References Abd-Elsalam, H. E., E. E. Hafez, A. A. Hussain, A. G. Ali and A. A. El-Hanafy. 2009. Isolation and identification of three-rings polyaromatic hydrocarbons (anthracene and phenanthrene) degrading bacteria. American-Eurasian J. Agric. Environ. Sci. 5(1): 31-38 Aguinaga, N., N. Campillo, P. Vinas and M. H. Cordoba. 2007. Determination of 16 polycyclic aromatic hydrocarbons in milk and related products using solid-phase microextraction coupled to gas chromatography–mass spectrometry. Analytica Chimica Acta. 596: 285-290 Aitken, M. D., W. T. Stringfellow, R. D. Nagel, C. Kazunga and S. H. Chen. 1998. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can. J. Microbiol. 44: 743-752 Alexander, M. 1999. Cometabolism. In: M. Alexander (Ed.), Biodegradation and bioremediation (pp. 249–267). New York: Academic Press. Al-Thani, R. F., D. A. M. Abd-El-Haleem and M. Al-Shammri. 2009. Isolation and characterization of polyaromatic hydrocarbons-degrading bacteria from different Qatari soils. Afr. J. Microbiol. Res. 3(11): 761-766 Al-Turki, A. I. 2009. Microbial polycyclic aromatic hydrocarbons degradation in soil. Res. J. Environ. Toxicol. 3(1): 1-8 Al-Turki, A. I. and W. A. Dick. 2003. Myrosinase activity in soil. Soil Sci. Soc. Am. J. 67: 139-145 Annweiler, E., H. H. Richnow, G. Antranikian, S. Hebenbrock, C. Garms, S. Franke, W. Francke and W. Michaelis. 2000. Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl. Environ. Microbiol. 66(2): 518-523 Arora, P. K., M. Kumar, A. Chauhan, G. P. S. Raghava and R. K. Jain. 2009. OxDBase: a database of oxygenases involved in biodegradation. BMC Research Notes. 2:67.online http://www.biomedcentral.com/1756-0500/2/67 103 References Bach, Q. D., S. J. Kim, S. C. Choi and Y. S. Oh. 2005. Enhancing the intrinsic bioremediation of PAH-contaminated anoxic estuarine sediments with biostimulating agents. J. Microbiol. 43(4): 319-324 Baek, K. H., H. S. Kim, H. M. Oh, B. D. Yoon, J. Kim and I. S. Leel. 2004. Effects of crude oil, oil components, and bioremediation on plant growth. J. Environ. Sci. Health. 39(9): 2465-2472 Bamforth, S. M. and I. Singleton. 2005. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. A Review. J. Chem. Technol. Biotechnol. 80: 723-736 Banat, I. M., R. S. Makkar and S. S. Cameotra. 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53: 495-508 Basta, N. T., J. A. Ryan and R. L. Chaney. 2005. Trace element chemistry in residualtreated soil: key concepts and metal bioavailability. J. Environ. Quality. 34: 49-63 Bezalel, L. Y. Hadar, P. P. Fu, J. P. Freeman and C. E. Cerniglia. 1996. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62(7): 2547-2553 Bezalel, L., Y. Hadar and C. E. Cerniglia. 1997. Enzymatic mechanisms involved in phenanthrene degradation by the white-rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 63: 2495-2501 Bishnoi, K., R. Kumar and N. R. Bishnoi. 2008. Biodegradation of Polycyclic aromatic hydrocarbons by white rot fungi Phanerochaete chrysosporium in sterile and unsterile soil. J. Sci. Indust. Res. 67: 538-542 Bishoni, N. R., U. Mehta and G. G. Pandit. 2006. Quantification of polycyclic aromatic hydrocarbons in fruits and vegetables using high performance liquid chromatography. Ind. J. Chem. Technol. 13: 30-35 Bollag, J. M. and C. Myers. 1992. Detoxification of aquatic and terrestrial sites through binding of pollutants to humic substances. Sci. Tot. Environ. 118: 357-366 104 References Bollag J. M. 1992. Decontaminating soil with enzymes. Environ. Sci. Technol. 26: 1876-1881 Bouchez, M., D. Blanchet and J. P. Vandecasteele. 1996. The microbiological fate of polycyclic aromatic hydrocarbons: carbon and oxygen balances for bacterial degradation of model compounds. Appl. Microbiol. Biotech. 45(4): 556-561 Brezna, B., A. A. Khan and C. E. Cerniglia. 2003. Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiol. Lett. 223: 177-183 Brezna, B., O. Kweon, R. L. Stingley, J. P. Freeman, A. A. Khan, B. Polek, R. C. Jones and C. E. Cerniglia. 2006. Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1. Appl. Microbiol. Biotechnol. 71: 522-532 Brion, D. and E. Pelletier. 2005. Modelling PAHs adsorption and sequestration in freshwater and marine sediments. Chemosphere. 61: 867-876 Brown, J. R. and J. L. Thornton. 1957. Percivall Pott (1714-1788) and chimney sweepers' cancer of the scrotum. Br. J. Ind. Med. 14(1): 68-70 Bubinas, A., G. Giedraityte, L. Kalediene, O. Nivinskiene and R. Butkiene. 2008. Degradation of naphthalene by thermophilic bacteria via a pathway, through protocatechuic acid. Cent. Eur. J. Biol. 3(1): 61-68 Bulay, O. M. and L. W. Wittenberg. 1971. Carcinogenic effects of polycyclic hydrocarbon carcinogens administrated to mice during pregnancy on the progeny. J. Natl. Cancer Inst. 46: 397-402 Bury, S. J. 1993. Effect of micellar solubilization on biodegradation rates of hydrocarbons. Environ.Sci. Technol. 27: 104-110 Camargo, M. C. R. and M. C. F. Toledo. 2003. Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control. 14(1): 49-53 105 References Canas, A. I., A. M. lcalde, F. Plou, M. J. Martinez, A. T. Martinez and S. Camarero. 2007. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environ. Sci. Technol. 41: 29642971 Cenci, G. and G. Caldini. 1997. Catechol dioxygenase expression in a Pseudomonas fluorescens strain exposed to different aromatic compounds. Appl. Microbiol. Biotechnol. 47(3): 306-308 Cerniglia, C. E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation. 3: 351-368 Cerniglia, C. E. and M. A. Heitkamp. 1989. Microbial degradation of polycyclic aromatic hydrcarbons (PAH) in the aquatic environment. pp.41- 68. In: U. Varanasi (ed). Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. CRC Press. Boca Raton, Florida, USA. Cerniglia, C. E., J. P. Freeman and F. E. Evans. 1984. Evidence for an arene oxideNIH shift pathway in the transformation of naphthalene to 1-naphthol by Bacillus cereus. Arch. Microbiol. 138: 283-286 Cerniglia, C. E., J. P. Freeman, G. L. White, R. H. Heflich and D. W. Miller. 1985. Fungal metabolism and detoxification of the nitropolycyclic aromatic hydrocarbon 1nitropyrene. Appl. Environ. Microbiol. 50(3): 649-655 Cerniglia, C. E. 1997. Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J. Indus. Microbiol. Biotechnol. 19: 324-333 Cerniglia, C. E. 1984. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30: 31-71 Chang, B. V., S. H. Wei and S. Y. Yuan. 2001. Biodegradation of phenanthrene in soil. J. Environ. Sci. Health B. 36(2): 177-187 106 References Chen, S. H. and M. D. Aitken. 1999. Salicylate Stimulates the Biodegradation of High-molecular Weight Polycyclic Aromatic Hydrocarbons by Pseudomonas saccharophila P15. Environ. Sci. Technol. 33: 435-439 Chen, S. Y., J. R. Lin, R. Darbha, P. Lin, T. Y. Liu and Y. M. Chen. 2004. Glycine Nmethyltransferase tumor susceptibility gene in the benzo[a]pyrene detoxification pathway. Cancer Res. 64: 3617-3623 Christofi, N. and I. B. Ivshina. 2002. Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol. 93: 915-929 Chulalaksananukul, S., G. M. Gadd, P. Sangvanich, P. Sihanonth, J. Piapukiew and A. S. Vangna. 2006. Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp. FEMS Microbiol. Lett. 262: 99-106 Chun, H. K., Y. Ohnishi, N. Misawa. K. Shindo, M. Hayashi, S. Harayama and S. Horinouchi. 2001. Biotransformation of phenanthrene and 1-methoxynaphthalene with Stretomyces linidans cells expressing a marine bacterial phenanthrene dioxygenase genes. Biosci. Biotechnol. Biochem. 65(8): 1774-1781 Chung, N. J., J. Y. Cho, S. W. Park, S. A. Hwang and T. L. Park. 2008. Polycyclic aromatic hydrocarbons in soils and crops after irrigation of wastewater discharged from domestic sewage treatment plants. Bull. Environ. Contam. Toxicol. 81: 124-127 Chupungars, K., P. Rerngsamran and S. Thaniyavarn. 2009. Polycyclic aromatic hydrocarbons degradation by Agrocybe sp. CU-43 and its fluorene transformation. Int. Biodeter. Biodegrad. 63: 93-99 Churchill, P. F., A. C. Morgan and E. Kitchens. 2008. Characterization of a pyrenedegrading Mycobacterium sp. strain CH-2. J. Environ. Sci. Health B. 43(8): 698-706. Churchill, S. A., J. P. Harper and P. F. Churchill. 1999. Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Appl. Environ. Microbiol. 65(2): 549-552 107 References Ciemniak, A. and L. Chrachol. 2008. Polycyclic aromatic hydrocarbons (PAH) in cereal breakfast products. Rocz Panstw Zakl Hig. 59(3): 301-307 Cofield, N., M. K. Banks and A. P. Schwab. 2007. Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation. Environ. Pollut. 145: 60-67 Coral, G and S. Karagoz. 2005. Isolation and characterization of phenanthrene degrading bacteria from petroleum refinery oil. Ann. Microbiol. 55(4): 255-259 Cox, C. D., D. E. Nivens, S. A. Ripp, M. M. Wong, A. Palumbo, R. S. Burlage and G. S. Sayler. 2000. An intermediate-scale lysimeter facility for subsurface bioremediation research. Bioremed. J. 4: 69-79 Cunningham, C. J. and J. C. Philp. 2000. Comparison of bioaugmentation and biostimulation in ex situ treatment of diesel contaminated soil. Land Contam. Reclam. 8 (4): 261-269 Daane, L. L., I. Harjono, G. J. Zylstra, and M. M. Haggblom. 2001. Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl. Environ. Microbiol. 67(6): 2683-2691 Dabrowska, D., A. K. Wasik and J. Namiesnik. 2005. Pathways and Analytical Tools in Degradation Studies of Organic Pollutants. Crit. Rev. Analyt. Chem. 35(2): 155-176 Das, K. and A. K. Mukherjee. 2007. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Biores. Technol. 98: 1339-1345 De, J., N. Ramaiah and A. Sarkar. 2006. Aerobic degradation of highly chlorinated polychlorobiphenyls by a marine bacterium, Pseudomonas CH07. World J. Microbiol. Biotech. 22(12): 1321-1327 Dean-Ross, D. and C. E. Cerniglia. 1996. Degradation of pyrene by Mycobacterium flavescens. Appl. Microbiol. Biotechnol. 46: 307-312 108 References Dean-Ross, D., J. D. Moody, J. P. Freeman, D. R. Doerge and C. E. Cerniglia. 2001. Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol. Lett. 204(1): 205-211 Debruyn, J. M., C. S. Chewning and G. S. Sayler. 2007. Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments. Environ. Sci. Technol. 41(15): 5426-5432 Derz, K., U. Klinner, I. Schuphan, E. Stackebrandt and R. M. Kroppenstedt. 2004. Mycobacterium pyrenivorans sp. nov., a novel polycyclic-aromatic-hydrocarbondegrading species. Int. J. Syst. Evol. Microbiol. 54: 2313-2317 DouAbul, A. A. Z., H. M. A. Heba and K. H. Fareed. 1997. Polynuclear aromatic hydrocarbons (PAHs) in fish from the Red Sea Coast of Yemen. Hydrobiologia. 352: 251-262 Feijoo-Siota, L., F. Rosa-Dos-Santos, T. de Miguel and T. G. Villa. 2008. Biodegradation of Naphthalene by Pseudomonas stutzeri in marine environments: Testing cells entrapment in calcium alginate for use in water detoxification. Bioremediation Journal. 12(4): 185-192 Fleming, J. T., J. Sanseverino and G. S. Sayler. 1993. Quantitative relationship between naphthalene catabolic gene frequency and expression in predicting PAH degradation in soils at town gas manufacturing sites. Environ. Sci. Technol. 27: 10681074 Freeman, D. J. and F. C. R. Cattell. 1990. Wood burning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 24: 1581-1585 Gennaro, P. D., A. Franzetti, G. Bestetti, M. Lasagni, D. Pitea and E. Collina. 2008. Slurry phase bioremediation of PAHs in industrial land fill samples at laboratory scale. Waste Manage. 28: 1338–1345 109 References Georgiou, G., S. Lin and M. M. Sharma. 1992. Surface-active compounds from microorganisms. Biotechnology. 10: 60-65 Gianfreda, L. and M. A. Rao. 2004. Potential of extracellular enzymes in remediation of polluted soils: a review. Enzyme Microb. Technol. 35: 339 Gibson, D.T. and R. E. Parales. 2000. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol. 11: 236-243 Goldman, R., L. Enewold, E. Pellizzari, J. B. Beach, E. D. Bowman, S. S. Krishnan and P. G. Shields. 2001. Smoking increase carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Res. 61: 6367–6371 Grevenynghe, J. V., L. Sparfel, M. L. Vee, D. Gilot, B. Drenou, R. Fauchet and O. Fardel. 2004. Cytochrome P450-dependent toxicity of environmental polycyclic aromatic hydrocarbons towards human macrophages. Biochem. Biophys. Res. Comm. 317: 708-716 Grifoll, M., S. A. Selifanov and P. J. Chapman. 1994. Evidence for a novel pathway in the degradation of fluorine by Pseudomonas sp. strain 2065. Appl. Environ. Microbiol. 60: 2438-2449 Grund, E., B. Denecke and R. Eichenlaub. 1992. Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl. Environ. Microbiol. 58:1874-1877 Guerin, T. F. 1999. Bioremediation of phenols and polycyclic aromatic hydrocarbons in creosote contaminated soil using ex-situ land treatment. J. Hazard. Mat. B. 65: 305–315 Guo, C., W. Sun, J. B. Harsh and A. Ogram. 1997. Hybridization analysis of microbial DNAfrom fuel oil-contaminated and noncontaminated soil. Microb. Ecol. 34(3): 178-187 Habe, H. O., A. Kouzuma, H. Nojiri, H. Yamane and T. Omori. 2004b. Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase 110 References from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS Microbiol. Lett. 238(2): 297-305 Habe, H., M. Kanemitsu, M. Nomura, T. Takemura, K. Iwata, H. Nojiri, H. Yamane and T. Omori. 2004a. Isolation and characterization of an alkaliphilic bacterium utilizing pyrene as a carbon source. J. Biosci. Bioeng. 98(4): 306-308 Hadibarata, T. 2009. Oxidative degradation of benzo[a]pyrene by the ligninolytic fungi. Interdisciplinary studies on environmental chemistry. In: Environmental Research in Asia, Eds., Y. Obayashi, T. Isobe, A. Subramanian, S. Suzuki and S. Tanabe, pp. 309–316. Hadibarata, T. and S. Tachibana. 2009. Identification of phenanthrene metabolites produced by Polyporus sp. S133. Interdisciplinary studies on environmental chemistry. In: Environmental research in Asia, Eds., Y. Obayashi, T. Isobe, A. Subramanian, S. Suzuki and S. Tanabe, pp. 293–299. Hammel, K. E., W. Z. Gai, B. Green and M. A. Moen. 1992. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58:1832-1838 Harayama, S. and M. Rekik. 1989. Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J. Biol. Chem. 264: 15328-15333 Harayama, S., M. Kok and E. L. Neidle. 1992. Functional and evolutionary relationships among diverse oxygenases. Ann. Rev. Microbiol. 46: 565-601 Harvey, R. G. 1996. Mechanisms of carcinogenesis of polycyclic aromatic hydrocarbons. Polycyc. Arom. Comp. 9: 1-23 Harvey, R. G. 1997. Polycyclic Aromatic Hydrocarbons. Wiley-VCH, Inc., USA. Heitkamp, M. A. and C. E. Cerniglia. 1989. Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl. Environ. Microbiol. 55(8): 1968-1973 111 References Heitkamp, M. A., J. P. Freeman, D. W. Miller and C. E. Cerniglia. 1988b. Pyrene degradation by a Mycobacterium sp.; identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 54(10): 2556–2565 Heitkamp, M. A., W. Franklin and C. E. Cerniglia. 1988a. Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrenedegrading bacterium. Appl. Environ. Microbiol. 54(10): 2549-2555 Henner, P., M. Schiavon, V. Druelle and E. Lichtfouse. 1999. Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Org. Geochem. 30: 963-969 Hintner, J. P., C. Lechner, U. Riegert, A. E. Kuhm, T. Storm, T. Reemtsma and A. Stolz. 2001. Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans. J. Bacteriol. 183: 6936-6942 Hunter, S., S. Myers, P. Radmacher and C. Eno. 2010. Detection of polycyclic aromatic hydrocarbons (PAHs) in human breast milk. Polycyc. Arom. Comp. 30: 153164 Husain, S. 2008. Identification of Pyrene-degradation pathways: Bench-scale studies using Pseudomonas fluorescens 29L. Remediation. 18(3): 119-142 Husain, S. 2008. Literature Overview: Microbial metabolism of high molecular weight polycyclic aromatic hydrocarbons. Remediation. 18(2): 131-161 Hutchins, S. R. 1991. Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl. Environ. Microbiol. 57: 2403-2407 Hwang H-M., J. A. Loya, D. L. Perry and R. Scholze. 1994. Interactions between subsurface microbial assemblages and mixed organic and inorganic contaminant systems. Bull. Environ. Contam. Toxicol. 53: 771-778 Jacques, J. S., B. C. Okeke, F. M. Bento, M. C. R. Peralba and F. A. O. Camargo. 2009. Improved enrichment and isolation of polycyclic aromatic hydrocarbons 112 References (PAH)-degrading microorganisms in soil using anthracene as a model PAH. Curr. Microbiol. 58: 628-634 Jamroz, T., S. Ledakowicz, J. S. Miller and B. Sencio. 2003. Microbiological evaluation of toxicity of three polycyclic aromatic hydrocarbons and their decomposition products formed by advanced oxidation processes. Environ. Toxicol. 18(3): 187-191 Rolling, W. F., M. G. Milner, D. M. Jones, F. Daniel, R. J. Swannel and I. M. Head. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68(11): 55375548. Janjua, N. Z., P. M. Kasi, H. Nawaz, S. Z. Farooqui, U. B. Khuwaja, N. Hassan, S. N. Jafri, S. A. Lutfi, M. M. Kadir and N. Sathiakumar. 2006. Acute health effects of the Tasman Spirit oil spill on residents of Karachi, Pakistan. BMC Public Health. 6: 84 http://www.biomedcentral.com/1471-2458/6/84 Jerina, D. M. 1983. Metabolism of aromatic hydrocarbons by the cytochrome P450 system and epoxide hydrolase. Drug Metab. Dispos. 11: 1-4 Juhasz, A. L., G. A. Stanley and M. L. Britz. 2000. Degradation of high molecular weight PAHs in contaminated soil by a bacterial consortium: Effects on microtox and mutagenicity bioassays. Bioremediation. 4(4): 271-283 Juhasz, A. L., G. A. Stanley and M. L. Britz. 2000. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett. Appl. Microbiol. 30(5): 396401 Kageyama, A., Y. Takahashi, Y. Matsuo, H. Kasai, Y. Shizuri and S. Omura. 2007. Microbacterium sediminicola sp. nov. and Microbacterium marinilacus sp. nov., isolated from marine environments. Int. J. Syst. Evol. Microbiol. 57: 2355-2359 113 References Kanaly, R. A., R. Bartha, K. Watanabe and S. Harayama. 2002a. Rapid Mineralization of Benzo[a]pyrene by a Microbial Consortium Growing on Diesel Fuel. Appl. Environ. Microbiol. 66(10): 4205-4211 Kanaly, R., S. Harayama and K. Watanabe. 2002b. Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl. Environ. Microbiol. 68: 5826-5833 Karimi-Loftabad, S., M. A. Pickard and M. R. Gray. 1996. Reactions of polynuclear aromatic hydrocarbons on soil. Environ. Sci. Technol. 30: 1145-1151. Kasai, Y., H. Kishira and S. Harayama. 2002. Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl. Environ. Microbiol. 68(11): 5625-5633 Kasuga, K., H. Habe, J. Chung, T. Yoshida, H. Nojiri, H. Yamane and T. Omori. 2001. Isolation and characterization of the genes encoding a novel oxygenase component of angular dioxygenase from the gram-positive dibenzofuran-degrader Terrabacter sp. strain DBF63. Biochem. Bioph. Res. Commun. 283(1): 195-204 Katagiri, M. A. K., K. Tamura, S. Yamamoto, M. Matsumoto, Y. F. Li, S. R. Cao, R. D. Ji and C. K. Liang. 1996. Indoor and outdoor air pollution in Tokyo and Beijing supercities. Atm. Environ. 30: 695-702 Katagiri, M., S. Takemori, K. Suzuki and H. Yasuda. 1966. Mechanism of the salicylate hydroxylase reaction. J. Bio. Chem. 241(23): 5675-5677 Kauppi, B., K. Lee, E. Carredano, R. E. Parales, D. T. Gibson, H. Eklund and S. Ramaswamy. 1998. Structure of an aromatic-ring-hydroxylating dioxygenasenaphthalene 1,2-dioxygenase. Structure. 6 (5): 571-586 Keith, L. H. and W. A. Telliard. 1979. Priority pollutants - a perspective view. Environ. Sci. Technol. 13(4): 416-423 Kelley, L., J. P. Freeman and Cerniglia C. E. 1990. Identification of metabolites from degradation of naphthalene by a Mycobacterium sp. Biodegradation. 1: 283-290 114 References Khan, A. A., R. F. Wang, W. W. Cao, D. R. Doerge, D. Wennerstrom and C. E. Cerniglia. 2001. Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol. 67(8): 3577-3585 Khan, A., M. Ishaq and M. A. Khan. 2008. Effect of vehicle exhaust on the quantity of polycyclic aromatic hydrocarbons (PAHs) in soil. Environ. Monit. Assess. 137: 363-369 Khan, S. A., M. Hamayun and S. Ahmed. 2006. Degradation of 4-aminophenol by newly isolated Pseudomonas sp. strain ST-4. Enz. Microb. Technol. 38:10-13 Khurshid, R., M. A. Sheikh and S. Iqbal. 2008. Health of people working/living in the vicinity of an oil-polluted beach near Karachi, Pakistan. East. Mediter. Health J. 14(1): 179-182 Kim, S. H., S. M. Kang, K. H. Oh, S. I. Kim, B. J. Yoon and H. Y. Kahng. 2005. Characterization of PAH-degrading bacteria from soils of the reed rhizosphere of Sunchon Bay using PAH consortia. Kor. J. Microbiol. 41: 208-215 Kim, S. J., O. Kweon, J. P. Freeman, R. C. Jones, M. D. Adjei, J. W. Jhoo, R. D. Edmondson and C. E. Cerniglia. 2006. Molecular cloning and expression of genes encoding a novel dioxygenase involved in low and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl. Environ. Microbiol. 72(2): 1045-1054 Kim, S. J., R. C. Jones, C. J. Cha, O. Kweon, R. D. Edmondson and C. E. Cerniglia. 2004. Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics. 4: 3899-3908 King, J.M.H., P. M. DiGrazia, B. Applegate, R. Burlage, J. Sanseverino, P. Dunbar, F. Larimer and G. S. Sayler. 1990. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science. 249: 778-781 115 References Kirk, T. K. and R. L. Farrell. 1987. Enzymatic ‘combustion’: the microbial degradation of lignin. Annu. Rev. Microbiol. 41: 465-505 Kishikawa N., M. Wada, N. Kuroda, S. Akiyama and K. Nakashima. 2003. Determination of polycyclic aromatic hydrocarbons in milk samples by highperformance liquid chromatography with fluorescence detection. J. Chromatog. B. 789: 257-264 Kita, A., S. Kita, I. Fujisawa, K. Inaka, T. Ishida, K. Horiike, M. Nozaki and K. Miki. 1999. An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2. Structure. 7(1): 25-34 Kiyohara, H., S. Torigoe, N. Kaida, T. Asaki, T. Iida, H. Hayashi and N. Takizawa. 1994. Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J. Bacteriol. 176(8): 2439-2443 Klankeo, P., W. Nopcharoenkul and O. Pinyakong. 2009. Two novel pyrenedegrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. J. Biosci. Bioeng. 108(6): 488-495 Kochany, J. and R. J. Maguire. 1994. Abiotic transformation of polynulear aromatic hydrocarbons and polynuclear aromatic nitrogen heterocycles in aquatic environments. Sci. Tot. Environ. 144: 17-31 Kosaric, N. 2001. Biosurfactants and their application for soil bioremediation. Food Tech. Biotechol. 39: 295-304 Kumar, G., R. Singla and R. Kumar. 2010. Plasmid associated anthracene degradation by Pseudomonas sp. isolated from filling station site. Nature Sci. 8(4): 89-94 Kumar, M., V. Leon, A. M. De Sisto and O. A. Ilzins. 2006. A halotolerant and thermotolerant Bacillus sp. degrades hydrocarbons and produces tensioactive emulsifying agent. World J. Microbiol. Biotech. 23: 211-220 116 References Kurkela, S., H. Lehvaslaiho, E. T. Palva and T. H. Teeri. 1988. Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene. 73: 355-362 Lau, K. I., Y. Y. Rsang and S. W. Chiu. 2003. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere. 52: 1539-1546 Laurie, A. D. and G. L. Jones. 1999. The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J. Bacteriol. 181: 531-540 Laurie, A. D. and G. L. Jones. 2000. Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl. Environ. Microbiol. 66 : 1814-1817 Leahy, J. G. and R. R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol .Rev. 54: 305-315 Lehto, K. M., E. Vuorimaa and H. Lemmetyinen. 2000. Photolysis of polycyclic aromatic hydrocarbons (PAHs) in dilute aqueous solutions detected by fluorescence. J. Photochem. Photobiol. A. 136: 53-60 Leonardi, V., V. Sasek, M. Petruccioli, A. D. Annibale, P. Erbanova and T. Cajthaml. 2007. Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Int. Biodeter. Biodegrad. 60: 165-170 Leveau, J. H. J., A. J. B. Zehnder and J. R. van der Meer. 1998. The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J. Bacteriol. 180: 2237-2243 Li, P., X. Wang, F. Stagnitti, L. Li, Z. Gong, H. Zhang, X. Xiong and C. Austin. 2005. Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized bacteria Zoogloea sp. Environ. Eng. Sci. 22(3): 390-399 117 References Lilia, R. C., L. G. Torres and I. Rosario. 2008. Effect of nutrient and surfactant addition on polyaromatic hydrocarbon (PAH) biodegradation in contaminated soils. Land Contam. Reclam. 16(1): 1-11 Lily, M. K., A. Bahuguna, K. Dangwal and V. Garg. 2009. Degradation of benzo[a] pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447). Braz. J. Microbiol. 40: 884-892 Lim, L. H., R. M. Harrison and S. Harrad. 1999. The contribution of traffic to atmospheric concentrations of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 33: 3538-3542 Lin, C., L. Gan and Z. L. Chen. 2010. Biodegradation of naphthalene by strain Bacillus fusiformis (BFN). J. Hazard. Mat. 182(1-3): 771-777 Lin, Y. and L. X. Cai. 2008. PAH-degrading microbial consortium and its pyrenedegrading plasmids from mangrove sediment samples in Huian, China. Mar. Pollut. Bull. 57(6-12): 703-706 Liu, H. H., M. H. Lin, C. I. Chan and H. L. Chen. 2010. Oxidative damage in foundry workers occupationally co-exposed to PAHs and metals. Int. J. Hyg. Environ. Health. 213: 93-98 Liu, K., W. Han, W. P. Pan and J. T. Riley. 2001. Polycyclic aromatic hydrocarbon (PAH) emissions from a coal fired pilot FBC system. J. Hazard. Mat. 84(2-3): 175188 Loehr, R. C. 1992. Bioremediation of PAH compounds in contaminated soil. Hydrocarbon contaminated soils and ground water. In: Calabrese EJ, Kostechi PT (eds), Proceedings 1st annual West Coast conference on hydrocarbon contaminated soils ground water, Feb 1990, Newport Beach, CA. Vol. 1. Lewis Publishers, Chelsea MI, pp 213–222 Luan, T. G., K. S. H. Yu, Y. Zhong, H. W. Zhou, C. Y. Lan and N. F. Y. Tam. 2006. Study of metabolites from the degradation of polycyclic aromatic hydrocarbons 118 References (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere. 65(11): 2289-2296 Mackay, D. 1997. Multimedia mass balance models of chemical distribution and fate, In: Ecotoxicology edited by G. Schuurmann and B. Markert and published by John Wiley, NY and Spektrum Press, Berlin. Maier, M., D. Maier and B. J. Lloyd. 2000. The role of biofilms in the mobilisation of polycyclic aromatic hydrocarbons (PAHs) from the coal-tar lining of water pipes. Wat. Sci. Technol. 41(4-5): 279-285 Malik, Z. A. 2009. Biodegradation of crude oil by bacteria. Ph.D thesis, submitted to Quaid-i-Azam University, Islamabad, Pakistan. Mallick, S., S. Chatterjee and T. K. Dutta. 2007. A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(29-hydroxyphenyl)pent-4-enoic acid. Microbiology. 153: 2104-2115 Mane, S. S., D. M. Purnell and I. C. Hsu. 1990. Genotoxic effects of five polycyclic aromatic hydrocarbons in human and rat mammary epithelial cells. Environ. Molec. Mutag. 15(2): 78-82 Margesin, R., A. Zimmerbauer and F. Schinner. 1999. Soil lipase activity-a useful indicator of oil biodegradation. Biotechnol. Techn. 13: 859-863 Martens, D., J. Maguhn, P. Spitzauer and A. Kettrup. 1997. Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in an agricultural ecosystem. Fresenius J. Anal. Chem. 359: 546-554 Mastrangela, G., E. Fadda and V. Marzia. 1996. Polycyclic aromatic hydrocarbons and cancer in man. Environ. Health Perspect. 104(11): 1166-1170 Meckenstock, R. U., E. Annweiler, W. Michaelis, H. H. Richnow and B. Schink. 2000. Anaerobic naphthalene degradation by a sulphate reducing enrichment culture. Appl. Environ. Microbiol. 66: 2743-2747 119 References Menn, F. M., B. M. Applegate and G. S. Sayler. 1993. NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl. Environ. Microbiol. 59(6): 1938-1942 Mester, T. and M. Tien. 2000. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int. Biodeterior. Biodegrad. 46: 51-59 Molina, M. C., N. Gonzalez., L. F. Bautista., R. Sanz., R. Simarro., I. Sanchez and J. L. Sanz. 2009. Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation. 20: 789-800 Moody J. D., P. P. Fu, J. P. Freeman and C. E. Cerniglia. 2004. Regio- and Stereoselective Metabolism of 7,12-Dimethylbenz[a]anthracene by Mycobacterium vanbaalenii PYR-1. Appl. Environ. Microbiol. 69(7): 3924-3931 Moody, J. D., J. P. Freeman, D. R. Doerge and C. E. Cerniglia. 2001. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol. 67: 1476-1483 Mueller, J. G., C. E. Cerniglia and P. H. Pritchard. 1996. Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons, In Bioremediation: Principles and Applications, ed by Crawford R. L. and D. L. Crawford. Cambridge University Press, Idaho, pp 125–194 Mueller, J. G., P. J. Chapman and P. H. Pritchard. 1989. Action of a fluorantheneutilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl. Environ. Microbiol. 55: 3085-3090 Obayori, O. S., M. O. Ilori, S. A. Adebusoye, G. O. Oyetibo and O. O. Amund. 2008. Pyrene-degradation potentials of Pseudomonas species isolated from polluted tropical soils. World J. Microbiol. Biotechnol. 24: 2639-2646 Ohkouchi, N., K. Kawamura and H. Kawahata. 1999. Distributions of three to sevenring polynuclear aromatic hydrocarbons on the deep sea floor in the central pacific. Environ. Sci. Technol. 33: 3086-3090 120 References Pandey, B. V. and R.S. Upadhyay. 2010. Pseudomonas fluorescens can be used for bioremediation of textile effluent Direct Orange-102. Tropical Ecol. 51(2S): 397-403 Papadoyannis, I. N., A. Zatou and V. F. Samanidou. 2002. Development of a solid phase extraction protocol for the simultaneous determination of anthracene and its oxidation products in surface waters by reversed-phase HPLC. J. Liquid Chromatog. Related Technol. 25: 2653-2661 Parales, R. E., K. Lee, S. M. Resnick, H. Jiang, D. J. Lessner and D. T. Gibson. 2000. Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. 182(6): 164-1649 Park, J. and D. E. Crowley. 2006. Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils. Appl. Microbiol. Biotechnol. 72: 1322-1329 Paskova, V., K. Hilscherov, M. Feldmannov and L. Blha. 2006. Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives. Environ. Toxicol. Chem. 25(12): 3238-3245 Pathak, H., D. Kantharia, A. Malpani and D. Madamwar. 2009. Naphthalene degradation by Pseudomonas sp. HOB1: In vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms. J. Hazard. Mat. 166: 1466-1473 Patnaik, P. 1992. Hydrocarbon, aromatic. In: Patnaik P (ed) A comprehensive guide to the hazardous properties of chemical substances. Van Nostrand Reinhold, New York, NY, pp 425–445 Peng, R. H., A. S. Xiong, Y. Xue, X. Y. Fu, F. Gao, W. Zhao, Y. S. Tian and Q. H. Yao. 2008. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 32: 927-955 Perera, F., D. Tang, R. Whyatt, S. A. Lederman and W. Jedrychowski. 2005. DNA damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA 121 References adducts in mothers and newborns from Northern Manhattan, The World Trade Center Area, Poland, and China. Cancer Epidemiol. Biomarkers Prev. 14(3): 709-714 Perez-Perez, F. J. and N. D. Hanson. 2002. Detection of plasmid-mediated AmpC ßlactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40(6): 2153-2162 Peterson, C. H. 2001. The “Exxon Valdez” oil spill in Alaska: Acute, indirect and chronic effects on the ecosystem. Adv. Mar. Bio. 39: 1-103 Phale, P. S., A. Basu, P. D. Majhi, J. Deveryshetty, C. Vamsee-Krishna and R. Shrivastava. 2007. Metabolic diversity in bacterial degradation of aromatic compounds. OMICS. 11: 252-279 Pinyakong, O., H. Habe and T. Omori. 2003a. The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J. Gen. Appl. Microbiol. 49: 1–19 Pinyakong, O., H. Habe, A. Kouzuma, H. Nojiri, H. Yamane and T. Omori. 2004. Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS Microbiol. Lett. 238: 297-305 Pinyakong, O., H. Habe, T.Yoshida, H. Nojiri and T. Omori. 2003b. Identification of three isofunctional novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem. Biophys. Res. Commun. 201: 350-357 Pliskova, M., J. Vondracek, B. Vojtesek, A. Kozubik and M. Machala. 2005. Deregulation of cell proliferation by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells reflects both genotoxic and nongenotoxic events. Toxicol. Sci. 83(2): 246-256 Pointet, K. and A. Milliet. 2000. PAHs analysis of fish whole gall bladders and livers from the Natural Reserve of Camargue by GC/MS. Chemosphere. 40: 293-299 122 References Reddy, M. S., B. Naresh, T. Leela, M. Prashanthi, N. C. Madhusudhan, G. Dhanasri and P. Devi. 2010. Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour. Technol. 101(20): 7980-7983 Rehmann, K., H. P. Noll, C. E. W. Steinberg and A. A. Kettrup. 1998. Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere. 36: 2977-2992 Reinik, M., T. Tamme, M. Roasto, K. Juhkam, T. Tenno and A. Kiis. 2007. Polycyclic aromatic hydrocarbons (PAHs) in meat products and estimated PAH intake by children and the general population in Estonia. Food Addit. Contam. 24(4): 429437 Resnick, S. M., K. H. Lee and D. T. Gibson. 1996. Diverse reactions catalyzed by naphthalene dioxygenase by Pseudomonas sp. strain NCCIB9816. J. Ind. Microbiol. Biotechnol. 17: 438-458 Ripp, S., D.E. Nivens, Y. Ahn, C. Werner, J. Jarrel, J. P. Easter, C. D. Cox, R. S. Burlage and G. S. Sayler. 2000. Controlled field release of a bioluminiscent genetically engineered microorganisms for bioremediation process, monitoring and control. Environ. Sci. Technol. 34: 846-853 Robinovich, M. L., A. V. Bolobova and L. G. Vasil’chenko. 2004. Fungal decomposition of natural aromatic structures and xenobiotics: A review. Appl. Biochem. Microbiol. 40: 1-17 Rockne, K. J. and S. E. Strand. 1998. Biodegradation of bicyclic and polycyclic aromatic hydrocarbons in anaerobic enrichments. Environ. Sci. Technol. 32: 29622967 Rockne, K. J., J. C. Chee-Sandford, R. Sanford, B. P. Hedlund, J. T. Staley and S. E. Strand. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate reducing conditions. Appl. Environ. Microbiol. 66: 1595-1601 Ron, E. Z. and E. Rosenberg. 2001. Natural roles of biosurfactants. Environ. Microbiol. 3(4): 229-236 123 References Sabate, J., J. M. Bayona and A. M. Solanas. 2001. Photolysis of PAHs in aqueous phase by UV irradiation. Chemosphere. 44: 119-124 Said, S., F. M. Neves and A. J. F. Griffiths. 2004. Cinnamic acid inhibits the growth of the fungus Neurospora crassa, but is eliminated as acetophenone. Int. Biodeter. Biodegrad. 54: 1-6 Saifullah, S. M. and F. Chaghtai. 2005. Effect of “Tasman Spirit” oil spill on marine plants in the coastal area of Karachi. Int. J. Bio. Biotechnol. 2: 299-306 Salinas, R. O., G. D. Gonzalez, B. S. Bermudez, R. G. Tolentino and S. V. Leon. 2010. Presence of polycyclic aromatic hydrocarbons (PAHs) in apple in rural terrains from Mexico City. Bull. Environ. Contam. Toxicol. 85: 179-183 Samanta, S. K., O. V. Singh and R. K. Jain. 2002. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol. 20(6): 243-248 Sanseverino, J., C. Werner , J. Fleming , B. Applegate , J. M. King and G. S. Sayler. 1993. Molecular diagnostics of polycyclic aromatic hydrocarbon biodegradation in manufactured gas plant soils. Biodegradation. 4(4): 303-321 Sayler, G. S., M. S. Shields, E. T. Tedford, A. Breen, S. W. Hooper, K. M. Sirotkin and J. W. Davis. 1985. Application of DNA–DNA colony hybridization to the detection of catabolic genotype in environmental samples. Appl. Environ. Microbiol. 49(5): 1295-1303 Schocken, M. J. and D. T. Gibson. 1984. Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Appl. Environ. Microbiol. 48(1): 10-16 Schuler, L., S. M. N. Chadhain, Y. Jouanneau, C. Meyer, G. J. Zylstra, P. Hols and S. N. Agathos. 2008. Characterization of a novel angular dioxygenase from fluorenedegrading Sphingomonas sp. strain LB126. Appl. Environ. Microbiol. 74 (4): 1050– 1057 124 References Schuler, L., Y. Jouanneau, S. M. N. Chadhain, C. Meyer, M. Pouli, G. J. Zylstra, P. Hols and S. N. Agathos. 2009. Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl. Microbiol. Biotechnol. 83: 465-475 Searle, C.E. 1976. Ed. Chemical Carcinogens, American Chemical Society, Washington, DC. Semple, K. T., N. M. Dew, K. J. Doick and A. H. Rhodes. 2006. Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil? Environ. Pollut. 140: 164-172 Seo, J. S., Y. S. Keum, R. M. Harada and Q. X. Li. 2007. Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. J. Agric. Food Chem. 55: 5383-5389 Sepic, E., M. Bricelj and H. Leskovsek. 1997. Biodegradation studies of polyaromatic hydrocarbons in aqueous media. J. Appl. Microbiol. 83: 561-568 Sepic, E., M. Bricelj and H. Leskovsek. 1998. Degradation of fuoranthene by Pasteurella sp. IFA and Mycobacterium sp. PYR1: isolation and identification of metabolites. J. Appl. Microbiol. 85: 746-754 Shen, F. and L. Z. Zhu. 2007. Concentration and distribution of PAHs in vegetables grown near an iron and steel industrial area. Huan Jing Ke Xue. 28(3): 669-672 Shin, K.H., Y. Ahn and K. W. Kim. 2005. Toxic effect of biosurfactant addition on the biodegradation of phenanthrene. Environ. Toxicol. Chem. 24: 2768–2774. Shindo, K., Y. Ohnishi, H. K. Chun, H. Takahashi, M. Hayashi, A.Saito, K. Iguchi, K. Furukawa, S. Harayama, S. Horinouchi and N. Misawa. 2001. Oxygenation reaction of variuos tricyclic fused aromatic compounds using E. coli and Stretomyces linidans transformant carrying several arene dioxygenase genes. Biosci. Biotechnol. Biochem. 65(1): 2472-2481 125 References Sho, M., C. Hamel and C. W. Greer. 2004. Two distinct gene clusters encode pyrene degradation in Mycobacterium sp. strain S65. FEMS Microbiol. Eco. 48: 209-220 Shuyu, H., Z. Qingmin, D. Miao, Z. Yang and S. Hongwen. 2007. Optimized cultivation of highly-efficient degradation bacterial strains and their degradation ability towards pyrene. Front. Biol. China. 2(4): 387-390 Siddiqi H. A., F. A. Ansari and A. B. Munshi. 2009. Assessment of hydrocarbons concentration in marine fauna due to Tasman Spirit oil spill along the Clifton beach at Karachi coast. Environ. Monit. Assess. 148:139-148 Silva, I. S., M. Grossman and L. R. Durrant. 2009. Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. Int. Biodeter. Biodegrad. 63: 224-229 Singh, A. and O. P. Ward. 2004. Biodegradation and Bioremediation: Series: Soil Biology, vol. 2, Springer-Verlag, New York. Singh, O. V. and R. K. Jain. 2003. Phytoremediation of toxic aromatic pollutants from soil. Appl. Microbiol. Biotechnol. 63: 128-135 Siripong, P., B. Oraphin and P. Duanporn. 2009. The ability of five fungal isolates from nature to degrade of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in culture media. Aust. J. Basic Appl. Sci. 3(3): 1076-1082 Smith, D. J. T., R. M. Harrison, L. Luhana, C. A. Pio, L. M. Castro, M. N. Tariq, S. Hayat and T. Quraishi. 1996. Concentration of particulate airborne polycyclic aromatic hydrocarbons and metals collected in Lahore, Pakistan. Atm. Eniron. 30(23): 4031-4040 Srinivasan, C., T. M. D'Souza, K. Boominathan and C. A. Reddy. 1995. Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbiol. 61: 4274-4277 Stenberg, U., T. Alsberg and R. Westerholm. 1983. Emission of carcinogenic components with automobile exhausts. Environ. Health Perspect. 47: 53-63 126 References Stingley, R. L., A. A. Khan and C. E. Cerniglia. 2004b. Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1. Biochem. Biophys. Res. Commun. 322: 133-146 Stingley, R. L., B. Brezna, A. A. Khan and C. E. Cerniglia. 2004a. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology. 150: 3749-3761 Stringfellow, W. T. and M. D. Aitken. 1995. Competitive metabolism of naphthalene, methylnaphthalenes and fluorene by phenanthrene-degrading Pseudomonads. Appl. Environ. Microbiol. 61(1): 357-362 Su, D., P. J. Li, X. Wang and H. X. Xu. 2007. Degradation and kinetics of pyrene and benzo(a)pyrene by three bacteria in contaminated soil. Huan Jing Ke Xue. 28(4): 913917 Sundberg, K., M. Widersten, A. Seidel, B. Mannervik and B. Jernstom. 1997. Glutathione conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione tramsferases M1-1 and P1-1. Chem. Res. Toxicol. 10: 1221-227 Sutherland, J. B., F. Rafii, A. A. Khan and C. E. Cerniglia. 1995. Mechanisms of polycyclic aromatic hydrocarbon degradation, In: Microbial Transformation and Degradation of Toxic Organic Chemicals, ed by Young L. Y. and C. E. Cerniglia. Wiley-Liss, New York, pp 269–306 Sutherland, J. B., J. P. Freeman, A. L. Selby, P. P. Fu , D. W. Miller and C. E. Cerniglia. 1990. Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch. Microbiol. 154(3): 260-266 Tam, N. F. Y., C. L. Guo, W. Y. Yau and Y. S. Wong. 2002. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Mar. Pollut. Bull. 45: 316-324 127 References Tang, X., Y. Zhu and Q. Meng. 2007. Enhanced crude oil biodegradability of Pseudomonas aeruginosa ZJU after preservation in crude oil-containing medium. World J. Microbiol. Biotechn. 23(1): 7-14 Tao, X. Q., G. N. Lu, Z. Dang. X. Y. Yi and C. Yang. 2007. Isolation of phenanthrene-degrading bacteria and characterization of phenanthrene metabolites. World J. Microbiol. Biotechnol. 23: 647-654 Taylor, L. T. and D. M. Jones. 2001, Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere. 44: 1131-1136 Teng, Y., Y. Luo, M. Sun, Z. Liu, Z. Li and P. Christie. 2010. Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Biores. Technol. 101: 3437–3443 Thompson, J. D., T. J. Gibson and D. G. Higgins. 2003. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protocols Bioinfor. 2.3.1-2.3.22 Tiana L., P. Maa and J. Zhong. 2003. Impact of the presence of salicylate or glucose on enzyme activity and phenanthrene degradation by Pseudomonas mendocina. Proc. Biochem. 38(8): 1125-1132 Tiana, L., P. Ma and J. Zhong. 2002. Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina. Process Biochem. 37: 14311437 Ting, Y., P. Zhou, Y. Zhou, L. Heng-Li and S. Liu. 2004. Saccharothrix xinjiangensis sp. nov., a pyrene degrading actinomycetes isolated from Tianchi Lake, Xinjhiang, China. Int. J. Syst. Evol. Microbiol. 54, 2091–2094. Tongpim, S. and M. A. Pickard. 1999. Cometabolic oxidation of phenanthrene to phenanthrene trans-9,10-dihydrodiol by Mycobacterium strain S1 growing on anthracene in the presence of phenanthrene. Can. J. Microbiol. 45: 369-376 128 References Treadway, S. L., K. S. Yanagimachi, E. Lankenau, P. A. Lessard, G. Stephanopoulos and A. J. Sinskey. 1999. Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. Appl. Microbiol. Biotechnol. 51: 786-793 Tuomi, P. M., J. M. Salminen and K. S. Jorgensen. 2004. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. FEMS Microbiol. Eco. 51: 99-107 United States Coast Guard. 1993. Federal on scene coordinator’s report: T/V Exxon Valdez oil spill (Two volumes). U.S. Department of Transportation. Washington, D.C. Van, J. A., W. A. J. Van-Pul and F. A. De Leeuw. 1997. Modelling transport and deposition of persistent organic pollutants in the European region. Atm. Environ. 31(7): 1011-1024 Vila, J., Z. Lopez, J. Sabate, C. Minguillon, A. M. Solanas and M. Grifoll. 2001. Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: Actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 67(12): 5497-5505 Vilanova, R. M., P. Fernandez, C. Martinaz and J. O. Grimalt. 2001. Polycyclic aromatic hydrocarbons in remote mountain lake waters. Wat. Res. 35(16): 3916-3926 Villemain, D., P. Guiraud, O. Bordjiba and R. Steiman. 2006. Biotransformation of anthracene and fluoranthene by Absidia fusca Linnemann. Electron. J. Biotechnol. 9(2): http://www.ejbiotechnology.info/content/vol9/issue2/full/10/ Wan, C. K., J. W. C. Wong, M. Fang and D. Y. Ye. 2003. Effect of organic waste amendments on degradation of PAHs in soil using thermophillic composting. Environ. Technol. 24(1): 23-30 Wang, X., P. Li, S. Song, Y. Zhong, H. Zhang and E. V. Verkhozina. 2006. Immobilization of introduced bacteria and degradation of pyrene and benzo(a)pyrene in soil by immobilized bacteria. Ying Yong Sheng Tai Xue Bao. 17(11): 2226-2228 129 References Ward, O. P., A. Singh and J. V. Hamme. 2003. Accelerated biodegradation of petroleum hydrocarbon waste. J. Ind. Microbiol. Biotechnol. 30: 260-270 Watanabe, K. 2001. Microorganisms relevant to bioremediation. Curr. Opin. Biotechnol. 12: 237-241 Wick, L. Y., A. R. de Munain, D. Springael and H. Harms. 2002b. Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl. Microbiol. Biotechnol. 58: 378-385 Wick, L. Y., P. Wattiau and H. Harms. 2002a. Influence of the growth substrate on the mycolic acid profiles of mycobacteria. Environ. Microbiol. 4(10): 612-616 Widdle, F. and R. Rabus. 2001. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12: 259-276 Wilson, L. P. and E. J. Bouwer. 1997. Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: A review. J. Indust. Microbiol. Biotechnol. 18: 116-130 Wison, A. S., C. D. Davis, P. D Williams, R. A. Buckpitt, M. Pirmohamed and B. K. Park. 1996. Characterization of the toxic metabolites of naphthalene. Toxicology. 114: 233-242 Wong, J. W. C., K. M. Lai, C. K. Wan, K. K. Ma and M. Fang. 2002. Isolation and optimization of PAH-Degradative bacteria from contaminated soil for PAHs bioremediation. Wat. Air Soil Poll. 139: 1-13 Wu, Y., Y. Luo, D. Zou, J. Ni, W. Liu, Y. Teng and Z. Li. 2008. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation. 19: 247–257 Yan, J., L. Wang, P. P. Fu and H. Yu. 2004. Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat. Res. 557(1): 99-108 130 References Ye, D., M. A. Siddiqi, A. E. Maccubbin, S. Kumar and H. C. Sikka. 1996. Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ. Sci. Technol. 30(1): 136-142 Yu, K. S. H., A. H. Y. Wong, K. W. Y. Yau, Y. S. Wong and N. F. Y. Tam. 2005. Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar. Poll. Bull. 51(8-12): 1071–1077 Zander, M. 1983. Physical and chemical properties of polycyclic aromatic hydrocarbons. In: A. Bjorstedth, Editor, Handbook of Polycyclic Aromatic Hydrocarbon, Marcel Dekker Inc., USA, pp. 1-25. Zhang, Y. and S. Tao. 2009. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atm. Environ. 43(4): 812-819 Zhao, X., L. Fu, J. Hu, J. Li, H. Wang, C. Huang and X. Wang. 2009. Analysis of PAHs in water and fruit juice samples by DLLME combined with LC-Fluorescence detection. Chromatographia. Published online 05 May 2009. Zhong, Y., T. Luan, H. Zhou, C. Lan and N. F. Y. Tam. 2006. Metabolite production in degradation of pyrene alone or in a mixture with another polycyclic aromatic hydrocarbon by Mycobacterium Sp. Environ. Toxicol. Chem. 25(11): 2853-2859 131 Appendix Figure I a. Phylogenetic tree of bacterial isolates 132 Appendix Percent Identity 1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 99.8 99.6 94.0 99.8 99.7 99.8 99.8 93.9 98.9 94.1 99.8 93.6 78.1 99.3 99.2 82.0 94.5 94.8 78.8 78.5 78.8 93.0 92.3 92.2 78.0 84.9 76.6 1 B. cereus AB215098 98.9 93.5 98.6 98.6 98.6 98.6 92.8 96.6 93.0 99.5 93.6 77.9 99.3 99.2 81.5 94.0 94.3 78.8 78.5 78.8 93.0 92.3 92.2 77.2 84.9 76.7 2 B. cereus AF227848 94.1 99.7 99.6 99.7 99.7 94.0 97.6 94.1 99.7 93.6 78.7 99.3 99.2 81.7 94.0 94.3 78.9 78.6 78.8 92.7 92.0 91.8 77.9 85.0 76.7 3 AJ310098.seq 94.2 94.1 94.2 94.2 99.5 93.2 99.7 94.2 99.0 78.1 94.6 94.3 81.1 98.8 99.2 78.3 78.3 78.6 92.3 91.7 91.5 78.0 83.0 75.9 4 B. sonorensis AJ586363 99.9 100.0 100.0 94.1 96.8 94.2 100.0 93.8 78.1 99.3 99.2 81.7 94.0 94.3 78.8 78.5 78.8 93.0 92.3 92.2 78.4 84.9 76.7 5 B. cereus AY224379 94.1 96.8 94.2 93.7 78.0 99.3 99.2 81.7 94.0 94.3 78.7 78.4 78.7 92.9 92.3 92.1 78.3 84.8 76.7 6 B. cereus AY224383 100.0 94.1 96.8 94.2 100.0 93.8 78.1 99.3 99.2 81.7 94.0 94.3 78.8 78.5 78.8 93.0 92.3 92.2 78.4 84.9 76.7 7 B. cereus AY224385 94.1 96.8 94.2 100.0 93.8 78.1 99.3 99.2 81.7 94.0 94.3 78.8 78.5 78.8 93.0 92.3 92.2 78.4 84.9 76.7 8 AY224388.seq 91.9 99.8 94.0 99.3 77.9 94.5 94.2 81.0 98.7 99.1 78.3 78.3 78.6 92.3 91.8 91.6 78.2 83.0 75.6 9 B. licheniformis AY728013 92.3 98.2 94.3 81.0 99.4 99.3 81.2 93.7 94.0 81.8 81.8 83.2 93.0 93.1 92.4 80.3 86.5 79.4 10 B. Cereus DQ884352.seq 94.1 99.4 78.2 94.6 94.3 81.1 98.8 99.2 78.3 78.3 78.6 92.5 91.8 91.6 78.2 83.0 75.9 11 Bacillus sp.EF471917.seq 93.8 78.2 99.3 99.2 81.7 94.0 94.3 78.8 78.5 78.8 93.0 92.3 92.2 78.3 84.9 76.7 12 B. Cereus EU373359.seq 78.2 94.6 94.2 82.4 99.3 99.7 79.0 78.9 78.7 91.9 91.6 91.3 78.2 82.9 75.8 13 B. licheniformis EU373408. 82.1 82.0 98.4 81.1 81.3 98.6 99.9 96.8 77.4 77.3 76.7 94.1 75.9 84.8 14 Staph. haemolyticus EU652064 99.4 81.8 94.0 94.2 82.0 82.0 83.4 93.1 93.2 92.6 82.1 86.8 79.7 15 Fazal-1KWS4.seq 81.7 94.1 94.4 81.9 81.9 83.3 92.9 93.0 80.7 80.8 99.7 99.0 81.4 99.3 81.4 97.1 82.7 81.1 92.8 80.7 92.7 92.4 80.2 82.0 94.6 86.6 78.6 79.6 85.7 16 17 Fazal-2KWS2.seq Fazal-3 10_1.seq 92.1 81.4 85.0 79.6 18 Fazal-4 DW3.seq 81.7 81.7 82.8 93.1 93.0 92.4 81.4 85.3 79.9 19 Fazal-5 10.seq 98.7 97.2 78.0 78.0 77.2 94.3 76.2 84.6 20 PSU26261.seq 96.9 77.5 77.4 76.8 94.3 75.9 84.8 21 P. stutzeri U26262 77.3 77.8 76.9 95.9 75.6 83.9 22 P. putida D37923.seq 97.8 97.8 76.8 82.4 76.3 23 Staph. aureus D83358 97.6 76.8 83.5 76.3 24 Staph. haemolyticus D83367 76.3 83.1 75.7 25 Staph. hyicus D83368 75.4 84.0 26 P. fluorescens Z76662 74.8 27 Strep. mutans X58303 28 E. coli X80725 2 0.2 3 0.3 1.0 4 6.2 6.7 6.0 5 0.2 1.4 0.3 6.0 6 0.3 1.4 0.3 6.1 0.1 7 0.2 1.4 0.3 6.0 0.0 0.1 8 0.2 1.4 0.3 6.0 0.0 0.1 0.0 9 6.4 7.6 6.2 0.5 6.1 6.2 6.1 6.1 1.1 3.4 2.4 7.2 3.3 3.3 3.3 3.3 8.6 6.2 7.4 6.1 0.3 6.0 6.1 6.0 6.0 0.2 8.2 0.2 0.5 0.3 6.0 0.0 0.1 0.0 0.0 6.2 1.8 6.2 6.7 6.7 6.7 0.9 6.6 6.6 6.6 6.6 0.7 6.0 0.6 6.6 26.0 26.3 25.2 26.0 26.1 26.2 26.1 26.1 26.3 22.0 25.8 26.0 26.0 0.7 0.7 0.7 5.6 0.7 0.7 0.7 0.7 5.7 0.6 5.6 0.7 5.6 20.5 11 12 13 14 15 16 17 10 2 99.9 99.9 99.9 0.8 0.8 0.8 6.0 0.8 0.8 0.8 0.8 6.1 0.7 6.0 0.8 6.1 20.6 0.6 18 20.3 5.7 20.7 6.3 20.5 6.3 21.2 1.2 20.5 6.3 20.5 6.3 20.5 6.3 20.5 6.3 21.4 1.3 21.1 6.6 21.2 1.2 20.5 6.3 20.1 0.7 0.9 22.0 20.3 6.3 20.5 6.2 21.9 19 5.4 5.8 5.8 0.7 5.8 5.8 5.8 5.8 0.8 6.2 0.7 5.8 0.3 21.5 6.0 5.8 21.7 0.2 20 25.0 25.0 24.8 25.7 25.0 25.1 25.0 25.0 25.8 21.0 25.8 25.0 24.8 1.4 20.7 20.8 0.7 21.5 21.2 21 25.5 25.5 25.3 25.7 25.5 25.6 25.5 25.5 25.8 21.0 25.8 25.5 24.9 0.1 20.7 20.8 0.5 21.5 21.2 1.3 22 25.1 25.1 25.0 25.3 25.1 25.2 25.1 25.1 25.4 19.2 25.4 25.1 25.2 3.2 18.9 19.0 2.9 19.8 19.7 2.8 3.2 23 7.4 7.4 7.7 8.1 7.4 7.5 7.4 7.4 8.2 7.5 8.0 7.4 8.6 27.0 7.3 7.6 21.6 7.7 7.3 26.1 26.9 27.2 24 8.2 8.2 8.5 8.8 8.2 8.3 8.2 8.2 8.7 7.3 8.7 8.2 9.0 27.3 7.2 7.4 22.2 7.8 7.5 26.2 27.1 26.6 2.2 8.3 8.3 8.7 9.1 8.3 8.4 8.3 8.3 9.0 8.1 9.0 8.3 9.4 28.2 7.9 8.2 23.0 8.4 8.1 27.5 28.0 27.8 2.3 2.5 25.6 26.7 25.6 25.5 25.0 25.1 25.0 25.0 25.3 22.7 25.4 25.2 25.2 5.6 20.3 20.4 4.7 21.3 21.1 5.4 5.4 3.6 27.4 27.4 28.1 14.7 14.7 14.6 17.1 14.7 14.8 14.7 14.7 17.2 13.2 17.2 14.7 17.3 26.9 12.7 13.0 23.2 15.0 14.6 26.5 26.9 27.4 17.9 16.5 17.0 27.0 27.9 27.8 27.8 29.0 27.8 27.8 27.8 27.8 29.5 24.0 29.0 27.8 29.2 16.8 23.5 23.6 15.5 23.6 23.3 17.1 16.9 17.9 28.4 28.4 29.4 17.2 28.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 27 28 25 28 Figure I b. Percent identity of bacterial isolates with other known identified bacterial strains 133 Appendix (Continued on next page) 134 Appendix Figure I c. nidAB gene sequence cloned from Mycobacterium PY146 and containing the EcoRI and HindIII restriction enzyme adaptor sequences 135 Appendix Ab und ance A Scan 2744 (18.758 min): 0201002.D\ d ata .ms (-2724) (-) 115.0 7000000 6500000 144.0 6000000 5500000 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 89.0 63.0 500000 39.0 72.0 50.0 98.0 0 30 40 50 60 70 80 90 100 126.0135.0 110 120 130 140 m/ z--> B 100 144 115 50 HO 89 63 39 50 72 98 0 30 40 50 60 (replib) 2-Naphthalenol 70 80 126 90 100 110 120 130 140 Figure II a. Mass spectra obtained by GC/MS of 2-Naphthalenol produced by Bacillus cereus KWS2 grown with naphthalene (A) and from NIST mass spectral library (B). 136 Appendix Ab und a nce A Sca n 2046 (15.025 min): 0201002.D\ d a ta .ms (-2025) (-) 91.0 200000 180000 160000 140000 120000 100000 80000 135.9 60000 40000 65.0 20000 39.0 51.0 77.0 107.1 117.9126.0 0 30 40 50 60 70 80 90 100 110 120 130 140 m/ z--> B 91 100 O OH 50 136 0 39 45 51 65 77 30 40 50 60 70 (replib) Benzeneacetic acid 80 90 100 110 120 130 140 Figure II b. Mass spectra obtained by GC/MS of benzeneacetic acid produced by Bacillus cereus KWS2 grown with naphthalene (A) and from NIST mass spectral library (B). 137 Appendix A Ab und a nc e Sc a n 1797 (13.693 min): 0201002.D \ d a ta .ms 105.0 8000 121.9 7500 7000 76.9 6500 6000 5500 5000 4500 4000 3500 3000 2500 43.0 51.0 2000 1500 59.9 1000 69.1 500 91.0 84.1 0 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125 m/ z--> B 105 100 122 77 HO O 51 50 39 45 94 65 0 30 40 50 60 70 (mainlib) Benzenecarboxylic acid 80 90 100 110 120 Figure II c. Mass spectra obtained by GC/MS of Benzenecarboxylic acid produced by Bacillus cereus KWS2 grown with naphthalene (A) and from NIST mass spectral library (B). 138 Appendix Ab und ance A Sca n 1153 (10.249 min): 0201002.D\ d ata .ms (-1141) (-) 130000 106.0 120000 110000 77.0 100000 90000 80000 70000 60000 51.0 50000 40000 30000 20000 39.0 10000 63.1 45.2 0 30 35 40 45 50 55 60 65 82.7 88.9 70 75 80 85 90 95.8 95 100 105 m/ z--> B 106 77 100 O 51 50 0 30 39 74 43 30 40 50 (replib) Benzaldehyde 63 60 84 89 70 80 90 100 Figure II d. Mass spectra obtained by GC/MS of Bezaldehyde produced by Bacillus cereus KWS2 grown with naphthalene (A) and from NIST mass spectral library (B). 139 Appendix A A b und a nc e S c a n 4002 (25.487 m in): 0201002.D \ d a ta .m s (-4009) (-) 194.0 165.0 700000 650000 600000 550000 500000 450000 400000 350000 300000 250000 200000 150000 100000 82.1 139.0 50000 69.4 39.0 97.0 115.0 51.0 127.0 0 30 40 50 60 70 80 90 151.0 181.8 100 110 120 130 140 150 160 170 180 190 m/ z--> B 194 100 165 50 0 37 49 69 82 OH 97 30 50 70 90 (mainlib) 9-Phenanthrenol 115 126 139 150 110 130 150 174 170 190 Figure II e. Mass spectra obtained by GC/MS of 9-phenanthrenol produced by Bacillus cereus KWS2 grown in phenanthrene (A) and from NIST mass spectral library (B). 140 Appendix A A b und a nc e S c a n 3946 (25.187 m in): 0201002.D \ d a ta .ms (-3932) (-) 165.0 170000 160000 150000 140000 130000 120000 181.0 110000 212.0 100000 90000 80000 70000 60000 193.9 50000 152.0 40000 30000 20000 76.9 10000 115.0 63.0 49.9 138.9 101.9 0 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 m/ z--> B 165 100 212 181 50 82 51 63 69 0 41 194 HO OH 115 89 151 139 30 50 70 90 110 130 150 170 (mainlib) 9,10-Dihydro-9,10-dihydroxyphenanthrene 190 210 Figure II f. Mass spectra obtained by GC/MS of 9, 10-dihydro-9, 10dihydroxyphenanthrene produced by Bacillus cereus KWS2 grown in phenanthrene (A) and from NIST mass spectral library (B). 141 Appendix A A b und a nc e S c a n 2058 (15.089 min): 0201002.D \ d a ta .ms (-2025) (-) 91.0 400000 380000 360000 340000 320000 300000 280000 260000 240000 220000 200000 180000 160000 140000 135.9 120000 100000 80000 65.0 60000 40000 39.0 51.0 20000 77.0 98.8 106.9 0 30 40 50 60 70 80 90 100 110 118.0 120 128.2 130 m / z--> B 91 100 O OH 50 136 0 39 45 51 65 77 30 40 50 60 70 (replib) Benzeneacetic acid 80 90 100 110 120 130 140 Figure II g. Mass spectra obtained by GC/MS of benzeneacetic acid produced by Bacillus cereus KWS2 grown in phenanthrene (A) and from NIST mass spectral library (B). 142 Appendix A Ab und a nce Sca n 2856 (19.357 min): 0301003.D \ d a ta .ms (-2816) (-) 107.0 1100000 1000000 900000 800000 700000 600000 500000 400000 151.9 300000 77.0 200000 100000 51.0 39.0 63.0 89.0 98.0 0 30 40 50 60 70 80 90 129.0 116.9 100 110 120 141.2 130 140 150 m/ z--> B 107 100 O OH 50 152 77 0 31 39 51 OH 63 86 95 121 134 30 40 50 60 70 80 90 100 110 120 130 140 150 (mainlib) Benzeneacetic acid, 4-hydroxy Figure II h. Mass spectra obtained by GC/MS of 4-hydroxy benzeneacetic acid produced by Bacillus cereus KWS2 grown in phenanthrene (A) and from NIST mass spectral library (B). 143 Appendix A A b und a nc e S c a n 1862 (14.041 min): 2301024.D \ d a ta .ms (-1871) (-) 105.0 95000 90000 85000 122.0 80000 75000 70000 65000 60000 77.0 55000 50000 45000 40000 35000 30000 51.0 25000 20000 15000 10000 39.0 5000 60.0 94.1 85.0 69.0 115.0 0 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120 m/ z--> B 105 100 HO 122 O 77 50 51 39 45 74 65 94 0 30 40 50 60 70 (replib) Benzenecarboxylic acid 80 90 100 110 120 Figure II i. Mass spectra obtained by GC/MS of benzenecarboxylic acid produced by Bacillus cereus KWS2 grown in anthracene (A) and from NIST mass spectral library (B). 144 Appendix Ab und a nce A Sca n 2088 (15.250 min): 2301024.D\ d a ta .ms (-2075) (-) 91.0 220000 200000 180000 160000 140000 120000 100000 136.0 80000 60000 101.0 40000 65.0 39.0 20000 116.0 75.0 51.0 128.1 0 30 40 50 60 70 80 90 100 110 120 130 m/ z--> B 91 100 O OH 50 136 65 0 39 46 51 56 72 77 30 40 50 60 70 (replib) Benzeneacetic acid 80 101 90 117 100 110 120 130 140 Figure II j. Mass spectra obtained by GC/MS of benzeneacetic acid produced by Bacillus cereus KWS2 grown in anthracene (A) and from NIST mass spectral library (B). 145 Appendix A A b und a nc e S c a n 2856 (19.357 min): 2301024.D \ d a ta .ms (-2826) (-) 107.0 800000 750000 700000 650000 600000 550000 500000 450000 400000 350000 300000 152.0 250000 200000 77.0 150000 100000 51.1 50000 39.1 63.0 89.0 0 30 40 50 60 70 80 90 123.1 100 110 120 141.9 130 140 150 m/ z--> B 107 100 O OH 50 152 77 0 31 39 51 63 OH 86 95 121 134 30 40 50 60 70 80 90 100 110 120 130 140 150 (mainlib) Benzeneacetic acid, 4-hydroxy Figure II k. Mass spectra obtained by GC/MS of 4-hydroxy benzeneacetic acid produced by Bacillus cereus KWS2 grown in anthracene (A) and from NIST mass spectral library (B). 146 Appendix A A b und a nc e S c a n 2740 (18.737 m in): 0601006.D \ d a ta .ms (-2721) (-) 115.0 3200000 144.0 3000000 2800000 2600000 2400000 2200000 2000000 1800000 1600000 1400000 1200000 1000000 800000 600000 89.0 400000 63.0 200000 39.0 74.0 50.0 98.0 126.0134.8 0 30 40 50 60 70 80 90 100 110 120 130 140 m / z--> B 100 144 115 50 HO 89 63 39 50 72 98 0 30 40 50 60 (replib) 2-Naphthalenol 70 80 126 90 100 110 120 130 140 150 Figure III a. Mass spectra obtained by GC/MS of 2-naphthalenol produced by Bacillus cereus KWS4 grown with naphthalene (A) and from NIST mass spectral library (B). 147 Appendix A b und a nc e S c a n 2045 (15.020 min): 0601006.D \ d a ta .ms (-2021) (-) 91.0 180000 A 170000 160000 150000 140000 130000 120000 110000 100000 90000 80000 70000 135.9 60000 50000 40000 65.0 30000 20000 39.0 51.0 10000 76.9 99.8 108.0 118.0 127.9 0 30 40 50 60 70 80 90 100 110 120 130 140 m/ z--> B 91 100 O OH 136 50 65 39 44 51 77 105 0 30 40 50 60 70 (mainlib) Benzeneacetic acid 80 90 118 100 110 120 130 140 Figure III b. Mass spectra obtained by GC/MS of benzeneacetic acid produced by Bacillus cereus KWS4 grown with naphthalene (A) and from NIST mass spectral library (B). 148 Appendix Ab und a nce A Sca n 1151 (10.238 min): 0601006.D \ d a ta .ms (-1140) (-) 106.0 77.0 20000 18000 16000 14000 12000 10000 51.0 8000 6000 4000 2000 39.0 62.9 45.0 0 30 35 40 45 50 55 60 88.0 70.9 65 70 75 80 85 90 95 100 105 m/ z--> B 106 77 100 O 51 50 0 30 39 74 43 30 40 50 (replib) Benzaldehyde 63 60 84 89 70 80 90 100 Figure III c. Mass spectra obtained by GC/MS of Bezaldehyde produced by Bacillus cereus KWS4 grown with naphthalene (A) and from NIST mass spectral library (B). 149 Appendix A Ab und a nc e S c a n 4002 (25.487 min): 0401004.D \ d a ta .ms (-4012) (-) 165.0 194.0 1050000 1000000 950000 900000 850000 800000 750000 700000 650000 600000 550000 500000 450000 400000 350000 300000 250000 200000 150000 82.2 139.0 100000 69.4 50000 97.0 39.0 51.0 0 30 40 50 60 70 80 90 115.0 127.0 150.9 179.9 100 110 120 130 140 150 160 170 180 190 m/ z--> B 165 100 194 50 82 39 50 69 OH 87 97 0 30 50 70 (replib) 9-Phenanthrenol 90 115 126 110 139 130 150 150 174 170 190 Figure III d. Mass spectra obtained by GC/MS of 9-phenanthrenol produced by Bacillus cereus KWS4 grown in phenanthrene (A) and from NIST mass spectral library (B). 150 Appendix A A b und a nc e S c a n 3947 (25.193 min): 0401004.D \ d a ta .m s (-3931) (-) 165.0 200000 190000 180000 170000 160000 150000 140000 181.0 130000 120000 212.0 110000 100000 90000 80000 70000 60000 151.9 50000 40000 30000 77.0 20000 194.9 115.0 138.9 63.0 10000 50.0 0 101.8 36.9 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 m/ z--> B 165 100 212 181 50 82 51 63 69 0 41 194 HO 89 OH 115 151 139 30 50 70 90 110 130 150 170 (mainlib) 9,10-Dihydro-9,10-dihydroxyphenanthrene 190 210 Figure III f. Mass spectra obtained by GC/MS of 9,10-dihydro-9,10dihydroxyphenanthrene produced by Bacillus cereus KWS4 grown in phenanthrene (A) and from NIST mass spectral library (B). 151 Appendix A Ab und a nc e Sc a n 2065 (15.127 min): 0401004.D \ d a ta .ms (-2026) (-) 91.0 600000 550000 500000 450000 400000 350000 300000 250000 135.9 200000 150000 65.0 100000 39.0 50000 51.0 77.0 107.0 0 30 40 50 60 70 80 90 100 110 117.8 126.8 120 130 m/ z--> B 91 100 O OH 50 136 0 39 45 51 65 77 30 40 50 60 70 (replib) Benzeneacetic acid 80 90 100 110 120 130 Figure III g. Mass spectra obtained by GC/MS of benzeneacetic acid produced by Bacillus cereus KWS4 grown in phenanthrene (A) and from NIST mass spectral library (B). 152 Appendix A Ab und a nc e Sc a n 2841 (19.277 min): 0501005.D \ d a ta .ms (-2810) (-) 107.0 170000 160000 150000 140000 130000 120000 110000 100000 90000 80000 70000 151.9 60000 50000 77.0 40000 30000 63.0 51.0 20000 86.9 125.9 39.0 10000 97.9 0 30 40 50 60 70 80 90 100 134.9 116.0 110 120 130 140 150 m/ z--> B 107 100 O OH152 50 77 39 0 30 51 HO 63 90 124 134 30 40 50 60 70 80 90 100 110 120 130 140 150 (replib) Benzeneacetic acid, 3-hydroxy Figure III h. Mass spectra obtained by GC/MS of 3-hydroxy benzeneacetic acid produced by Bacillus cereus KWS4 grown in phenanthrene (A) and from NIST mass spectral library (B). 153 Appendix A Ab und a nc e Sca n 2218 (15.945 min): 0501005.D \ d a ta .ms (-2210) (-) 92.0 119.9 60000 55000 50000 45000 40000 137.9 35000 30000 25000 20000 64.0 43.0 15000 10000 53.0 72.0 5000 0 80.8 105.1 35.1 30 40 50 60 70 80 90 100 110 127.9 120 130 140 m/ z--> B 92 100 120 O OH 138 50 OH 64 39 45 53 74 81 109 0 30 40 50 60 70 80 (replib) Benzoic acid, 2-hydroxy- 90 100 110 120 130 140 Figure III i. Mass spectra obtained by GC/MS of 2-hydroxy benzoic acid produced by Bacillus cereus KWS4 grown in phenanthrene (A) and from NIST mass spectral library (B). 154 Appendix A Abundance Scan 1857 (17.014 min): 2001005.D\ data.ms 104.0 600000 550000 500000 450000 76.0 400000 350000 300000 250000 200000 50.0 150000 148.0 100000 50000 38.0 61.0 85.0 0 30 40 50 60 70 80 116.0 94.8 90 100 110 120 128.9 138.0 130 140 m/ z--> B 104 100 O 76 OH 50 OH 50 O 0 31 38 61 148 85 30 40 50 60 70 80 90 100 110 120 130 140 150 (rep lib ) 1,2-Benzened icarb oxylic acid Figure IV a. Mass spectra obtained by GC/MS of 1, 2-benzenecarboxylic acid produced by resting cells of Mycobacterium PY146 with phenanthrene (A) and from NIST mass spectral library (B). 155 Appendix Abundance A Scan 1865 (17.057 min): 2201007.D\ data.ms (-1849) (-) 104.0 30000 28000 26000 24000 22000 76.0 20000 18000 16000 14000 12000 10000 8000 148.0 50.1 6000 4000 37.2 2000 60.8 30 40 50 60 116.7 126.9 93.0 0 70 80 90 100 110 120 130 140 m/ z--> B 104 100 O 76 OH 50 OH 50 O 0 31 38 61 148 85 30 40 50 60 70 80 90 100 110 120 130 140 150 (rep lib ) 1,2-Benzened icarb oxylic a cid Figure IV b. Mass spectra obtained by GC/MS of 1,2-benzenecarboxylic acid produced by resting cells of Mycobacterium PY146 with anthracene (A) and from NIST mass spectral library (B). 156 Appendix A Abundance Scan 3359 (25.048 m in): 2101006.D\ data.m s 208.0 160000 150000 140000 180.0 130000 120000 110000 100000 152.0 90000 80000 70000 60000 50000 40000 76.0 30000 20000 50.0 10000 0 126.0 63.0 90.0 111.0 30 40 50 60 70 80 90 194.0 165.0 139.0 36.8 100 110 120 130 140 150 160 170 180 190 200 m / z--> B 208 100 180 O 152 50 76 O 0 39 50 63 90 99 30 50 70 90 110 (replib) 9,10-Anthracenedione 126 130 163 150 170 190 210 Figure IV c. Mass spectra obtained by GC/MS of 1,2-benzenecarboxylic acid produced by resting cells of Mycobacterium PY146 with anthracene (A) and from NIST mass spectral library (B). 157 Appendix A Abundance Scan 1861 (17.035 min): 2401009.D\ data.ms (-1849) (-) 104.0 40000 35000 30000 76.0 25000 20000 15000 10000 50.0 148.0 5000 38.1 61.1 87.1 113.0 0 30 40 50 60 70 80 90 100 110 124.9 133.7 120 130 140 m/ z--> B 104 100 O 76 OH 50 OH 50 O 0 31 38 61 148 85 30 40 50 60 70 80 90 100 110 120 130 140 150 (replib) 1,2-Benzenedicarb oxylic acid Figure IV d. Mass spectra obtained by GC/MS of 1,2-benzenecarboxylic acid produced by resting cells of Mycobacterium PY146 with pyrene (A) and from NIST mass spectral library (B). 158 Appendix A Abundance Scan 4817 (32.846 m in): 2301008.D\ data.m s 218.0 24000 23000 22000 21000 20000 19000 18000 17000 16000 15000 14000 13000 12000 11000 189.0 10000 9000 8000 7000 6000 5000 4000 3000 43.0 2000 1000 57.1 72.9 94.1 111.0 130.0 147.0 163.1 203.0 0 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 m / z--> B 218 100 OH 189 50 94 81 109 163 0 30 50 70 90 (rep lib ) 1-Hyd roxypyrene 110 130 150 170 190 210 Figure IV e. Mass spectra obtained by GC/MS of 1-hydroxypyrene produced by resting cells of Mycobacterium PY146 with pyrene (A) and from NIST mass spectral library (B). 159 Appendix Ab und a nc e A 2600000 Sc a n 2241 (16.068 min): 1701018.D \ d a ta .ms (-2216) (-) 104.0 2400000 2200000 76.0 2000000 1800000 1600000 1400000 1200000 1000000 50.1 800000 600000 148.0 400000 38.1 200000 61.0 85.0 0 30 40 50 60 70 80 94.9 90 118.9 129.0 139.0 100 110 120 130 140 m/ z--> B 104 100 O 76 OH 50 OH 50 O 0 31 38 61 148 85 30 40 50 60 70 80 90 100 110 120 130 140 150 (replib) 1,2-Benzenedicarboxylic acid Figure V a. Mass spectra obtained by GC/MS of 1,2-benzenedicarboxylic acid produced by Mycobacterium PY146 grown in phenanthrene (A) and from NIST mass spectral library (B). 160 Appendix Ab und a nce A 450000 Sca n 2068 (15.142 min): 1901020.D\ d a ta .ms (-2034) (-) 91.0 400000 350000 300000 250000 200000 136.0 150000 100000 65.0 50000 39.1 51.0 77.0 98.9 107.0 0 30 40 50 60 70 80 90 100 110 117.9 120 130 m/ z--> B 91 100 O OH 50 136 0 39 45 51 65 30 40 50 60 70 (replib) Benzeneacetic acid 77 80 90 100 110 120 130 Figure V b. Mass spectra obtained by GC/MS of benzeneacetic acid produced by Mycobacterium PY146 grown in phenanthrene (A) and from NIST mass spectral library (B). 161 Appendix A A b und a nc e Sc a n 3709 (23.920 min): 3001031.D \ d a ta .ms (-3691) (-) 180.0 90000 208.0 85000 80000 75000 70000 65000 152.0 60000 55000 50000 45000 40000 35000 30000 76.0 25000 20000 15000 50.0 10000 126.0 63.0 5000 0 97.9 111.0 37.0 30 40 50 60 70 80 90 194.9 100 110 120 130 140 150 160 170 180 190 200 m/ z--> B 152 100 180 208 O 76 50 O 50 63 0 39 126 90 102 30 50 70 90 110 (replib) 9,10-Anthracenedione 130 150 170 190 210 Figure V c. Mass spectra obtained by GC/MS of 9,10-anthracenedione produced by Mycobacterium PY146 grown in anthracene (A) and from NIST mass spectral library (B). 162 Appendix Ab und a nce A Sca n 1834 (13.891 min): 3101032.D \ d a ta .ms (-1788) (-) 105.0 50000 45000 122.0 40000 77.0 35000 30000 25000 20000 51.0 15000 10000 43.1 87.0 60.0 5000 94.0 70.0 115.1 0 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120 m/ z--> B 105 100 HO 122 O 77 50 51 39 45 65 74 94 0 30 40 50 60 70 (replib) Benzenecarboxylic acid 80 90 100 110 120 Figure V d. Mass spectra obtained by GC/MS of benzenecarboxylic acid produced by Mycobacterium PY146 grown in anthracene (A) and from NIST mass spectral library (B). 163 Appendix A Ab und a nc e Sc a n 2080 (15.207 min): 3101032.D \ d a ta .ms (-2031) (-) 91.0 700000 650000 600000 550000 500000 450000 400000 350000 300000 136.0 250000 200000 150000 65.0 100000 39.1 50000 51.0 77.0 99.0 107.0 0 30 40 50 60 70 80 90 100 110 118.0 127.8 120 130 m/ z--> B 91 100 O OH 50 136 0 39 45 51 65 30 40 50 60 70 (replib) Benzeneacetic acid 77 80 90 100 110 120 130 Figure V e. Mass spectra obtained by GC/MS of benzeneacetic acid produced by Mycobacterium PY146 grown in anthracene (A) and from NIST mass spectral library (B). 164 Appendix A A b und a nc e S c a n 2234 (16.030 min): 3101032.D \ d a ta .ms (-2218) (-) 104.0 200000 190000 180000 170000 160000 150000 76.0 140000 130000 120000 110000 100000 90000 80000 70000 50.0 60000 50000 40000 147.9 30000 20000 38.0 10000 61.0 0 20 30 40 50 60 112.9122.1 92.1 70 80 90 100 110 120 136.0 130 140 150 m/ z--> B 104 100 O 76 OH 50 OH 50 O 0 31 38 61 148 85 30 40 50 60 70 80 90 100 110 120 130 140 150 (replib) 1,2-Benzenedicarboxylic acid Figure V f. Mass spectra obtained by GC/MS of 1,2-benzenedicarboxylic acid produced by Mycobacterium PY146 grown in anthracene (A) and from NIST mass spectral library (B). 165 Appendix A Ab und a nc e Sc a n 1614 (12.956 min): 0501005.D \ d a ta .ms (-1598) (-) 105.0 122.0 55000 50000 45000 77.0 40000 35000 30000 25000 20000 51.1 15000 87.0 10000 60.0 5000 94.0 69.0 113.0 0 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 m/ z--> B 105 100 122 77 HO O 51 50 65 74 90 0 50 60 70 80 (mainlib) Benzenecarboxylic acid 90 94 100 110 120 Figure V g. Mass spectra obtained by GC/MS of benzenecarboxylic acid produced by Mycobacterium PY146 grown in pyrene (A) and from NIST mass spectral library (B). 166 Appendix Ab und a nce A Sc a n 1887 (14.373 min): 0501005.D \ d a ta .ms 91.1 900000 800000 700000 600000 500000 400000 136.0 300000 200000 65.1 79.1 100000 51.1 58.0 0 98.1 72.1 122.0 107.1 115.0 129.1 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125130135 m/ z--> B 91 100 O OH136 50 65 51 63 89 77 105 0 50 60 70 80 (mainlib) Benzeneacetic acid 90 100 110 118 120 130 140 Figure V h. Mass spectra obtained by GC/MS of benzeneacetic acid produced by Mycobacterium PY146 grown in pyrene (A) and from NIST mass spectral library (B). 167 Appendix A Ab und a nc e Sc a n 2014 (15.032 min): 0501005.D \ d a ta .ms (-1993) (-) 104.0 1300000 1200000 1100000 1000000 76.0 900000 800000 700000 600000 500000 50.1 400000 300000 148.0 200000 100000 61.0 85.0 0 40 50 60 70 80 118.9127.1 136.8 93.0 90 100 110 120 130 140 m/ z--> B 104 100 O 76 OH 50 50 OH 148 O 0 61 66 85 50 60 70 80 90 100 110 120 (replib) 1,2-Benzenedicarboxylic acid 130 140 150 Figure V i. Mass spectra obtained by GC/MS of 1,2-benzenedicarboxylic acid produced by Mycobacterium PY146 grown in pyrene (A) and from NIST mass spectral library (B). 168
© Copyright 2024