability. J. Environ. Quality. 34: 49-63
Bezalel, L. Y. Hadar, P. P. Fu, J. P. Freeman and C. E. Cerniglia. 1996. Metabolism
of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl. Environ.
Microbiol. 62(7): 2547-2553 Bezalel, L., Y. Hadar and C. E. Cerniglia. 1997. Enzymatic mechanisms involved in
phenanthrene degradation by the white-rot fungus Pleurotus ostreatus. Appl. Environ.
Microbiol. 63: 2495-2501
Bishnoi, K., R. Kumar and N. R. Bishnoi. 2008. Biodegradation of Polycyclic
aromatic hydrocarbons by white rot fungi Phanerochaete chrysosporium in sterile and
unsterile soil. J. Sci. Indust. Res. 67: 538-542
Bishoni, N. R., U. Mehta and G. G. Pandit. 2006. Quantification of polycyclic
aromatic hydrocarbons in fruits and vegetables using high performance liquid
chromatography. Ind. J. Chem. Technol. 13: 30-35
Bollag, J. M. and C. Myers. 1992. Detoxification of aquatic and terrestrial sites
through binding of pollutants to humic substances. Sci. Tot. Environ. 118: 357-366
104 References Bollag J. M. 1992. Decontaminating soil with enzymes. Environ. Sci. Technol. 26:
1876-1881
Bouchez, M., D. Blanchet and J. P. Vandecasteele. 1996. The microbiological fate of
polycyclic aromatic hydrocarbons: carbon and oxygen balances for bacterial
degradation of model compounds. Appl. Microbiol. Biotech. 45(4): 556-561
Brezna, B., A. A. Khan and C. E. Cerniglia. 2003. Molecular characterization of
dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp.
FEMS Microbiol. Lett. 223: 177-183
Brezna, B., O. Kweon, R. L. Stingley, J. P. Freeman, A. A. Khan, B. Polek, R. C.
Jones and C. E. Cerniglia. 2006. Molecular characterization of cytochrome P450
genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii
PYR-1. Appl. Microbiol. Biotechnol. 71: 522-532
Brion, D. and E. Pelletier. 2005. Modelling PAHs adsorption and sequestration in
freshwater and marine sediments. Chemosphere. 61: 867-876
Brown, J. R. and J. L. Thornton. 1957. Percivall Pott (1714-1788) and chimney
sweepers' cancer of the scrotum. Br. J. Ind. Med. 14(1): 68-70
Bubinas, A., G. Giedraityte, L. Kalediene, O. Nivinskiene and R. Butkiene. 2008.
Degradation of naphthalene by thermophilic bacteria via a pathway, through
protocatechuic acid. Cent. Eur. J. Biol. 3(1): 61-68
Bulay, O. M. and L. W. Wittenberg. 1971. Carcinogenic effects of polycyclic
hydrocarbon carcinogens administrated to mice during pregnancy on the progeny. J.
Natl. Cancer Inst. 46: 397-402
Bury, S. J. 1993. Effect of micellar solubilization on biodegradation rates of
hydrocarbons. Environ.Sci. Technol. 27: 104-110
Camargo, M. C. R. and M. C. F. Toledo. 2003. Polycyclic aromatic hydrocarbons in
Brazilian vegetables and fruits. Food Control. 14(1): 49-53
105 References Canas, A. I., A. M. lcalde, F. Plou, M. J. Martinez, A. T. Martinez and S. Camarero.
2007. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly
enhanced by phenolic compounds present in soil. Environ. Sci. Technol. 41: 29642971
Cenci, G. and G. Caldini. 1997. Catechol dioxygenase expression in a Pseudomonas
fluorescens strain exposed to different aromatic compounds. Appl. Microbiol.
Biotechnol. 47(3): 306-308
Cerniglia, C. E. 1992. Biodegradation of polycyclic aromatic hydrocarbons.
Biodegradation. 3: 351-368
Cerniglia, C. E. and M. A. Heitkamp. 1989. Microbial degradation of polycyclic
aromatic hydrcarbons (PAH) in the aquatic environment. pp.41- 68. In: U. Varanasi
(ed). Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment.
CRC Press. Boca Raton, Florida, USA.
Cerniglia, C. E., J. P. Freeman and F. E. Evans. 1984. Evidence for an arene oxideNIH shift pathway in the transformation of naphthalene to 1-naphthol by Bacillus
cereus. Arch. Microbiol. 138: 283-286
Cerniglia, C. E., J. P. Freeman, G. L. White, R. H. Heflich and D. W. Miller. 1985.
Fungal metabolism and detoxification of the nitropolycyclic aromatic hydrocarbon 1nitropyrene. Appl. Environ. Microbiol. 50(3): 649-655
Cerniglia, C. E. 1997. Fungal metabolism of polycyclic aromatic hydrocarbons: past,
present and future applications in bioremediation. J. Indus. Microbiol. Biotechnol. 19:
324-333
Cerniglia, C. E. 1984. Microbial metabolism of polycyclic aromatic hydrocarbons.
Adv. Appl. Microbiol. 30: 31-71
Chang, B. V., S. H. Wei and S. Y. Yuan. 2001. Biodegradation of phenanthrene in
soil. J. Environ. Sci. Health B. 36(2): 177-187
106 References Chen, S. H. and M. D. Aitken. 1999. Salicylate Stimulates the Biodegradation of
High-molecular Weight Polycyclic Aromatic Hydrocarbons by Pseudomonas
saccharophila P15. Environ. Sci. Technol. 33: 435-439
Chen, S. Y., J. R. Lin, R. Darbha, P. Lin, T. Y. Liu and Y. M. Chen. 2004. Glycine Nmethyltransferase tumor susceptibility gene in the benzo[a]pyrene detoxification
pathway. Cancer Res. 64: 3617-3623
Christofi, N. and I. B. Ivshina. 2002. Microbial surfactants and their use in field
studies of soil remediation. J. Appl. Microbiol. 93: 915-929
Chulalaksananukul, S., G. M. Gadd, P. Sangvanich, P. Sihanonth, J. Piapukiew and A.
S. Vangna. 2006. Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp.
FEMS Microbiol. Lett. 262: 99-106
Chun, H. K., Y. Ohnishi, N. Misawa. K. Shindo, M. Hayashi, S. Harayama and S.
Horinouchi. 2001. Biotransformation of phenanthrene and 1-methoxynaphthalene
with Stretomyces linidans cells expressing a marine bacterial phenanthrene
dioxygenase genes. Biosci. Biotechnol. Biochem. 65(8): 1774-1781
Chung, N. J., J. Y. Cho, S. W. Park, S. A. Hwang and T. L. Park. 2008. Polycyclic
aromatic hydrocarbons in soils and crops after irrigation of wastewater discharged
from domestic sewage treatment plants. Bull. Environ. Contam. Toxicol. 81: 124-127
Chupungars, K., P. Rerngsamran and S. Thaniyavarn. 2009. Polycyclic aromatic
hydrocarbons degradation by Agrocybe sp. CU-43 and its fluorene transformation. Int.
Biodeter. Biodegrad. 63: 93-99
Churchill, P. F., A. C. Morgan and E. Kitchens. 2008. Characterization of a pyrenedegrading Mycobacterium sp. strain CH-2. J. Environ. Sci. Health B. 43(8): 698-706.
Churchill, S. A., J. P. Harper and P. F. Churchill. 1999. Isolation and characterization
of a Mycobacterium species capable of degrading three- and four-ring aromatic and
aliphatic hydrocarbons. Appl. Environ. Microbiol. 65(2): 549-552
107 References Ciemniak, A. and L. Chrachol. 2008. Polycyclic aromatic hydrocarbons (PAH) in
cereal breakfast products. Rocz Panstw Zakl Hig. 59(3): 301-307
Cofield, N., M. K. Banks and A. P. Schwab. 2007. Evaluation of hydrophobicity in
PAH-contaminated soils during phytoremediation. Environ. Pollut. 145: 60-67
Coral, G and S. Karagoz. 2005. Isolation and characterization of phenanthrene
degrading bacteria from petroleum refinery oil. Ann. Microbiol. 55(4): 255-259
Cox, C. D., D. E. Nivens, S. A. Ripp, M. M. Wong, A. Palumbo, R. S. Burlage and G.
S.
Sayler.
2000.
An
intermediate-scale
lysimeter
facility
for
subsurface
bioremediation research. Bioremed. J. 4: 69-79
Cunningham, C. J. and J. C. Philp. 2000. Comparison of bioaugmentation and
biostimulation in ex situ treatment of diesel contaminated soil.
Land Contam.
Reclam. 8 (4): 261-269
Daane, L. L., I. Harjono, G. J. Zylstra, and M. M. Haggblom. 2001. Isolation and
characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated
with the rhizosphere of salt marsh plants. Appl. Environ. Microbiol. 67(6): 2683-2691
Dabrowska, D., A. K. Wasik and J. Namiesnik. 2005. Pathways and Analytical Tools
in Degradation Studies of Organic Pollutants. Crit. Rev. Analyt. Chem. 35(2): 155-176
Das, K. and A. K. Mukherjee. 2007. Crude petroleum-oil biodegradation efficiency of
Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil
contaminated soil from North-East India. Biores. Technol. 98: 1339-1345
De, J., N. Ramaiah and A. Sarkar. 2006. Aerobic degradation of highly chlorinated
polychlorobiphenyls by a marine bacterium, Pseudomonas CH07. World J. Microbiol.
Biotech. 22(12): 1321-1327
Dean-Ross, D. and C. E. Cerniglia. 1996. Degradation of pyrene by Mycobacterium
flavescens. Appl. Microbiol. Biotechnol. 46: 307-312
108 References Dean-Ross, D., J. D. Moody, J. P. Freeman, D. R. Doerge and C. E. Cerniglia. 2001.
Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol. Lett. 204(1):
205-211
Debruyn, J. M., C. S. Chewning and G. S. Sayler. 2007. Comparative quantitative
prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc
dioxygenase genes in coal tar contaminated sediments. Environ. Sci. Technol. 41(15):
5426-5432
Derz, K., U. Klinner, I. Schuphan, E. Stackebrandt and R. M. Kroppenstedt. 2004.
Mycobacterium pyrenivorans sp. nov., a novel polycyclic-aromatic-hydrocarbondegrading species. Int. J. Syst. Evol. Microbiol. 54: 2313-2317
DouAbul, A. A. Z., H. M. A. Heba and K. H. Fareed. 1997. Polynuclear aromatic
hydrocarbons (PAHs) in fish from the Red Sea Coast of Yemen. Hydrobiologia. 352:
251-262
Feijoo-Siota, L., F. Rosa-Dos-Santos, T. de Miguel and T. G. Villa. 2008.
Biodegradation of Naphthalene by Pseudomonas stutzeri in marine environments:
Testing cells entrapment in calcium alginate for use in water detoxification.
Bioremediation Journal. 12(4): 185-192
Fleming, J. T., J. Sanseverino and G. S. Sayler. 1993. Quantitative relationship
between naphthalene catabolic gene frequency and expression in predicting PAH
degradation in soils at town gas manufacturing sites. Environ. Sci. Technol. 27: 10681074
Freeman, D. J. and F. C. R. Cattell. 1990. Wood burning as a source of atmospheric
polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 24: 1581-1585
Gennaro, P. D., A. Franzetti, G. Bestetti, M. Lasagni, D. Pitea and E. Collina. 2008.
Slurry phase bioremediation of PAHs in industrial land fill samples at laboratory
scale. Waste Manage. 28: 1338–1345
109 References Georgiou, G., S. Lin and M. M. Sharma. 1992. Surface-active compounds from
microorganisms. Biotechnology. 10: 60-65
Gianfreda, L. and M. A. Rao. 2004. Potential of extracellular enzymes in remediation
of polluted soils: a review. Enzyme Microb. Technol. 35: 339
Gibson, D.T. and R. E. Parales. 2000. Aromatic hydrocarbon dioxygenases in
environmental biotechnology. Curr. Opin. Biotechnol. 11: 236-243
Goldman, R., L. Enewold, E. Pellizzari, J. B. Beach, E. D. Bowman, S. S. Krishnan
and P. G. Shields. 2001. Smoking increase carcinogenic polycyclic aromatic
hydrocarbons in human lung tissue. Cancer Res. 61: 6367–6371
Grevenynghe, J. V., L. Sparfel, M. L. Vee, D. Gilot, B. Drenou, R. Fauchet and O.
Fardel. 2004. Cytochrome P450-dependent toxicity of environmental polycyclic
aromatic hydrocarbons towards human macrophages. Biochem. Biophys. Res. Comm.
317: 708-716
Grifoll, M., S. A. Selifanov and P. J. Chapman. 1994. Evidence for a novel pathway
in the degradation of fluorine by Pseudomonas sp. strain 2065. Appl. Environ.
Microbiol. 60: 2438-2449
Grund, E., B. Denecke and R. Eichenlaub. 1992. Naphthalene degradation via
salicylate and gentisate by Rhodococcus sp. strain B4. Appl. Environ. Microbiol.
58:1874-1877
Guerin, T. F. 1999. Bioremediation of phenols and polycyclic aromatic hydrocarbons
in creosote contaminated soil using ex-situ land treatment. J. Hazard. Mat. B. 65:
305–315
Guo, C., W. Sun, J. B. Harsh and A. Ogram. 1997. Hybridization analysis of
microbial DNAfrom fuel oil-contaminated and noncontaminated soil. Microb. Ecol.
34(3): 178-187
Habe, H. O., A. Kouzuma, H. Nojiri, H. Yamane and T. Omori. 2004b. Isolation and
characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase
110 References from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS
Microbiol. Lett. 238(2): 297-305
Habe, H., M. Kanemitsu, M. Nomura, T. Takemura, K. Iwata, H. Nojiri, H. Yamane
and T. Omori. 2004a. Isolation and characterization of an alkaliphilic bacterium
utilizing pyrene as a carbon source. J. Biosci. Bioeng. 98(4): 306-308
Hadibarata, T. 2009. Oxidative degradation of benzo[a]pyrene by the ligninolytic
fungi. Interdisciplinary studies on environmental chemistry. In: Environmental
Research in Asia, Eds., Y. Obayashi, T. Isobe, A. Subramanian, S. Suzuki and S.
Tanabe, pp. 309–316.
Hadibarata, T. and S. Tachibana. 2009. Identification of phenanthrene metabolites
produced by Polyporus sp. S133. Interdisciplinary studies on environmental
chemistry. In: Environmental research in Asia, Eds., Y. Obayashi, T. Isobe, A.
Subramanian, S. Suzuki and S. Tanabe, pp. 293–299.
Hammel, K. E., W. Z. Gai, B. Green and M. A. Moen. 1992. Oxidative degradation of
phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl.
Environ. Microbiol. 58:1832-1838
Harayama, S. and M. Rekik. 1989. Bacterial aromatic ring-cleavage enzymes are
classified into two different gene families. J. Biol. Chem. 264: 15328-15333
Harayama, S., M. Kok and E. L. Neidle. 1992. Functional and evolutionary
relationships among diverse oxygenases. Ann. Rev. Microbiol. 46: 565-601
Harvey, R. G. 1996. Mechanisms of carcinogenesis of polycyclic aromatic
hydrocarbons. Polycyc. Arom. Comp. 9: 1-23
Harvey, R. G. 1997. Polycyclic Aromatic Hydrocarbons. Wiley-VCH, Inc., USA.
Heitkamp, M. A. and C. E. Cerniglia. 1989. Polycyclic aromatic hydrocarbon
degradation by a Mycobacterium sp. in microcosms containing sediment and water
from a pristine ecosystem. Appl. Environ. Microbiol. 55(8): 1968-1973
111 References Heitkamp, M. A., J. P. Freeman, D. W. Miller and C. E. Cerniglia. 1988b. Pyrene
degradation by a Mycobacterium sp.; identification of ring oxidation and ring fission
products. Appl. Environ. Microbiol. 54(10): 2556–2565
Heitkamp, M. A., W. Franklin and C. E. Cerniglia. 1988a. Microbial metabolism of
polycyclic aromatic hydrocarbons: isolation and characterization of a pyrenedegrading bacterium. Appl. Environ. Microbiol. 54(10): 2549-2555
Henner, P., M. Schiavon, V. Druelle and E. Lichtfouse. 1999. Phytotoxicity of ancient
gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant
germination. Org. Geochem. 30: 963-969
Hintner, J. P., C. Lechner, U. Riegert, A. E. Kuhm, T. Storm, T. Reemtsma and A.
Stolz. 2001. Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity
from Pseudaminobacter salicylatoxidans. J. Bacteriol. 183: 6936-6942
Hunter, S., S. Myers, P. Radmacher and C. Eno. 2010. Detection of polycyclic
aromatic hydrocarbons (PAHs) in human breast milk. Polycyc. Arom. Comp. 30: 153164
Husain, S. 2008. Identification of Pyrene-degradation pathways: Bench-scale studies
using Pseudomonas fluorescens 29L. Remediation. 18(3): 119-142
Husain, S. 2008. Literature Overview: Microbial metabolism of high molecular
weight polycyclic aromatic hydrocarbons. Remediation. 18(2): 131-161
Hutchins, S. R. 1991. Biodegradation of monoaromatic hydrocarbons by aquifer
microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron
acceptor. Appl. Environ. Microbiol. 57: 2403-2407
Hwang H-M., J. A. Loya, D. L. Perry and R. Scholze. 1994. Interactions between
subsurface microbial assemblages and mixed organic and inorganic contaminant
systems. Bull. Environ. Contam. Toxicol. 53: 771-778
Jacques, J. S., B. C. Okeke, F. M. Bento, M. C. R. Peralba and F. A. O. Camargo.
2009. Improved enrichment and isolation of polycyclic aromatic hydrocarbons
112 References (PAH)-degrading microorganisms in soil using anthracene as a model PAH. Curr.
Microbiol. 58: 628-634
Jamroz, T., S. Ledakowicz, J. S. Miller and B. Sencio. 2003. Microbiological
evaluation of toxicity of three polycyclic aromatic hydrocarbons and their
decomposition products formed by advanced oxidation processes. Environ. Toxicol.
18(3): 187-191
Rolling, W. F., M. G. Milner, D. M. Jones, F. Daniel, R. J. Swannel and I. M. Head.
2002. Robust hydrocarbon degradation and dynamics of bacterial communities during
nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68(11): 55375548.
Janjua, N. Z., P. M. Kasi, H. Nawaz, S. Z. Farooqui, U. B. Khuwaja, N. Hassan, S. N.
Jafri, S. A. Lutfi, M. M. Kadir and N. Sathiakumar. 2006. Acute health effects of the
Tasman Spirit oil spill on residents of Karachi, Pakistan. BMC Public Health. 6: 84
http://www.biomedcentral.com/1471-2458/6/84
Jerina, D. M. 1983. Metabolism of aromatic hydrocarbons by the cytochrome P450
system and epoxide hydrolase. Drug Metab. Dispos. 11: 1-4
Juhasz, A. L., G. A. Stanley and M. L. Britz. 2000. Degradation of high molecular
weight PAHs in contaminated soil by a bacterial consortium: Effects on microtox and
mutagenicity bioassays. Bioremediation. 4(4): 271-283
Juhasz, A. L., G. A. Stanley and M. L. Britz. 2000. Microbial degradation and
detoxification of high molecular weight polycyclic aromatic hydrocarbons by
Stenotrophomonas maltophilia strain VUN 10,003. Lett. Appl. Microbiol. 30(5): 396401
Kageyama, A., Y. Takahashi, Y. Matsuo, H. Kasai, Y. Shizuri and S. Omura. 2007.
Microbacterium sediminicola sp. nov. and Microbacterium marinilacus sp. nov.,
isolated from marine environments. Int. J. Syst. Evol. Microbiol. 57: 2355-2359
113 References Kanaly, R. A., R. Bartha, K. Watanabe and S. Harayama. 2002a. Rapid
Mineralization of Benzo[a]pyrene by a Microbial Consortium Growing on Diesel
Fuel. Appl. Environ. Microbiol. 66(10): 4205-4211
Kanaly, R., S. Harayama and K. Watanabe. 2002b. Rhodanobacter sp. strain BPC1 in
a benzo[a]pyrene-mineralizing bacterial consortium. Appl. Environ. Microbiol. 68:
5826-5833
Karimi-Loftabad, S., M. A. Pickard and M. R. Gray. 1996. Reactions of polynuclear
aromatic hydrocarbons on soil. Environ. Sci. Technol. 30: 1145-1151.
Kasai, Y., H. Kishira and S. Harayama. 2002. Bacteria belonging to the genus
Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons
released in a marine environment. Appl. Environ. Microbiol. 68(11): 5625-5633
Kasuga, K., H. Habe, J. Chung, T. Yoshida, H. Nojiri, H. Yamane and T. Omori.
2001. Isolation and characterization of the genes encoding a novel oxygenase
component of angular dioxygenase from the gram-positive dibenzofuran-degrader
Terrabacter sp. strain DBF63. Biochem. Bioph. Res. Commun. 283(1): 195-204
Katagiri, M. A. K., K. Tamura, S. Yamamoto, M. Matsumoto, Y. F. Li, S. R. Cao, R.
D. Ji and C. K. Liang. 1996. Indoor and outdoor air pollution in Tokyo and Beijing
supercities. Atm. Environ. 30: 695-702
Katagiri, M., S. Takemori, K. Suzuki and H. Yasuda. 1966. Mechanism of the
salicylate hydroxylase reaction. J. Bio. Chem. 241(23): 5675-5677
Kauppi, B., K. Lee, E. Carredano, R. E. Parales, D. T. Gibson, H. Eklund and S.
Ramaswamy. 1998. Structure of an aromatic-ring-hydroxylating dioxygenasenaphthalene 1,2-dioxygenase. Structure. 6 (5): 571-586
Keith, L. H. and W. A. Telliard. 1979. Priority pollutants - a perspective view.
Environ. Sci. Technol. 13(4): 416-423
Kelley, L., J. P. Freeman and Cerniglia C. E. 1990. Identification of metabolites from
degradation of naphthalene by a Mycobacterium sp. Biodegradation. 1: 283-290
114 References Khan, A. A., R. F. Wang, W. W. Cao, D. R. Doerge, D. Wennerstrom and C. E.
Cerniglia. 2001. Molecular cloning, nucleotide sequence, and expression of genes
encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain
PYR-1. Appl. Environ. Microbiol. 67(8): 3577-3585
Khan, A., M. Ishaq and M. A. Khan. 2008. Effect of vehicle exhaust on the quantity
of polycyclic aromatic hydrocarbons (PAHs) in soil. Environ. Monit. Assess. 137:
363-369
Khan, S. A., M. Hamayun and S. Ahmed. 2006. Degradation of 4-aminophenol by
newly isolated Pseudomonas sp. strain ST-4. Enz. Microb. Technol. 38:10-13
Khurshid, R., M. A. Sheikh and S. Iqbal. 2008. Health of people working/living in the
vicinity of an oil-polluted beach near Karachi, Pakistan. East. Mediter. Health J.
14(1): 179-182
Kim, S. H., S. M. Kang, K. H. Oh, S. I. Kim, B. J. Yoon and H. Y. Kahng. 2005.
Characterization of PAH-degrading bacteria from soils of the reed rhizosphere of
Sunchon Bay using PAH consortia. Kor. J. Microbiol. 41: 208-215
Kim, S. J., O. Kweon, J. P. Freeman, R. C. Jones, M. D. Adjei, J. W. Jhoo, R. D.
Edmondson and C. E. Cerniglia. 2006. Molecular cloning and expression of genes
encoding a novel dioxygenase involved in low and high-molecular-weight polycyclic
aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl.
Environ. Microbiol. 72(2): 1045-1054
Kim, S. J., R. C. Jones, C. J. Cha, O. Kweon, R. D. Edmondson and C. E. Cerniglia.
2004. Identification of proteins induced by polycyclic aromatic hydrocarbon in
Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel
electrophoresis and de novo sequencing methods. Proteomics. 4: 3899-3908
King, J.M.H., P. M. DiGrazia, B. Applegate, R. Burlage, J. Sanseverino, P. Dunbar, F.
Larimer and G. S. Sayler. 1990. Rapid, sensitive bioluminescent reporter technology
for naphthalene exposure and biodegradation. Science. 249: 778-781
115 References Kirk, T. K. and R. L. Farrell. 1987. Enzymatic ‘combustion’: the microbial
degradation of lignin. Annu. Rev. Microbiol. 41: 465-505
Kishikawa N., M. Wada, N. Kuroda, S. Akiyama and K. Nakashima. 2003.
Determination of polycyclic aromatic hydrocarbons in milk samples by highperformance liquid chromatography with fluorescence detection. J. Chromatog. B.
789: 257-264
Kita, A., S. Kita, I. Fujisawa, K. Inaka, T. Ishida, K. Horiike, M. Nozaki and K. Miki.
1999. An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure
of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2.
Structure. 7(1): 25-34
Kiyohara, H., S. Torigoe, N. Kaida, T. Asaki, T. Iida, H. Hayashi and N. Takizawa.
1994. Cloning and characterization of a chromosomal gene cluster, pah, that encodes
the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas
putida OUS82. J. Bacteriol. 176(8): 2439-2443
Klankeo, P., W. Nopcharoenkul and O. Pinyakong. 2009. Two novel pyrenedegrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. J.
Biosci. Bioeng. 108(6): 488-495
Kochany, J. and R. J. Maguire. 1994. Abiotic transformation of polynulear aromatic
hydrocarbons
and
polynuclear
aromatic
nitrogen
heterocycles
in
aquatic
environments. Sci. Tot. Environ. 144: 17-31
Kosaric, N. 2001. Biosurfactants and their application for soil bioremediation. Food
Tech. Biotechol. 39: 295-304
Kumar, G., R. Singla and R. Kumar. 2010. Plasmid associated anthracene degradation
by Pseudomonas sp. isolated from filling station site. Nature Sci. 8(4): 89-94
Kumar, M., V. Leon, A. M. De Sisto and O. A. Ilzins. 2006. A halotolerant and
thermotolerant Bacillus sp. degrades hydrocarbons and produces tensioactive
emulsifying agent. World J. Microbiol. Biotech. 23: 211-220
116 References Kurkela, S., H. Lehvaslaiho, E. T. Palva and T. H. Teeri. 1988. Cloning, nucleotide
sequence and characterization of genes encoding naphthalene dioxygenase of
Pseudomonas putida strain NCIB9816. Gene. 73: 355-362
Lau, K. I., Y. Y. Rsang and S. W. Chiu. 2003. Use of spent mushroom compost to
bioremediate PAH-contaminated samples. Chemosphere. 52: 1539-1546
Laurie, A. D. and G. L. Jones. 1999. The phn genes of Burkholderia sp. strain RP007
constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J.
Bacteriol. 181: 531-540
Laurie, A. D. and G. L. Jones. 2000. Quantification of phnAc and nahAc in
contaminated New Zealand soils by competitive PCR. Appl. Environ. Microbiol. 66 :
1814-1817
Leahy, J. G. and R. R. Colwell. 1990. Microbial degradation of hydrocarbons in the
environment. Microbiol .Rev. 54: 305-315
Lehto, K. M., E. Vuorimaa and H. Lemmetyinen. 2000. Photolysis of polycyclic
aromatic hydrocarbons (PAHs) in dilute aqueous solutions detected by fluorescence.
J. Photochem. Photobiol. A. 136: 53-60
Leonardi, V., V. Sasek, M. Petruccioli, A. D. Annibale, P. Erbanova and T. Cajthaml.
2007. Bioavailability modification and fungal biodegradation of PAHs in aged
industrial soils. Int. Biodeter. Biodegrad. 60: 165-170
Leveau, J. H. J., A. J. B. Zehnder and J. R. van der Meer. 1998. The tfdK gene product
facilitates
uptake
of
2,4-dichlorophenoxyacetate
by
Ralstonia
eutropha
JMP134(pJP4). J. Bacteriol. 180: 2237-2243
Li, P., X. Wang, F. Stagnitti, L. Li, Z. Gong, H. Zhang, X. Xiong and C. Austin. 2005.
Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized
bacteria Zoogloea sp. Environ. Eng. Sci. 22(3): 390-399
117 References Lilia, R. C., L. G. Torres and I. Rosario. 2008. Effect of nutrient and surfactant
addition on polyaromatic hydrocarbon (PAH) biodegradation in contaminated soils.
Land Contam. Reclam. 16(1): 1-11
Lily, M. K., A. Bahuguna, K. Dangwal and V. Garg. 2009. Degradation of benzo[a]
pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447). Braz. J. Microbiol.
40: 884-892
Lim, L. H., R. M. Harrison and S. Harrad. 1999. The contribution of traffic to
atmospheric concentrations of polycyclic aromatic hydrocarbons. Environ. Sci.
Technol. 33: 3538-3542
Lin, C., L. Gan and Z. L. Chen. 2010. Biodegradation of naphthalene by strain
Bacillus fusiformis (BFN). J. Hazard. Mat. 182(1-3): 771-777
Lin, Y. and L. X. Cai. 2008. PAH-degrading microbial consortium and its pyrenedegrading plasmids from mangrove sediment samples in Huian, China. Mar. Pollut.
Bull. 57(6-12): 703-706
Liu, H. H., M. H. Lin, C. I. Chan and H. L. Chen. 2010. Oxidative damage in foundry
workers occupationally co-exposed to PAHs and metals. Int. J. Hyg. Environ. Health.
213: 93-98
Liu, K., W. Han, W. P. Pan and J. T. Riley. 2001. Polycyclic aromatic hydrocarbon
(PAH) emissions from a coal fired pilot FBC system. J. Hazard. Mat. 84(2-3): 175188
Loehr, R. C. 1992. Bioremediation of PAH compounds in contaminated soil.
Hydrocarbon contaminated soils and ground water. In: Calabrese EJ, Kostechi PT
(eds), Proceedings 1st annual West Coast conference on hydrocarbon contaminated
soils ground water, Feb 1990, Newport Beach, CA. Vol. 1. Lewis Publishers, Chelsea
MI, pp 213–222
Luan, T. G., K. S. H. Yu, Y. Zhong, H. W. Zhou, C. Y. Lan and N. F. Y. Tam. 2006.
Study of metabolites from the degradation of polycyclic aromatic hydrocarbons
118 References (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere.
65(11): 2289-2296
Mackay, D. 1997. Multimedia mass balance models of chemical distribution and fate,
In: Ecotoxicology edited by G. Schuurmann and B. Markert and published by John
Wiley, NY and Spektrum Press, Berlin.
Maier, M., D. Maier and B. J. Lloyd. 2000. The role of biofilms in the mobilisation of
polycyclic aromatic hydrocarbons (PAHs) from the coal-tar lining of water pipes.
Wat. Sci. Technol. 41(4-5): 279-285
Malik, Z. A. 2009. Biodegradation of crude oil by bacteria. Ph.D thesis, submitted to
Quaid-i-Azam University, Islamabad, Pakistan.
Mallick, S., S. Chatterjee and T. K. Dutta. 2007. A novel degradation pathway in the
assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of
2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(29-hydroxyphenyl)pent-4-enoic acid. Microbiology. 153: 2104-2115
Mane, S. S., D. M. Purnell and I. C. Hsu. 1990. Genotoxic effects of five polycyclic
aromatic hydrocarbons in human and rat mammary epithelial cells. Environ. Molec.
Mutag. 15(2): 78-82
Margesin, R., A. Zimmerbauer and F. Schinner. 1999. Soil lipase activity-a useful
indicator of oil biodegradation. Biotechnol. Techn. 13: 859-863
Martens, D., J. Maguhn, P. Spitzauer and A. Kettrup. 1997. Occurrence and
distribution of polycyclic aromatic hydrocarbons (PAHs) in an agricultural ecosystem.
Fresenius J. Anal. Chem. 359: 546-554
Mastrangela, G., E. Fadda and V. Marzia. 1996. Polycyclic aromatic hydrocarbons
and cancer in man. Environ. Health Perspect. 104(11): 1166-1170
Meckenstock, R. U., E. Annweiler, W. Michaelis, H. H. Richnow and B. Schink.
2000. Anaerobic naphthalene degradation by a sulphate reducing enrichment culture.
Appl. Environ. Microbiol. 66: 2743-2747
119 References Menn, F. M., B. M. Applegate and G. S. Sayler. 1993. NAH plasmid-mediated
catabolism of anthracene and phenanthrene to naphthoic acids. Appl. Environ.
Microbiol. 59(6): 1938-1942
Mester, T. and M. Tien. 2000. Oxidation mechanism of ligninolytic enzymes involved
in the degradation of environmental pollutants. Int. Biodeterior. Biodegrad. 46: 51-59
Molina, M. C., N. Gonzalez., L. F. Bautista., R. Sanz., R. Simarro., I. Sanchez and J.
L. Sanz. 2009. Isolation and genetic identification of PAH degrading bacteria from a
microbial consortium. Biodegradation. 20: 789-800
Moody J. D., P. P. Fu, J. P. Freeman and C. E. Cerniglia. 2004. Regio- and
Stereoselective Metabolism of 7,12-Dimethylbenz[a]anthracene by Mycobacterium
vanbaalenii PYR-1. Appl. Environ. Microbiol. 69(7): 3924-3931
Moody, J. D., J. P. Freeman, D. R. Doerge and C. E. Cerniglia. 2001. Degradation of
phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1.
Appl. Environ. Microbiol. 67: 1476-1483
Mueller, J. G., C. E. Cerniglia and P. H. Pritchard. 1996. Bioremediation of
environments contaminated by polycyclic aromatic hydrocarbons, In Bioremediation:
Principles and Applications, ed by Crawford R. L. and D. L. Crawford. Cambridge
University Press, Idaho, pp 125–194
Mueller, J. G., P. J. Chapman and P. H. Pritchard. 1989. Action of a fluorantheneutilizing bacterial community on polycyclic aromatic hydrocarbon components of
creosote. Appl. Environ. Microbiol. 55: 3085-3090
Obayori, O. S., M. O. Ilori, S. A. Adebusoye, G. O. Oyetibo and O. O. Amund. 2008.
Pyrene-degradation potentials of Pseudomonas species isolated from polluted tropical
soils. World J. Microbiol. Biotechnol. 24: 2639-2646
Ohkouchi, N., K. Kawamura and H. Kawahata. 1999. Distributions of three to sevenring polynuclear aromatic hydrocarbons on the deep sea floor in the central pacific.
Environ. Sci. Technol. 33: 3086-3090
120 References Pandey, B. V. and R.S. Upadhyay. 2010. Pseudomonas fluorescens can be used for
bioremediation of textile effluent Direct Orange-102. Tropical Ecol. 51(2S): 397-403
Papadoyannis, I. N., A. Zatou and V. F. Samanidou. 2002. Development of a solid
phase extraction protocol for the simultaneous determination of anthracene and its
oxidation products in surface waters by reversed-phase HPLC. J. Liquid Chromatog.
Related Technol. 25: 2653-2661
Parales, R. E., K. Lee, S. M. Resnick, H. Jiang, D. J. Lessner and D. T. Gibson. 2000.
Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the
active site of the enzyme. 182(6): 164-1649
Park, J. and D. E. Crowley. 2006. Dynamic changes in nahAc gene copy numbers
during degradation of naphthalene in PAH-contaminated soils. Appl. Microbiol.
Biotechnol. 72: 1322-1329
Paskova, V., K. Hilscherov, M. Feldmannov and L. Blha. 2006. Toxic effects and
oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and
their N-heterocyclic derivatives. Environ. Toxicol. Chem. 25(12): 3238-3245
Pathak, H., D. Kantharia, A. Malpani and D. Madamwar. 2009. Naphthalene
degradation by Pseudomonas sp. HOB1: In vitro studies and assessment of
naphthalene degradation efficiency in simulated microcosms. J. Hazard. Mat. 166:
1466-1473
Patnaik, P. 1992. Hydrocarbon, aromatic. In: Patnaik P (ed) A comprehensive guide
to the hazardous properties of chemical substances. Van Nostrand Reinhold, New
York, NY, pp 425–445
Peng, R. H., A. S. Xiong, Y. Xue, X. Y. Fu, F. Gao, W. Zhao, Y. S. Tian and Q. H.
Yao. 2008. Microbial biodegradation of polyaromatic hydrocarbons. FEMS
Microbiol. Rev. 32: 927-955
Perera, F., D. Tang, R. Whyatt, S. A. Lederman and W. Jedrychowski. 2005. DNA
damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA
121 References adducts in mothers and newborns from Northern Manhattan, The World Trade Center
Area, Poland, and China. Cancer Epidemiol. Biomarkers Prev. 14(3): 709-714
Perez-Perez, F. J. and N. D. Hanson. 2002. Detection of plasmid-mediated AmpC ßlactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40(6):
2153-2162
Peterson, C. H. 2001. The “Exxon Valdez” oil spill in Alaska: Acute, indirect and
chronic effects on the ecosystem. Adv. Mar. Bio. 39: 1-103
Phale, P. S., A. Basu, P. D. Majhi, J. Deveryshetty, C. Vamsee-Krishna and R.
Shrivastava. 2007. Metabolic diversity in bacterial degradation of aromatic
compounds. OMICS. 11: 252-279
Pinyakong, O., H. Habe and T. Omori. 2003a. The unique aromatic catabolic genes in
sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J. Gen. Appl.
Microbiol. 49: 1–19
Pinyakong, O., H. Habe, A. Kouzuma, H. Nojiri, H. Yamane and T. Omori. 2004.
Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon
dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp.
strain A4. FEMS Microbiol. Lett. 238: 297-305
Pinyakong, O., H. Habe, T.Yoshida, H. Nojiri and T. Omori. 2003b. Identification of
three isofunctional novel salicylate 1-hydroxylases involved in the phenanthrene
degradation of Sphingobium sp. strain P2. Biochem. Biophys. Res. Commun. 201:
350-357
Pliskova, M., J. Vondracek, B. Vojtesek, A. Kozubik and M. Machala. 2005.
Deregulation of cell proliferation by polycyclic aromatic hydrocarbons in human
breast carcinoma MCF-7 cells reflects both genotoxic and nongenotoxic events.
Toxicol. Sci. 83(2): 246-256
Pointet, K. and A. Milliet. 2000. PAHs analysis of fish whole gall bladders and livers
from the Natural Reserve of Camargue by GC/MS. Chemosphere. 40: 293-299
122 References Reddy, M. S., B. Naresh, T. Leela, M. Prashanthi, N. C. Madhusudhan, G. Dhanasri
and P. Devi. 2010. Biodegradation of phenanthrene with biosurfactant production by a
new strain of Brevibacillus sp. Bioresour. Technol. 101(20): 7980-7983
Rehmann, K., H. P. Noll, C. E. W. Steinberg and A. A. Kettrup. 1998. Pyrene
degradation by Mycobacterium sp. strain KR2. Chemosphere. 36: 2977-2992
Reinik, M., T. Tamme, M. Roasto, K. Juhkam, T. Tenno and A. Kiis. 2007.
Polycyclic aromatic hydrocarbons (PAHs) in meat products and estimated PAH intake
by children and the general population in Estonia. Food Addit. Contam. 24(4): 429437
Resnick, S. M., K. H. Lee and D. T. Gibson. 1996. Diverse reactions catalyzed by
naphthalene dioxygenase by Pseudomonas sp. strain NCCIB9816. J. Ind. Microbiol.
Biotechnol. 17: 438-458
Ripp, S., D.E. Nivens, Y. Ahn, C. Werner, J. Jarrel, J. P. Easter, C. D. Cox, R. S.
Burlage and G. S. Sayler. 2000. Controlled field release of a bioluminiscent
genetically engineered microorganisms for bioremediation process, monitoring and
control. Environ. Sci. Technol. 34: 846-853
Robinovich, M. L., A. V. Bolobova and L. G. Vasil’chenko. 2004. Fungal
decomposition of natural aromatic structures and xenobiotics: A review. Appl.
Biochem. Microbiol. 40: 1-17
Rockne, K. J. and S. E. Strand. 1998. Biodegradation of bicyclic and polycyclic
aromatic hydrocarbons in anaerobic enrichments. Environ. Sci. Technol. 32: 29622967
Rockne, K. J., J. C. Chee-Sandford, R. Sanford, B. P. Hedlund, J. T. Staley and S. E.
Strand. 2000. Anaerobic naphthalene degradation by microbial pure cultures under
nitrate reducing conditions. Appl. Environ. Microbiol. 66: 1595-1601
Ron, E. Z. and E. Rosenberg. 2001. Natural roles of biosurfactants. Environ.
Microbiol. 3(4): 229-236
123 References Sabate, J., J. M. Bayona and A. M. Solanas. 2001. Photolysis of PAHs in aqueous
phase by UV irradiation. Chemosphere. 44: 119-124
Said, S., F. M. Neves and A. J. F. Griffiths. 2004. Cinnamic acid inhibits the growth
of the fungus Neurospora crassa, but is eliminated as acetophenone. Int. Biodeter.
Biodegrad. 54: 1-6
Saifullah, S. M. and F. Chaghtai. 2005. Effect of “Tasman Spirit” oil spill on marine
plants in the coastal area of Karachi. Int. J. Bio. Biotechnol. 2: 299-306
Salinas, R. O., G. D. Gonzalez, B. S. Bermudez, R. G. Tolentino and S. V. Leon.
2010. Presence of polycyclic aromatic hydrocarbons (PAHs) in apple in rural terrains
from Mexico City. Bull. Environ. Contam. Toxicol. 85: 179-183
Samanta, S. K., O. V. Singh and R. K. Jain. 2002. Polycyclic aromatic hydrocarbons:
environmental pollution and bioremediation. Trends Biotechnol. 20(6): 243-248
Sanseverino, J., C. Werner , J. Fleming , B. Applegate , J. M. King and G. S. Sayler.
1993. Molecular diagnostics of polycyclic aromatic hydrocarbon biodegradation in
manufactured gas plant soils. Biodegradation. 4(4): 303-321
Sayler, G. S., M. S. Shields, E. T. Tedford, A. Breen, S. W. Hooper, K. M. Sirotkin
and J. W. Davis. 1985. Application of DNA–DNA colony hybridization to the
detection of catabolic genotype in environmental samples. Appl. Environ. Microbiol.
49(5): 1295-1303
Schocken, M. J. and D. T. Gibson. 1984. Bacterial oxidation of the polycyclic
aromatic hydrocarbons acenaphthene and acenaphthylene. Appl. Environ. Microbiol.
48(1): 10-16
Schuler, L., S. M. N. Chadhain, Y. Jouanneau, C. Meyer, G. J. Zylstra, P. Hols and S.
N. Agathos. 2008. Characterization of a novel angular dioxygenase from fluorenedegrading Sphingomonas sp. strain LB126. Appl. Environ. Microbiol. 74 (4): 1050–
1057
124 References Schuler, L., Y. Jouanneau, S. M. N. Chadhain, C. Meyer, M. Pouli, G. J. Zylstra, P.
Hols and S. N. Agathos. 2009. Characterization of a ring-hydroxylating dioxygenase
from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize
benz[a]anthracene. Appl. Microbiol. Biotechnol. 83: 465-475
Searle, C.E. 1976. Ed. Chemical Carcinogens, American Chemical Society,
Washington, DC.
Semple, K. T., N. M. Dew, K. J. Doick and A. H. Rhodes. 2006. Can microbial
mineralization be used to estimate microbial availability of organic contaminants in
soil? Environ. Pollut. 140: 164-172
Seo, J. S., Y. S. Keum, R. M. Harada and Q. X. Li. 2007. Isolation and
characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons
(PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo,
Hawaii. J. Agric. Food Chem. 55: 5383-5389
Sepic, E., M. Bricelj and H. Leskovsek. 1997. Biodegradation studies of polyaromatic
hydrocarbons in aqueous media. J. Appl. Microbiol. 83: 561-568
Sepic, E., M. Bricelj and H. Leskovsek. 1998. Degradation of fuoranthene by
Pasteurella sp. IFA and Mycobacterium sp. PYR1: isolation and identification of
metabolites. J. Appl. Microbiol. 85: 746-754
Shen, F. and L. Z. Zhu. 2007. Concentration and distribution of PAHs in vegetables
grown near an iron and steel industrial area. Huan Jing Ke Xue. 28(3): 669-672
Shin, K.H., Y. Ahn and K. W. Kim. 2005. Toxic effect of biosurfactant addition on
the biodegradation of phenanthrene. Environ. Toxicol. Chem. 24: 2768–2774.
Shindo, K., Y. Ohnishi, H. K. Chun, H. Takahashi, M. Hayashi, A.Saito, K. Iguchi, K.
Furukawa, S. Harayama, S. Horinouchi and N. Misawa. 2001. Oxygenation reaction
of variuos tricyclic fused aromatic compounds using E. coli and Stretomyces linidans
transformant carrying several arene dioxygenase genes. Biosci. Biotechnol. Biochem.
65(1): 2472-2481
125 References Sho, M., C. Hamel and C. W. Greer. 2004. Two distinct gene clusters encode pyrene
degradation in Mycobacterium sp. strain S65. FEMS Microbiol. Eco. 48: 209-220
Shuyu, H., Z. Qingmin, D. Miao, Z. Yang and S. Hongwen. 2007. Optimized
cultivation of highly-efficient degradation bacterial strains and their degradation
ability towards pyrene. Front. Biol. China. 2(4): 387-390
Siddiqi H. A., F. A. Ansari and A. B. Munshi. 2009. Assessment of hydrocarbons
concentration in marine fauna due to Tasman Spirit oil spill along the Clifton beach at
Karachi coast. Environ. Monit. Assess. 148:139-148
Silva, I. S., M. Grossman and L. R. Durrant. 2009. Degradation of polycyclic
aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen
conditions by soil fungi. Int. Biodeter. Biodegrad. 63: 224-229
Singh, A. and O. P. Ward. 2004. Biodegradation and Bioremediation: Series: Soil
Biology, vol. 2, Springer-Verlag, New York.
Singh, O. V. and R. K. Jain. 2003. Phytoremediation of toxic aromatic pollutants from
soil. Appl. Microbiol. Biotechnol. 63: 128-135
Siripong, P., B. Oraphin and P. Duanporn. 2009. The ability of five fungal isolates
from nature to degrade of polyaromatic hydrocarbons (PAHs) and polychlorinated
biphenyls (PCBs) in culture media. Aust. J. Basic Appl. Sci. 3(3): 1076-1082
Smith, D. J. T., R. M. Harrison, L. Luhana, C. A. Pio, L. M. Castro, M. N. Tariq, S.
Hayat and T. Quraishi. 1996. Concentration of particulate airborne polycyclic
aromatic hydrocarbons and metals collected in Lahore, Pakistan. Atm. Eniron. 30(23):
4031-4040
Srinivasan, C., T. M. D'Souza, K. Boominathan and C. A. Reddy. 1995.
Demonstration of laccase in the white rot basidiomycete Phanerochaete
chrysosporium BKM-F1767. Appl. Environ. Microbiol. 61: 4274-4277
Stenberg, U., T. Alsberg and R. Westerholm. 1983. Emission of carcinogenic
components with automobile exhausts. Environ. Health Perspect. 47: 53-63
126 References Stingley, R. L., A. A. Khan and C. E. Cerniglia. 2004b. Molecular characterization of
a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1. Biochem.
Biophys. Res. Commun. 322: 133-146
Stingley, R. L., B. Brezna, A. A. Khan and C. E. Cerniglia. 2004a. Novel organization
of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1.
Microbiology. 150: 3749-3761
Stringfellow, W. T. and M. D. Aitken. 1995. Competitive metabolism of naphthalene,
methylnaphthalenes and fluorene by phenanthrene-degrading Pseudomonads. Appl.
Environ. Microbiol. 61(1): 357-362
Su, D., P. J. Li, X. Wang and H. X. Xu. 2007. Degradation and kinetics of pyrene and
benzo(a)pyrene by three bacteria in contaminated soil. Huan Jing Ke Xue. 28(4): 913917
Sundberg, K., M. Widersten, A. Seidel, B. Mannervik and B. Jernstom. 1997.
Glutathione conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic
hydrocarbons by glutathione tramsferases M1-1 and P1-1. Chem. Res. Toxicol. 10:
1221-227 Sutherland, J. B., F. Rafii, A. A. Khan and C. E. Cerniglia. 1995. Mechanisms of
polycyclic aromatic hydrocarbon degradation, In: Microbial Transformation and
Degradation of Toxic Organic Chemicals, ed by Young L. Y. and C. E. Cerniglia.
Wiley-Liss, New York, pp 269–306
Sutherland, J. B., J. P. Freeman, A. L. Selby, P. P. Fu , D. W. Miller and C. E.
Cerniglia. 1990. Stereoselective formation of a K-region dihydrodiol from
phenanthrene by Streptomyces flavovirens. Arch. Microbiol. 154(3): 260-266
Tam, N. F. Y., C. L. Guo, W. Y. Yau and Y. S. Wong. 2002. Preliminary study on
biodegradation of phenanthrene by bacteria isolated from mangrove sediments in
Hong Kong. Mar. Pollut. Bull. 45: 316-324
127 References Tang, X., Y. Zhu and Q. Meng. 2007. Enhanced crude oil biodegradability of
Pseudomonas aeruginosa ZJU after preservation in crude oil-containing medium.
World J. Microbiol. Biotechn. 23(1): 7-14
Tao, X. Q., G. N. Lu, Z. Dang. X. Y. Yi and C. Yang. 2007. Isolation of
phenanthrene-degrading bacteria and characterization of phenanthrene metabolites.
World J. Microbiol. Biotechnol. 23: 647-654
Taylor, L. T. and D. M. Jones. 2001, Bioremediation of coal tar PAH in soils using
biodiesel. Chemosphere. 44: 1131-1136
Teng, Y., Y. Luo, M. Sun, Z. Liu, Z. Li and P. Christie. 2010. Effect of
bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community
and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil.
Biores. Technol. 101: 3437–3443
Thompson, J. D., T. J. Gibson and D. G. Higgins. 2003. Multiple sequence alignment
using ClustalW and ClustalX. Curr. Protocols Bioinfor. 2.3.1-2.3.22
Tiana L., P. Maa and J. Zhong. 2003. Impact of the presence of salicylate or glucose
on enzyme activity and phenanthrene degradation by Pseudomonas mendocina. Proc.
Biochem. 38(8): 1125-1132
Tiana, L., P. Ma and J. Zhong. 2002. Kinetics and key enzyme activities of
phenanthrene degradation by Pseudomonas mendocina. Process Biochem. 37: 14311437
Ting, Y., P. Zhou, Y. Zhou, L. Heng-Li and S. Liu. 2004. Saccharothrix xinjiangensis
sp. nov., a pyrene degrading actinomycetes isolated from Tianchi Lake, Xinjhiang,
China. Int. J. Syst. Evol. Microbiol. 54, 2091–2094.
Tongpim, S. and M. A. Pickard. 1999. Cometabolic oxidation of phenanthrene to
phenanthrene trans-9,10-dihydrodiol by Mycobacterium strain S1 growing on
anthracene in the presence of phenanthrene. Can. J. Microbiol. 45: 369-376
128 References Treadway, S. L., K. S. Yanagimachi, E. Lankenau, P. A. Lessard, G. Stephanopoulos
and A. J. Sinskey. 1999. Isolation and characterization of indene bioconversion genes
from Rhodococcus strain I24. Appl. Microbiol. Biotechnol. 51: 786-793
Tuomi, P. M., J. M. Salminen and K. S. Jorgensen. 2004. The abundance of nahAc
genes correlates with the 14C-naphthalene mineralization potential in petroleum
hydrocarbon-contaminated oxic soil layers. FEMS Microbiol. Eco. 51: 99-107
United States Coast Guard. 1993. Federal on scene coordinator’s report: T/V Exxon
Valdez oil spill (Two volumes). U.S. Department of Transportation. Washington,
D.C.
Van, J. A., W. A. J. Van-Pul and F. A. De Leeuw. 1997. Modelling transport and
deposition of persistent organic pollutants in the European region. Atm. Environ.
31(7): 1011-1024
Vila, J., Z. Lopez, J. Sabate, C. Minguillon, A. M. Solanas and M. Grifoll. 2001.
Identification of a novel metabolite in the degradation of pyrene by Mycobacterium
sp. strain AP1: Actions of the isolate on two- and three-ring polycyclic aromatic
hydrocarbons. Appl. Environ. Microbiol. 67(12): 5497-5505
Vilanova, R. M., P. Fernandez, C. Martinaz and J. O. Grimalt. 2001. Polycyclic
aromatic hydrocarbons in remote mountain lake waters. Wat. Res. 35(16): 3916-3926
Villemain, D., P. Guiraud, O. Bordjiba and R. Steiman. 2006. Biotransformation of
anthracene and fluoranthene by Absidia fusca Linnemann. Electron. J. Biotechnol.
9(2): http://www.ejbiotechnology.info/content/vol9/issue2/full/10/
Wan, C. K., J. W. C. Wong, M. Fang and D. Y. Ye. 2003. Effect of organic waste
amendments on degradation of PAHs in soil using thermophillic composting.
Environ. Technol. 24(1): 23-30
Wang, X., P. Li, S. Song, Y. Zhong, H. Zhang and E. V. Verkhozina. 2006.
Immobilization of introduced bacteria and degradation of pyrene and benzo(a)pyrene
in soil by immobilized bacteria. Ying Yong Sheng Tai Xue Bao. 17(11): 2226-2228
129 References Ward, O. P., A. Singh and J. V. Hamme. 2003.
Accelerated biodegradation of
petroleum hydrocarbon waste. J. Ind. Microbiol. Biotechnol. 30: 260-270
Watanabe, K. 2001. Microorganisms relevant to bioremediation. Curr. Opin.
Biotechnol. 12: 237-241
Wick, L. Y., A. R. de Munain, D. Springael and H. Harms. 2002b. Responses of
Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl.
Microbiol. Biotechnol. 58: 378-385
Wick, L. Y., P. Wattiau and H. Harms. 2002a. Influence of the growth substrate on
the mycolic acid profiles of mycobacteria. Environ. Microbiol. 4(10): 612-616
Widdle, F. and R. Rabus. 2001. Anaerobic biodegradation of saturated and aromatic
hydrocarbons. Curr. Opin. Biotechnol. 12: 259-276
Wilson, L. P. and E. J. Bouwer. 1997. Biodegradation of aromatic compounds under
mixed oxygen/denitrifying conditions: A review. J. Indust. Microbiol. Biotechnol. 18:
116-130
Wison, A. S., C. D. Davis, P. D Williams, R. A. Buckpitt, M. Pirmohamed and B. K.
Park. 1996. Characterization of the toxic metabolites of naphthalene. Toxicology. 114:
233-242
Wong, J. W. C., K. M. Lai, C. K. Wan, K. K. Ma and M. Fang. 2002. Isolation and
optimization of PAH-Degradative bacteria from contaminated soil for PAHs
bioremediation. Wat. Air Soil Poll. 139: 1-13
Wu, Y., Y. Luo, D. Zou, J. Ni, W. Liu, Y. Teng and Z. Li. 2008. Bioremediation of
polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation
and microbial community analysis. Biodegradation. 19: 247–257
Yan, J., L. Wang, P. P. Fu and H. Yu. 2004. Photomutagenicity of 16 polycyclic
aromatic hydrocarbons from the US EPA priority pollutant list. Mutat. Res. 557(1):
99-108
130 References Ye, D., M. A. Siddiqi, A. E. Maccubbin, S. Kumar and H. C. Sikka. 1996.
Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis.
Environ. Sci. Technol. 30(1): 136-142
Yu, K. S. H., A. H. Y. Wong, K. W. Y. Yau, Y. S. Wong and N. F. Y. Tam. 2005.
Natural attenuation, biostimulation and bioaugmentation on biodegradation of
polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar. Poll. Bull.
51(8-12): 1071–1077
Zander, M. 1983. Physical and chemical properties of polycyclic aromatic
hydrocarbons. In: A. Bjorstedth, Editor, Handbook of Polycyclic Aromatic
Hydrocarbon, Marcel Dekker Inc., USA, pp. 1-25.
Zhang, Y. and S. Tao. 2009. Global atmospheric emission inventory of polycyclic
aromatic hydrocarbons (PAHs) for 2004. Atm. Environ. 43(4): 812-819
Zhao, X., L. Fu, J. Hu, J. Li, H. Wang, C. Huang and X. Wang. 2009. Analysis of
PAHs in water and fruit juice samples by DLLME combined with LC-Fluorescence
detection. Chromatographia. Published online 05 May 2009.
Zhong, Y., T. Luan, H. Zhou, C. Lan and N. F. Y. Tam. 2006. Metabolite production
in degradation of pyrene alone or in a mixture with another polycyclic aromatic
hydrocarbon by Mycobacterium Sp. Environ. Toxicol. Chem. 25(11): 2853-2859
131 Appendix Figure I a. Phylogenetic tree of bacterial isolates 132 Appendix Percent Identity
1
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
99.8
99.6
94.0
99.8
99.7
99.8
99.8
93.9
98.9
94.1
99.8
93.6
78.1
99.3
99.2
82.0
94.5
94.8
78.8
78.5
78.8
93.0
92.3
92.2
78.0
84.9
76.6
1
B. cereus AB215098
98.9
93.5
98.6
98.6
98.6
98.6
92.8
96.6
93.0
99.5
93.6
77.9
99.3
99.2
81.5
94.0
94.3
78.8
78.5
78.8
93.0
92.3
92.2
77.2
84.9
76.7
2
B. cereus AF227848
94.1
99.7
99.6
99.7
99.7
94.0
97.6
94.1
99.7
93.6
78.7
99.3
99.2
81.7
94.0
94.3
78.9
78.6
78.8
92.7
92.0
91.8
77.9
85.0
76.7
3
AJ310098.seq
94.2
94.1
94.2
94.2
99.5
93.2
99.7
94.2
99.0
78.1
94.6
94.3
81.1
98.8
99.2
78.3
78.3
78.6
92.3
91.7
91.5
78.0
83.0
75.9
4
B. sonorensis AJ586363
99.9 100.0 100.0 94.1
96.8
94.2 100.0 93.8
78.1
99.3
99.2
81.7
94.0
94.3
78.8
78.5
78.8
93.0
92.3
92.2
78.4
84.9
76.7
5
B. cereus AY224379
94.1
96.8
94.2
93.7
78.0
99.3
99.2
81.7
94.0
94.3
78.7
78.4
78.7
92.9
92.3
92.1
78.3
84.8
76.7
6
B. cereus AY224383
100.0 94.1
96.8
94.2 100.0 93.8
78.1
99.3
99.2
81.7
94.0
94.3
78.8
78.5
78.8
93.0
92.3
92.2
78.4
84.9
76.7
7
B. cereus AY224385
94.1
96.8
94.2 100.0 93.8
78.1
99.3
99.2
81.7
94.0
94.3
78.8
78.5
78.8
93.0
92.3
92.2
78.4
84.9
76.7
8
AY224388.seq
91.9
99.8
94.0
99.3
77.9
94.5
94.2
81.0
98.7
99.1
78.3
78.3
78.6
92.3
91.8
91.6
78.2
83.0
75.6
9
B. licheniformis AY728013
92.3
98.2
94.3
81.0
99.4
99.3
81.2
93.7
94.0
81.8
81.8
83.2
93.0
93.1
92.4
80.3
86.5
79.4
10
B. Cereus DQ884352.seq
94.1
99.4
78.2
94.6
94.3
81.1
98.8
99.2
78.3
78.3
78.6
92.5
91.8
91.6
78.2
83.0
75.9
11
Bacillus sp.EF471917.seq
93.8
78.2
99.3
99.2
81.7
94.0
94.3
78.8
78.5
78.8
93.0
92.3
92.2
78.3
84.9
76.7
12
B. Cereus EU373359.seq
78.2
94.6
94.2
82.4
99.3
99.7
79.0
78.9
78.7
91.9
91.6
91.3
78.2
82.9
75.8
13
B. licheniformis EU373408.
82.1
82.0
98.4
81.1
81.3
98.6
99.9
96.8
77.4
77.3
76.7
94.1
75.9
84.8
14
Staph. haemolyticus EU652064
99.4
81.8
94.0
94.2
82.0
82.0
83.4
93.1
93.2
92.6
82.1
86.8
79.7
15
Fazal-1KWS4.seq
81.7
94.1
94.4
81.9
81.9
83.3
92.9
93.0
80.7
80.8
99.7
99.0
81.4
99.3
81.4
97.1
82.7
81.1
92.8
80.7
92.7
92.4
80.2
82.0
94.6
86.6
78.6
79.6
85.7
16
17
Fazal-2KWS2.seq
Fazal-3 10_1.seq
92.1
81.4
85.0
79.6
18
Fazal-4 DW3.seq
81.7
81.7
82.8
93.1
93.0
92.4
81.4
85.3
79.9
19
Fazal-5 10.seq
98.7
97.2
78.0
78.0
77.2
94.3
76.2
84.6
20
PSU26261.seq
96.9
77.5
77.4
76.8
94.3
75.9
84.8
21
P. stutzeri U26262
77.3
77.8
76.9
95.9
75.6
83.9
22
P. putida D37923.seq
97.8
97.8
76.8
82.4
76.3
23
Staph. aureus D83358
97.6
76.8
83.5
76.3
24
Staph. haemolyticus D83367
76.3
83.1
75.7
25
Staph. hyicus D83368
75.4
84.0
26
P. fluorescens Z76662
74.8
27
Strep. mutans X58303
28
E. coli X80725
2
0.2
3
0.3
1.0
4
6.2
6.7
6.0
5
0.2
1.4
0.3
6.0
6
0.3
1.4
0.3
6.1
0.1
7
0.2
1.4
0.3
6.0
0.0
0.1
8
0.2
1.4
0.3
6.0
0.0
0.1
0.0
9
6.4
7.6
6.2
0.5
6.1
6.2
6.1
6.1
1.1
3.4
2.4
7.2
3.3
3.3
3.3
3.3
8.6
6.2
7.4
6.1
0.3
6.0
6.1
6.0
6.0
0.2
8.2
0.2
0.5
0.3
6.0
0.0
0.1
0.0
0.0
6.2
1.8
6.2
6.7
6.7
6.7
0.9
6.6
6.6
6.6
6.6
0.7
6.0
0.6
6.6
26.0
26.3
25.2
26.0
26.1
26.2
26.1
26.1
26.3
22.0
25.8
26.0
26.0
0.7
0.7
0.7
5.6
0.7
0.7
0.7
0.7
5.7
0.6
5.6
0.7
5.6
20.5
11 12 13 14 15 16 17 10
2
99.9
99.9
99.9
0.8
0.8
0.8
6.0
0.8
0.8
0.8
0.8
6.1
0.7
6.0
0.8
6.1
20.6
0.6
18
20.3
5.7
20.7
6.3
20.5
6.3
21.2
1.2
20.5
6.3
20.5
6.3
20.5
6.3
20.5
6.3
21.4
1.3
21.1
6.6
21.2
1.2
20.5
6.3
20.1
0.7
0.9
22.0
20.3
6.3
20.5
6.2
21.9
19
5.4
5.8
5.8
0.7
5.8
5.8
5.8
5.8
0.8
6.2
0.7
5.8
0.3
21.5
6.0
5.8
21.7
0.2
20
25.0
25.0
24.8
25.7
25.0
25.1
25.0
25.0
25.8
21.0
25.8
25.0
24.8
1.4
20.7
20.8
0.7
21.5
21.2
21
25.5
25.5
25.3
25.7
25.5
25.6
25.5
25.5
25.8
21.0
25.8
25.5
24.9
0.1
20.7
20.8
0.5
21.5
21.2
1.3
22
25.1
25.1
25.0
25.3
25.1
25.2
25.1
25.1
25.4
19.2
25.4
25.1
25.2
3.2
18.9
19.0
2.9
19.8
19.7
2.8
3.2
23
7.4
7.4
7.7
8.1
7.4
7.5
7.4
7.4
8.2
7.5
8.0
7.4
8.6
27.0
7.3
7.6
21.6
7.7
7.3
26.1
26.9
27.2
24
8.2
8.2
8.5
8.8
8.2
8.3
8.2
8.2
8.7
7.3
8.7
8.2
9.0
27.3
7.2
7.4
22.2
7.8
7.5
26.2
27.1
26.6
2.2
8.3
8.3
8.7
9.1
8.3
8.4
8.3
8.3
9.0
8.1
9.0
8.3
9.4
28.2
7.9
8.2
23.0
8.4
8.1
27.5
28.0
27.8
2.3
2.5
25.6
26.7
25.6
25.5
25.0
25.1
25.0
25.0
25.3
22.7
25.4
25.2
25.2
5.6
20.3
20.4
4.7
21.3
21.1
5.4
5.4
3.6
27.4
27.4
28.1
14.7
14.7
14.6
17.1
14.7
14.8
14.7
14.7
17.2
13.2
17.2
14.7
17.3
26.9
12.7
13.0
23.2
15.0
14.6
26.5
26.9
27.4
17.9
16.5
17.0
27.0
27.9
27.8
27.8
29.0
27.8
27.8
27.8
27.8
29.5
24.0
29.0
27.8
29.2
16.8
23.5
23.6
15.5
23.6
23.3
17.1
16.9
17.9
28.4
28.4
29.4
17.2
28.3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
26 27 28 25
28
Figure I b. Percent identity of bacterial isolates with other known identified bacterial strains
133 Appendix (Continued on next page) 134 Appendix Figure I c. nidAB gene sequence cloned from Mycobacterium PY146 and containing
the EcoRI and HindIII restriction enzyme adaptor sequences
135 Appendix Ab und ance
A
Scan 2744 (18.758 min): 0201002.D\ d ata .ms (-2724) (-)
115.0
7000000
6500000
144.0
6000000
5500000
5000000
4500000
4000000
3500000
3000000
2500000
2000000
1500000
1000000
89.0
63.0
500000
39.0
72.0
50.0
98.0
0
30
40
50
60
70
80
90
100
126.0135.0
110
120
130
140
m/ z-->
B
100
144
115
50
HO
89
63
39
50
72
98
0
30 40 50 60
(replib) 2-Naphthalenol
70
80
126
90 100 110 120 130 140
Figure II a. Mass spectra obtained by GC/MS of 2-Naphthalenol produced by Bacillus
cereus KWS2 grown with naphthalene (A) and from NIST mass spectral library (B).
136 Appendix Ab und a nce
A
Sca n 2046 (15.025 min): 0201002.D\ d a ta .ms (-2025) (-)
91.0
200000
180000
160000
140000
120000
100000
80000
135.9
60000
40000
65.0
20000
39.0
51.0
77.0
107.1 117.9126.0
0
30
40
50
60
70
80
90
100
110
120
130
140
m/ z-->
B
91
100
O
OH
50
136
0
39 45 51
65
77
30 40 50 60 70
(replib)
Benzeneacetic acid
80
90 100 110 120 130 140
Figure II b. Mass spectra obtained by GC/MS of benzeneacetic acid produced by
Bacillus cereus KWS2 grown with naphthalene (A) and from NIST mass spectral
library (B).
137 Appendix A
Ab und a nc e
Sc a n 1797 (13.693 min): 0201002.D \ d a ta .ms
105.0
8000
121.9
7500
7000
76.9
6500
6000
5500
5000
4500
4000
3500
3000
2500
43.0
51.0
2000
1500
59.9
1000
69.1
500
91.0
84.1
0
30
35
40
45
50
55
60
65
70
75
80
85
90
95 100105110115120125
m/ z-->
B
105
100
122
77
HO
O
51
50
39
45
94
65
0
30
40
50
60
70
(mainlib) Benzenecarboxylic acid
80
90
100
110
120
Figure II c. Mass spectra obtained by GC/MS of Benzenecarboxylic acid produced by
Bacillus cereus KWS2 grown with naphthalene (A) and from NIST mass spectral
library (B).
138 Appendix Ab und ance
A
Sca n 1153 (10.249 min): 0201002.D\ d ata .ms (-1141) (-)
130000
106.0
120000
110000
77.0
100000
90000
80000
70000
60000
51.0
50000
40000
30000
20000
39.0
10000
63.1
45.2
0
30
35
40
45
50
55
60
65
82.7 88.9
70
75
80
85
90
95.8
95 100 105
m/ z-->
B
106
77
100
O
51
50
0
30
39
74
43
30
40
50
(replib) Benzaldehyde
63
60
84 89
70
80
90
100
Figure II d. Mass spectra obtained by GC/MS of Bezaldehyde produced by Bacillus
cereus KWS2 grown with naphthalene (A) and from NIST mass spectral library (B).
139 Appendix A
A b und a nc e
S c a n 4002 (25.487 m in): 0201002.D \ d a ta .m s (-4009) (-)
194.0
165.0
700000
650000
600000
550000
500000
450000
400000
350000
300000
250000
200000
150000
100000
82.1
139.0
50000
69.4
39.0
97.0
115.0
51.0
127.0
0
30
40
50
60
70
80
90
151.0
181.8
100 110 120 130 140 150 160 170 180 190
m/ z-->
B
194
100
165
50
0
37 49
69
82
OH
97
30
50
70
90
(mainlib)
9-Phenanthrenol
115 126 139 150
110
130
150
174
170
190
Figure II e. Mass spectra obtained by GC/MS of 9-phenanthrenol produced by
Bacillus cereus KWS2 grown in phenanthrene (A) and from NIST mass spectral
library (B).
140 Appendix A
A b und a nc e
S c a n 3946 (25.187 m in): 0201002.D \ d a ta .ms (-3932) (-)
165.0
170000
160000
150000
140000
130000
120000
181.0
110000
212.0
100000
90000
80000
70000
60000
193.9
50000
152.0
40000
30000
20000
76.9
10000
115.0
63.0
49.9
138.9
101.9
0
30
40
50
60
70
80
90
100 110 120 130 140 150 160 170 180 190 200 210
m/ z-->
B
165
100
212
181
50
82
51 63
69
0
41
194
HO
OH
115
89
151
139
30
50
70
90 110 130 150 170
(mainlib)
9,10-Dihydro-9,10-dihydroxyphenanthrene
190
210
Figure II f. Mass spectra obtained by GC/MS of 9, 10-dihydro-9, 10dihydroxyphenanthrene produced by Bacillus cereus KWS2 grown in phenanthrene
(A) and from NIST mass spectral library (B).
141 Appendix A
A b und a nc e
S c a n 2058 (15.089 min): 0201002.D \ d a ta .ms (-2025) (-)
91.0
400000
380000
360000
340000
320000
300000
280000
260000
240000
220000
200000
180000
160000
140000
135.9
120000
100000
80000
65.0
60000
40000
39.0
51.0
20000
77.0
98.8 106.9
0
30
40
50
60
70
80
90
100
110
118.0
120
128.2
130
m / z-->
B
91
100
O
OH
50
136
0
39 45 51
65
77
30 40 50 60 70
(replib)
Benzeneacetic acid
80
90 100 110 120 130 140
Figure II g. Mass spectra obtained by GC/MS of benzeneacetic acid produced by
Bacillus cereus KWS2 grown in phenanthrene (A) and from NIST mass spectral
library (B).
142 Appendix A
Ab und a nce
Sca n 2856 (19.357 min): 0301003.D \ d a ta .ms (-2816) (-)
107.0
1100000
1000000
900000
800000
700000
600000
500000
400000
151.9
300000
77.0
200000
100000
51.0
39.0
63.0
89.0 98.0
0
30
40
50
60
70
80
90
129.0
116.9
100
110
120
141.2
130
140
150
m/ z-->
B
107
100
O
OH
50
152
77
0
31 39
51
OH
63
86 95
121
134
30 40 50 60 70 80 90 100 110 120 130 140 150
(mainlib)
Benzeneacetic acid, 4-hydroxy Figure II h. Mass spectra obtained by GC/MS of 4-hydroxy benzeneacetic acid
produced by Bacillus cereus KWS2 grown in phenanthrene (A) and from NIST mass
spectral library (B).
143 Appendix A
A b und a nc e
S c a n 1862 (14.041 min): 2301024.D \ d a ta .ms (-1871) (-)
105.0
95000
90000
85000
122.0
80000
75000
70000
65000
60000
77.0
55000
50000
45000
40000
35000
30000
51.0
25000
20000
15000
10000
39.0
5000
60.0
94.1
85.0
69.0
115.0
0
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95 100105110115120
m/ z-->
B
105
100
HO
122
O
77
50
51
39 45
74
65
94
0
30
40
50
60
70
(replib) Benzenecarboxylic acid
80
90
100
110
120
Figure II i. Mass spectra obtained by GC/MS of benzenecarboxylic acid produced by
Bacillus cereus KWS2 grown in anthracene (A) and from NIST mass spectral library
(B).
144 Appendix Ab und a nce
A
Sca n 2088 (15.250 min): 2301024.D\ d a ta .ms (-2075) (-)
91.0
220000
200000
180000
160000
140000
120000
100000
136.0
80000
60000
101.0
40000
65.0
39.0
20000
116.0
75.0
51.0
128.1
0
30
40
50
60
70
80
90
100
110
120
130
m/ z-->
B
91
100
O
OH
50
136
65
0
39 46 51
56
72 77
30 40 50 60 70
(replib)
Benzeneacetic acid
80
101
90
117
100 110 120 130 140
Figure II j. Mass spectra obtained by GC/MS of benzeneacetic acid produced by
Bacillus cereus KWS2 grown in anthracene (A) and from NIST mass spectral library
(B). 145 Appendix A
A b und a nc e
S c a n 2856 (19.357 min): 2301024.D \ d a ta .ms (-2826) (-)
107.0
800000
750000
700000
650000
600000
550000
500000
450000
400000
350000
300000
152.0
250000
200000
77.0
150000
100000
51.1
50000
39.1
63.0
89.0
0
30
40
50
60
70
80
90
123.1
100
110
120
141.9
130
140
150
m/ z-->
B
107
100
O
OH
50
152
77
0
31 39
51
63
OH
86 95
121
134
30 40 50 60 70 80 90 100 110 120 130 140 150
(mainlib)
Benzeneacetic acid, 4-hydroxy Figure II k. Mass spectra obtained by GC/MS of 4-hydroxy benzeneacetic acid
produced by Bacillus cereus KWS2 grown in anthracene (A) and from NIST mass
spectral library (B).
146 Appendix A
A b und a nc e
S c a n 2740 (18.737 m in): 0601006.D \ d a ta .ms (-2721) (-)
115.0
3200000
144.0
3000000
2800000
2600000
2400000
2200000
2000000
1800000
1600000
1400000
1200000
1000000
800000
600000
89.0
400000
63.0
200000
39.0
74.0
50.0
98.0
126.0134.8
0
30
40
50
60
70
80
90
100
110
120
130
140
m / z-->
B
100
144
115
50
HO
89
63
39
50
72
98
0
30 40 50 60
(replib) 2-Naphthalenol
70
80
126
90 100 110 120 130 140 150
Figure III a. Mass spectra obtained by GC/MS of 2-naphthalenol produced by
Bacillus cereus KWS4 grown with naphthalene (A) and from NIST mass spectral
library (B).
147 Appendix A b und a nc e
S c a n 2045 (15.020 min): 0601006.D \ d a ta .ms (-2021) (-)
91.0
180000
A
170000
160000
150000
140000
130000
120000
110000
100000
90000
80000
70000
135.9
60000
50000
40000
65.0
30000
20000
39.0
51.0
10000
76.9
99.8 108.0 118.0 127.9
0
30
40
50
60
70
80
90
100
110
120
130
140
m/ z-->
B
91
100
O
OH
136
50
65
39
44
51
77
105
0
30 40 50 60 70
(mainlib) Benzeneacetic acid
80
90
118
100 110 120 130 140
Figure III b. Mass spectra obtained by GC/MS of benzeneacetic acid produced by
Bacillus cereus KWS4 grown with naphthalene (A) and from NIST mass spectral
library (B).
148 Appendix Ab und a nce
A
Sca n 1151 (10.238 min): 0601006.D \ d a ta .ms (-1140) (-)
106.0
77.0
20000
18000
16000
14000
12000
10000
51.0
8000
6000
4000
2000
39.0
62.9
45.0
0
30
35
40
45
50
55
60
88.0
70.9
65
70
75
80
85
90
95
100 105
m/ z-->
B
106
77
100
O
51
50
0
30
39
74
43
30
40
50
(replib) Benzaldehyde
63
60
84 89
70
80
90
100
Figure III c. Mass spectra obtained by GC/MS of Bezaldehyde produced by Bacillus
cereus KWS4 grown with naphthalene (A) and from NIST mass spectral library (B).
149 Appendix A
Ab und a nc e
S c a n 4002 (25.487 min): 0401004.D \ d a ta .ms (-4012) (-)
165.0
194.0
1050000
1000000
950000
900000
850000
800000
750000
700000
650000
600000
550000
500000
450000
400000
350000
300000
250000
200000
150000
82.2
139.0
100000
69.4
50000
97.0
39.0 51.0
0
30
40
50
60
70
80
90
115.0
127.0
150.9
179.9
100 110 120 130 140 150 160 170 180 190
m/ z-->
B
165
100
194
50
82
39 50
69
OH
87 97
0
30
50
70
(replib) 9-Phenanthrenol
90
115 126
110
139
130
150
150
174
170
190
Figure III d. Mass spectra obtained by GC/MS of 9-phenanthrenol produced by
Bacillus cereus KWS4 grown in phenanthrene (A) and from NIST mass spectral
library (B). 150 Appendix A
A b und a nc e
S c a n 3947 (25.193 min): 0401004.D \ d a ta .m s (-3931) (-)
165.0
200000
190000
180000
170000
160000
150000
140000
181.0
130000
120000
212.0
110000
100000
90000
80000
70000
60000
151.9
50000
40000
30000
77.0
20000
194.9
115.0
138.9
63.0
10000
50.0
0
101.8
36.9
30
40
50
60
70
80
90
100 110 120 130 140 150 160 170 180 190 200 210
m/ z-->
B
165
100
212
181
50
82
51 63
69
0
41
194
HO
89
OH
115
151
139
30
50
70
90 110 130 150 170
(mainlib) 9,10-Dihydro-9,10-dihydroxyphenanthrene
190
210
Figure III f. Mass spectra obtained by GC/MS of 9,10-dihydro-9,10dihydroxyphenanthrene produced by Bacillus cereus KWS4 grown in phenanthrene
(A) and from NIST mass spectral library (B). 151 Appendix A
Ab und a nc e
Sc a n 2065 (15.127 min): 0401004.D \ d a ta .ms (-2026) (-)
91.0
600000
550000
500000
450000
400000
350000
300000
250000
135.9
200000
150000
65.0
100000
39.0
50000
51.0
77.0
107.0
0
30
40
50
60
70
80
90
100
110
117.8 126.8
120
130
m/ z-->
B
91
100
O
OH
50
136
0
39 45 51
65
77
30 40 50 60 70
(replib) Benzeneacetic acid
80
90
100 110 120 130
Figure III g. Mass spectra obtained by GC/MS of benzeneacetic acid produced by
Bacillus cereus KWS4 grown in phenanthrene (A) and from NIST mass spectral
library (B). 152 Appendix A
Ab und a nc e
Sc a n 2841 (19.277 min): 0501005.D \ d a ta .ms (-2810) (-)
107.0
170000
160000
150000
140000
130000
120000
110000
100000
90000
80000
70000
151.9
60000
50000
77.0
40000
30000
63.0
51.0
20000
86.9
125.9
39.0
10000
97.9
0
30
40
50
60
70
80
90
100
134.9
116.0
110
120
130
140
150
m/ z-->
B
107
100
O
OH152
50
77
39
0
30
51
HO
63
90
124 134
30 40 50 60 70 80 90 100 110 120 130 140 150
(replib)
Benzeneacetic acid, 3-hydroxy Figure III h. Mass spectra obtained by GC/MS of 3-hydroxy benzeneacetic acid
produced by Bacillus cereus KWS4 grown in phenanthrene (A) and from NIST mass
spectral library (B). 153 Appendix A
Ab und a nc e
Sca n 2218 (15.945 min): 0501005.D \ d a ta .ms (-2210) (-)
92.0
119.9
60000
55000
50000
45000
40000
137.9
35000
30000
25000
20000
64.0
43.0
15000
10000
53.0
72.0
5000
0
80.8
105.1
35.1
30
40
50
60
70
80
90
100
110
127.9
120
130
140
m/ z-->
B
92
100
120
O
OH
138
50
OH
64
39
45
53
74 81
109
0
30 40 50 60 70 80
(replib) Benzoic acid, 2-hydroxy-
90
100 110 120 130 140
Figure III i. Mass spectra obtained by GC/MS of 2-hydroxy benzoic acid produced by
Bacillus cereus KWS4 grown in phenanthrene (A) and from NIST mass spectral
library (B).
154 Appendix A
Abundance
Scan 1857 (17.014 min): 2001005.D\ data.ms
104.0
600000
550000
500000
450000
76.0
400000
350000
300000
250000
200000
50.0
150000
148.0
100000
50000
38.0
61.0
85.0
0
30
40
50
60
70
80
116.0
94.8
90
100
110
120
128.9 138.0
130
140
m/ z-->
B
104
100
O
76
OH
50
OH
50
O
0
31
38
61
148
85
30 40 50 60 70 80 90 100 110 120 130 140 150
(rep
lib
) 1,2-Benzened icarb oxylic acid
Figure IV a. Mass spectra obtained by GC/MS of 1, 2-benzenecarboxylic acid
produced by resting cells of Mycobacterium PY146 with phenanthrene (A) and from
NIST mass spectral library (B).
155 Appendix Abundance
A
Scan 1865 (17.057 min): 2201007.D\ data.ms (-1849) (-)
104.0
30000
28000
26000
24000
22000
76.0
20000
18000
16000
14000
12000
10000
8000
148.0
50.1
6000
4000
37.2
2000
60.8
30
40
50
60
116.7 126.9
93.0
0
70
80
90
100
110
120
130
140
m/ z-->
B
104
100
O
76
OH
50
OH
50
O
0
31
38
61
148
85
30 40 50 60 70 80 90 100 110 120 130 140 150
(rep lib ) 1,2-Benzened icarb oxylic a cid
Figure IV b. Mass spectra obtained by GC/MS of 1,2-benzenecarboxylic acid
produced by resting cells of Mycobacterium PY146 with anthracene (A) and from
NIST mass spectral library (B).
156 Appendix A
Abundance
Scan 3359 (25.048 m
in): 2101006.D\ data.m
s
208.0
160000
150000
140000
180.0
130000
120000
110000
100000
152.0
90000
80000
70000
60000
50000
40000
76.0
30000
20000
50.0
10000
0
126.0
63.0
90.0
111.0
30
40
50
60
70
80
90
194.0
165.0
139.0
36.8
100 110 120 130 140 150 160 170 180 190 200
m
/ z-->
B
208
100
180
O
152
50
76
O
0
39
50 63
90
99
30
50
70
90
110
(replib)
9,10-Anthracenedione
126
130
163
150
170
190
210
Figure IV c. Mass spectra obtained by GC/MS of 1,2-benzenecarboxylic acid
produced by resting cells of Mycobacterium PY146 with anthracene (A) and from
NIST mass spectral library (B).
157 Appendix A
Abundance
Scan 1861 (17.035 min): 2401009.D\ data.ms (-1849) (-)
104.0
40000
35000
30000
76.0
25000
20000
15000
10000
50.0
148.0
5000
38.1
61.1
87.1
113.0
0
30
40
50
60
70
80
90
100
110
124.9 133.7
120
130
140
m/ z-->
B
104
100
O
76
OH
50
OH
50
O
0
31
38
61
148
85
30 40 50 60 70 80 90 100 110 120 130 140 150
(replib)
1,2-Benzenedicarb oxylic acid
Figure IV d. Mass spectra obtained by GC/MS of 1,2-benzenecarboxylic acid
produced by resting cells of Mycobacterium PY146 with pyrene (A) and from NIST
mass spectral library (B). 158 Appendix A
Abundance
Scan 4817 (32.846 m
in): 2301008.D\ data.m
s
218.0
24000
23000
22000
21000
20000
19000
18000
17000
16000
15000
14000
13000
12000
11000
189.0
10000
9000
8000
7000
6000
5000
4000
3000
43.0
2000
1000
57.1
72.9
94.1
111.0
130.0
147.0
163.1
203.0
0
30
40
50
60
70
80
90
100 110 120 130 140 150 160 170 180 190 200 210 220
m
/ z-->
B
218
100
OH
189
50
94
81
109
163
0
30
50
70
90
(rep
lib
)
1-Hyd
roxypyrene
110
130
150
170
190
210
Figure IV e. Mass spectra obtained by GC/MS of 1-hydroxypyrene produced by
resting cells of Mycobacterium PY146 with pyrene (A) and from NIST mass spectral
library (B). 159 Appendix Ab und a nc e
A
2600000
Sc a n 2241 (16.068 min): 1701018.D \ d a ta .ms (-2216) (-)
104.0
2400000
2200000
76.0
2000000
1800000
1600000
1400000
1200000
1000000
50.1
800000
600000
148.0
400000
38.1
200000
61.0
85.0
0
30
40
50
60
70
80
94.9
90
118.9 129.0 139.0
100
110
120
130
140
m/ z-->
B
104
100
O
76
OH
50
OH
50
O
0
31
38
61
148
85
30 40 50 60 70 80 90 100 110 120 130 140 150
(replib) 1,2-Benzenedicarboxylic acid
Figure V a. Mass spectra obtained by GC/MS of 1,2-benzenedicarboxylic acid
produced by Mycobacterium PY146 grown in phenanthrene (A) and from NIST mass
spectral library (B). 160 Appendix Ab und a nce
A
450000
Sca n 2068 (15.142 min): 1901020.D\ d a ta .ms (-2034) (-)
91.0
400000
350000
300000
250000
200000
136.0
150000
100000
65.0
50000
39.1
51.0
77.0
98.9 107.0
0
30
40
50
60
70
80
90
100
110
117.9
120
130
m/ z-->
B
91
100
O
OH
50
136
0
39 45 51
65
30 40 50 60 70
(replib)
Benzeneacetic acid
77
80
90
100 110 120 130
Figure V b. Mass spectra obtained by GC/MS of benzeneacetic acid produced by
Mycobacterium PY146 grown in phenanthrene (A) and from NIST mass spectral
library (B). 161 Appendix A
A b und a nc e
Sc a n 3709 (23.920 min): 3001031.D \ d a ta .ms (-3691) (-)
180.0
90000
208.0
85000
80000
75000
70000
65000
152.0
60000
55000
50000
45000
40000
35000
30000
76.0
25000
20000
15000
50.0
10000
126.0
63.0
5000
0
97.9
111.0
37.0
30
40
50
60
70
80
90
194.9
100 110 120 130 140 150 160 170 180 190 200
m/ z-->
B
152
100
180
208
O
76
50
O
50
63
0
39
126
90 102
30
50
70
90 110
(replib) 9,10-Anthracenedione
130
150
170
190
210
Figure V c. Mass spectra obtained by GC/MS of 9,10-anthracenedione produced by
Mycobacterium PY146 grown in anthracene (A) and from NIST mass spectral library
(B). 162 Appendix Ab und a nce
A
Sca n 1834 (13.891 min): 3101032.D \ d a ta .ms (-1788) (-)
105.0
50000
45000
122.0
40000
77.0
35000
30000
25000
20000
51.0
15000
10000
43.1
87.0
60.0
5000
94.0
70.0
115.1
0
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120
m/ z-->
B
105
100
HO
122
O
77
50
51
39 45
65
74
94
0
30
40
50
60
70
(replib)
Benzenecarboxylic
acid
80
90
100
110
120
Figure V d. Mass spectra obtained by GC/MS of benzenecarboxylic acid produced by
Mycobacterium PY146 grown in anthracene (A) and from NIST mass spectral library
(B). 163 Appendix A
Ab und a nc e
Sc a n 2080 (15.207 min): 3101032.D \ d a ta .ms (-2031) (-)
91.0
700000
650000
600000
550000
500000
450000
400000
350000
300000
136.0
250000
200000
150000
65.0
100000
39.1
50000
51.0
77.0
99.0 107.0
0
30
40
50
60
70
80
90
100
110
118.0 127.8
120
130
m/ z-->
B
91
100
O
OH
50
136
0
39 45 51
65
30 40 50 60 70
(replib) Benzeneacetic acid
77
80
90
100 110 120 130
Figure V e. Mass spectra obtained by GC/MS of benzeneacetic acid produced by
Mycobacterium PY146 grown in anthracene (A) and from NIST mass spectral library
(B). 164 Appendix A
A b und a nc e
S c a n 2234 (16.030 min): 3101032.D \ d a ta .ms (-2218) (-)
104.0
200000
190000
180000
170000
160000
150000
76.0
140000
130000
120000
110000
100000
90000
80000
70000
50.0
60000
50000
40000
147.9
30000
20000
38.0
10000
61.0
0
20
30
40
50
60
112.9122.1
92.1
70
80
90
100
110
120
136.0
130
140
150
m/ z-->
B
104
100
O
76
OH
50
OH
50
O
0
31
38
61
148
85
30 40 50 60 70 80 90 100 110 120 130 140 150
(replib) 1,2-Benzenedicarboxylic acid
Figure V f. Mass spectra obtained by GC/MS of 1,2-benzenedicarboxylic acid
produced by Mycobacterium PY146 grown in anthracene (A) and from NIST mass
spectral library (B). 165 Appendix A
Ab und a nc e
Sc a n 1614 (12.956 min): 0501005.D \ d a ta .ms (-1598) (-)
105.0
122.0
55000
50000
45000
77.0
40000
35000
30000
25000
20000
51.1
15000
87.0
10000
60.0
5000
94.0
69.0
113.0
0
45
50
55
60
65
70
75
80
85
90
95
100 105 110 115 120
m/ z-->
B
105
100
122
77
HO
O
51
50
65
74
90
0
50
60
70
80
(mainlib) Benzenecarboxylic acid
90
94
100
110
120
Figure V g. Mass spectra obtained by GC/MS of benzenecarboxylic acid produced by
Mycobacterium PY146 grown in pyrene (A) and from NIST mass spectral library (B). 166 Appendix Ab und a nce
A
Sc a n 1887 (14.373 min): 0501005.D \ d a ta .ms
91.1
900000
800000
700000
600000
500000
400000
136.0
300000
200000
65.1
79.1
100000
51.1
58.0
0
98.1
72.1
122.0
107.1 115.0
129.1
40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125130135
m/ z-->
B
91
100
O
OH136
50
65
51
63
89
77
105
0
50
60
70
80
(mainlib)
Benzeneacetic
acid
90
100
110
118
120
130
140
Figure V h. Mass spectra obtained by GC/MS of benzeneacetic acid produced by
Mycobacterium PY146 grown in pyrene (A) and from NIST mass spectral library (B). 167 Appendix A
Ab und a nc e
Sc a n 2014 (15.032 min): 0501005.D \ d a ta .ms (-1993) (-)
104.0
1300000
1200000
1100000
1000000
76.0
900000
800000
700000
600000
500000
50.1
400000
300000
148.0
200000
100000
61.0
85.0
0
40
50
60
70
80
118.9127.1 136.8
93.0
90
100
110
120
130
140
m/ z-->
B
104
100
O
76
OH
50
50
OH
148
O
0
61 66
85
50 60 70 80 90 100 110 120
(replib) 1,2-Benzenedicarboxylic acid
130 140 150
Figure V i. Mass spectra obtained by GC/MS of 1,2-benzenedicarboxylic acid
produced by Mycobacterium PY146 grown in pyrene (A) and from NIST mass
spectral library (B). 168