Undecidable properties of self-affine sets and multitape automata Timo Jolivet Institut de Mathématiques de Toulouse Université Paul Sabatier In collaboration with Jarkko Kari Verification seminar University of Oxford Thursday 18 June Example: the Cantor set Example: the Cantor set X⊆[0,1] z }| { Example: the Cantor set X⊆[0,1] z | }| {z 1 X 3 } | {z 1 X+ 23 3 { } Example: the Cantor set X⊆[0,1] }| z | {z } 1 X 3 I X = f1 (X) ∪ f2 (X) ⊆ R I f1 (x) = 13 x I f2 (x) = 13 x + 2 3 | {z 1 X+ 23 3 { } Example I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Iterated function systems (IFS) Let f1 , . . . , fn : Rd → Rd be contracting maps: ∃c < 1 such that |f (x) − f (−y)| < c|x − y| for all x, y ∈ Rd . Iterated function systems (IFS) Let f1 , . . . , fn : Rd → Rd be contracting maps: ∃c < 1 such that |f (x) − f (−y)| < c|x − y| for all x, y ∈ Rd . Theorem (Hutchinson 1981) There is a unique, nonemtpy, compact set X ⊆ Rd such that X = f1 (X) ∪ · · · ∪ fn (X). Iterated function systems (IFS) Let f1 , . . . , fn : Rd → Rd be contracting maps: ∃c < 1 such that |f (x) − f (−y)| < c|x − y| for all x, y ∈ Rd . Theorem (Hutchinson 1981) There is a unique, nonemtpy, compact set X ⊆ Rd such that X = f1 (X) ∪ · · · ∪ fn (X). I Definition of a fractal Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 Example: Sierpiński’s triangle I I I f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) ⊆ R2 A particular family of IFS: self-affine sets I Let A ∈ Zd×d be an expanding matrix I Let D ⊆ Zd (“digits”) A particular family of IFS: self-affine sets I Let A ∈ Zd×d be an expanding matrix I Let D ⊆ Zd (“digits”) Self-affine set: IFS given by the contracting maps maps fd (x) = A−1 (x + d) for d ∈ D. A particular family of IFS: self-affine sets I Let A ∈ Zd×d be an expanding matrix I Let D ⊆ Zd (“digits”) Self-affine set: IFS given by the contracting maps maps fd (x) = A−1 (x + d) for d ∈ D. Very particular kind of IFS: I Affine maps I Integer coefficients I Same matrix A for each fd Example 0 I A = (10) I D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Example 0 I A = (10) I D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I X= 9 [ d=0 1 10 (X + d) Example 0 I A = (10) I D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I X= 9 [ 1 10 (X + d) d=0 I X = [0, 1] (base 10 representation) Example 0 I A = (10) I D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I X= 9 [ 1 10 (X + d) d=0 I X = [0, 1] (base 10 representation) Meaning of “digits”: X= (∞ X k=1 ) A −k dk : (dk )k>1 ∈ D N Example: Sierpiński’s triangle again I A= I D= 20 02 0 0 , 1 0 , 0 1 Example: Sierpiński’s triangle again I A= I D= 20 02 20 02 0 0 , 1 0 , 0 1 X = X ∪ X+ 1 0 ∪ X+ 0 1 Sierpiński variant 1 I A= I D= 20 02 0 0 , 1 0 , 0 1 , 1 1 Sierpiński variant 1 I A= I D= 20 02 0 0 , 1 0 , 0 1 , 1 1 Sierpiński variant 2 I A= I D= 20 02 0 0 , 1 0 , 0 1 , −1 −1 Sierpiński variant 2 I A= I D= 20 02 0 0 , 1 0 , 0 1 , −1 −1 Sierpiński variant 2 I A= I D= 20 02 0 0 , 1 0 , 0 1 , −1 −1 Sierpiński variant 2 I A= I D= 20 02 0 0 , 1 0 , 0 1 , −1 −1 Sierpiński variant 2 I A= I D= 20 02 0 0 , 1 0 , 0 1 , −1 −1 Sierpiński variant 2 I A= I D= 20 02 0 0 , 1 0 , 0 1 , −1 −1 Sierpiński variant 2 I A= I D= 20 02 0 0 , 1 0 , 0 1 , −1 −1 Sierpiński variant 2 I A= I D= 20 02 0 0 , 1 0 , 0 1 , −1 −1 Sierpiński variant 3 I A= I D= 20 02 0 0 , 1 0 , 0 1 , 3 1 Sierpiński variant 3 I A= I D= 20 02 0 0 , 1 0 , 0 1 , 3 1 Sierpiński variant 3 I A= I D= 20 02 0 0 , 1 0 , 0 1 , 3 1 Sierpiński variant 3 I A= I D= 20 02 0 0 , 1 0 , 0 1 , 3 1 Sierpiński variant 3 I A= I D= 20 02 0 0 , 1 0 , 0 1 , 3 1 Sierpiński variant 3 I A= I D= 20 02 0 0 , 1 0 , 0 1 , 3 1 Sierpiński variant 3 I A= I D= 20 02 0 0 , 1 0 , 0 1 , 3 1 Sierpiński variant 3 I A= I D= 20 02 0 0 , 1 0 , 0 1 , 3 1 Sierpiński variant 3 I A= I D= 20 02 0 0 , 1 0 , 0 1 , 3 1 Self-affine tiles Definition D is a standard set of digits if: I |D| = | det(A)| I D is a complete set of representatives in Zd /AZd . Self-affine tiles Definition D is a standard set of digits if: I |D| = | det(A)| I D is a complete set of representatives in Zd /AZd . In this case, X is a self-affine tile. Self-affine tiles Definition D is a standard set of digits if: I |D| = | det(A)| I D is a complete set of representatives in Zd /AZd . In this case, X is a self-affine tile. Theorem [Bandt, Lagarias-Wang] Under these conditions: I X has nonempty interior I X is the closure of its interior I µ(∂X) = 0 I X tiles Rd by translation Self-affine tiles Definition D is a standard set of digits if: I |D| = | det(A)| I D is a complete set of representatives in Zd /AZd . In this case, X is a self-affine tile. Theorem [Bandt, Lagarias-Wang] Under these conditions: I X has nonempty interior I X is the closure of its interior I µ(∂X) = 0 I X tiles Rd by translation I Many good properties and algorithms Nonstandard D A = 20 02 D = 00 , 1 0 , 0 1 , 1 2 Nonstandard D A = 20 02 D = 00 , 1 0 , 0 1 , 1 2 X has empty interior (why?) Nonstandard D Indeed, 20 02 X=X+ 0 1 0 1 0 , 0 , 1 , 2 Nonstandard D Indeed, 20 02 X=X+ 0 1 0 1 0 , 0 , 1 , 2 so 40 04 X= 20 02 X+ 0 2 0 2 , , , 0 0 2 4 Nonstandard D Indeed, 20 02 X=X+ 0 1 0 1 0 , 0 , 1 , 2 so 40 04 X= 20 02 0 2 0 2 0 , 0 , 2 , 4 0 1 0 1 =X+ X+ 0 , 0 , 1 , 2 + 00 , 20 , 02 , 24 Nonstandard D Indeed, 20 02 X=X+ 0 1 0 1 0 , 0 , 1 , 2 so 40 04 X= 20 02 0 2 0 2 0 , 0 , 2 , 4 0 1 0 1 =X+ X+ 0 , 0 , 1 , 2 + 00 , 20 , 02 , 24 = X + 00 , 10 , 01 , 12 , 3 2 3 2 0 , 0 , 2 2 , 4 0 , 1 , 2 3 , 4 1 , 0 , 3 2 , 5 2 , 1 , 4 3 6 Nonstandard D Indeed, 20 02 X=X+ 0 1 0 1 0 , 0 , 1 , 2 so 40 04 X= 20 02 0 2 0 2 0 , 0 , 2 , 4 0 1 0 1 =X+ X+ 0 , 0 , 1 , 2 + 00 , 20 , 02 , 24 = X + 00 , 10 , 01 , 12 , 3 2 3 2 0 , 0 , 2 2 , 4 so 16µ(X) 6 15µ(X) 0 , 1 , 2 3 , 4 1 , 0 , 3 2 , 5 2 , 1 , 4 3 6 Nonstandard D Indeed, 20 02 X=X+ 0 1 0 1 0 , 0 , 1 , 2 so 40 04 X= 20 02 0 2 0 2 0 , 0 , 2 , 4 0 1 0 1 =X+ X+ 0 , 0 , 1 , 2 + 00 , 20 , 02 , 24 = X + 00 , 10 , 01 , 12 , 3 2 3 2 0 , 0 , 2 2 , 4 so 16µ(X) 6 15µ(X) so µ(X) = 0 0 , 1 , 2 3 , 4 1 , 0 , 3 2 , 5 2 , 1 , 4 3 6 Nonstandard D A = 20 02 D = 00 , 1 0 , 0 1 , 1 2 X has empty interior Nonstandard D A = 20 02 D = 00 , A = 20 02 D = 00 , 1 0 , 0 1 , 1 2 X has empty interior 1 0 , 0 2 , 1 2 Nonstandard D A = 20 02 D = 00 , A = 20 02 D = 00 , 1 0 , 0 1 , 1 2 X has empty interior 1 0 , 0 2 , 1 2 X has nonempty interior Nonstandard D We enjoy the good properties of tiles (case of standard D) : What conditions on D for nonempty interior? Nonstandard D We enjoy the good properties of tiles (case of standard D) : What conditions on D for nonempty interior? I Necessary condition |D| > | det(A)| Nonstandard D We enjoy the good properties of tiles (case of standard D) : What conditions on D for nonempty interior? I Necessary condition |D| > | det(A)| ( I Nonempty interior ⇔ µ(X) > 0 ⇔ X = closure(X o ) µ(∂(X)) = 0 Nonstandard D We enjoy the good properties of tiles (case of standard D) : What conditions on D for nonempty interior? I Necessary condition |D| > | det(A)| ( I Nonempty interior ⇔ µ(X) > 0 ⇔ ⇔ # nP N k=1 A −k d k : (dk ) ∈ DN o X = closure(X o ) µ(∂(X)) = 0 = |D|N for all N > 1 Nonstandard D We enjoy the good properties of tiles (case of standard D) : What conditions on D for nonempty interior? I Necessary condition |D| > | det(A)| ( I Nonempty interior ⇔ µ(X) > 0 ⇔ nP o X = closure(X o ) µ(∂(X)) = 0 N −k N = |D|N for all N > 1 ⇔ # k=1 A dk : (dk ) ∈ D ⇔ |D| = | det(A)| if A = (p) with p prime [Kenyon 1992] Nonstandard D We enjoy the good properties of tiles (case of standard D) : What conditions on D for nonempty interior? I Necessary condition |D| > | det(A)| ( I Nonempty interior ⇔ µ(X) > 0 ⇔ nP X = closure(X o ) µ(∂(X)) = 0 o N −k N = |D|N for all N > 1 ⇔ # k=1 A dk : (dk ) ∈ D ⇔ |D| = | det(A)| if A = (p) with p prime [Kenyon 1992] I Related works [Lagarias-Wang 1996], [Lau-Rao 2003], . . . Nonstandard D We enjoy the good properties of tiles (case of standard D) : What conditions on D for nonempty interior? I Necessary condition |D| > | det(A)| ( I Nonempty interior ⇔ µ(X) > 0 ⇔ nP X = closure(X o ) µ(∂(X)) = 0 o N −k N = |D|N for all N > 1 ⇔ # k=1 A dk : (dk ) ∈ D ⇔ |D| = | det(A)| if A = (p) with p prime [Kenyon 1992] I Related works [Lagarias-Wang 1996], [Lau-Rao 2003], . . . I Is it decidable? Beyond self-affine tiles: affine IFS I Several contractions A1 , . . . , Ai instead of just A I Arbitrary affine mappings fi (x) = Ai x + vi Beyond self-affine tiles: affine IFS Beyond self-affine tiles: affine IFS Beyond self-affine tiles: affine IFS Beyond self-affine tiles: affine IFS Beyond self-affine tiles: affine IFS Beyond self-affine tiles: affine IFS Beyond self-affine tiles: affine IFS Beyond self-affine tiles: affine IFS I I Several contractions A1 , . . . , Ak instead of just A Arbitrary affine mappings fi (x) = Ai x + vi Beyond self-affine tiles: affine IFS I I Several contractions A1 , . . . , Ak instead of just A Arbitrary affine mappings fi (x) = Ai x + vi I Interesting properties: I I I compute fractal dimensions (Hausdorff, packing, etc.), topological properties (connectedness, nonempty interior, etc.) tiling properties Beyond self-affine tiles: affine IFS I I Several contractions A1 , . . . , Ak instead of just A Arbitrary affine mappings fi (x) = Ai x + vi I Interesting properties: I I I I compute fractal dimensions (Hausdorff, packing, etc.), topological properties (connectedness, nonempty interior, etc.) tiling properties Notorious difficulty of study for specific examples/families Beyond self-affine tiles: affine IFS I I Several contractions A1 , . . . , Ak instead of just A Arbitrary affine mappings fi (x) = Ai x + vi I Interesting properties: I I I I I compute fractal dimensions (Hausdorff, packing, etc.), topological properties (connectedness, nonempty interior, etc.) tiling properties Notorious difficulty of study for specific examples/families Some “almost always”-type results Beyond self-affine tiles: affine IFS I I Several contractions A1 , . . . , Ak instead of just A Arbitrary affine mappings fi (x) = Ai x + vi I Interesting properties: I I I I I I compute fractal dimensions (Hausdorff, packing, etc.), topological properties (connectedness, nonempty interior, etc.) tiling properties Notorious difficulty of study for specific examples/families Some “almost always”-type results Application in number theory, dynamical systems, Fourier analysis Beyond self-affine tiles: affine IFS I I Several contractions A1 , . . . , Ak instead of just A Arbitrary affine mappings fi (x) = Ai x + vi I Interesting properties: I I I I I I I compute fractal dimensions (Hausdorff, packing, etc.), topological properties (connectedness, nonempty interior, etc.) tiling properties Notorious difficulty of study for specific examples/families Some “almost always”-type results Application in number theory, dynamical systems, Fourier analysis GIFS: several sets X1 , . . . , Xn instead of just X (Graph-IFS) Graph-IFS (GIFS), example 1 f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 X = f1 (X) ∪ f2 (X) ∪ f3 (X) f1 f2 f3 X Graph-IFS (GIFS), example 1 f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 f4 (x) = x/2 + f5 (x) = x/2 + f6 (x) = x/2 + ( X = f1 (X) ∪ f2 (X) ∪ f3 (X) ∪ f4 (Y ) Y = f5 (Y ) ∪ f6 (X) f1 f2 f3 1/2 1/2 1/2 3/4 3/4 3/4 f4 Y X f6 f5 Graph-IFS (GIFS), example 1 f1 (x) = x/2 f2 (x) = x/2 + f3 (x) = x/2 + 1/2 0 0 1/2 f4 (x) = x/2 + f5 (x) = x/2 + f6 (x) = x/2 + ( X = f1 (X) ∪ f2 (X) ∪ f3 (X) ∪ f4 (Y ) Y = f5 (Y ) ∪ f6 (X) f1 f2 f3 1/2 1/2 1/2 3/4 3/4 3/4 f4 Y X f6 f5 Graph-IFS (GIFS), example 2: Rauzy fractals X1 = f (X1 ) ∪ f (X2 ) ∪ f (X3 ) X = g(X ) 2 1 X = g(X ) 3 2 Graph-IFS (GIFS), example 2: Rauzy fractals X1 = f (X1 ) ∪ f (X2 ) ∪ f (X3 ) X = g(X ) 2 1 X = g(X ) 3 2 f f X1 X2 g g f X3 f (x) = αx, g(x) = αx + 1, with α = −0.419 + 0.606i ∈ C root of x3 − x2 − x + 1 GIFS with 3 states Undecidability result Theorem [J-Kari 2013] For 2D affine GIFS with 3 states (with coefficients in Q): I = [0, 1]2 is undecidable I empty interior is undecidable Undecidability result Theorem [J-Kari 2013] For 2D affine GIFS with 3 states (with coefficients in Q): I = [0, 1]2 is undecidable I empty interior is undecidable I Also true with diagonal Ai Undecidability result Theorem [J-Kari 2013] For 2D affine GIFS with 3 states (with coefficients in Q): I = [0, 1]2 is undecidable I empty interior is undecidable I Also true with diagonal Ai I Computational tools: multi-tape automata Multi-tape automata d-tape automaton: I alphabet A = A1 × · · · × Ad I states Q I + transitions Q × (A+ 1 × · · · × Ad ) → Q I acceptance: infinite run starting from any state 000 | 11 01 | 00 X Y 1|0 1 | 001 A = {0, 1} × {0, 1} Q = {X, Y } Multi-tape automata d-tape automaton: I alphabet A = A1 × · · · × Ad I states Q I + transitions Q × (A+ 1 × · · · × Ad ) → Q I acceptance: infinite run starting from any state 000 | 11 01 | 00 X Y 1 | 001 1|0 Accepted infinite word starting from X: A = {0, 1} × {0, 1} Q = {X, Y } Multi-tape automata d-tape automaton: I alphabet A = A1 × · · · × Ad I states Q I + transitions Q × (A+ 1 × · · · × Ad ) → Q I acceptance: infinite run starting from any state 000 | 11 01 | 00 X Y 1 | 001 1|0 Accepted infinite word starting from X: 000 11 A = {0, 1} × {0, 1} Q = {X, Y } Multi-tape automata d-tape automaton: I alphabet A = A1 × · · · × Ad I states Q I + transitions Q × (A+ 1 × · · · × Ad ) → Q I acceptance: infinite run starting from any state 000 | 11 01 | 00 X Y 1 | 001 1|0 Accepted infinite word starting from X: 0001 110 A = {0, 1} × {0, 1} Q = {X, Y } Multi-tape automata d-tape automaton: I alphabet A = A1 × · · · × Ad I states Q I + transitions Q × (A+ 1 × · · · × Ad ) → Q I acceptance: infinite run starting from any state 000 | 11 01 | 00 X Y 1 | 001 1|0 Accepted infinite word starting from X: 000101 11000 A = {0, 1} × {0, 1} Q = {X, Y } Multi-tape automata d-tape automaton: I alphabet A = A1 × · · · × Ad I states Q I + transitions Q × (A+ 1 × · · · × Ad ) → Q I acceptance: infinite run starting from any state 000 | 11 01 | 00 X Y 1 | 001 1|0 Accepted infinite word starting from X: 000101000 1100011 A = {0, 1} × {0, 1} Q = {X, Y } Multi-tape automata d-tape automaton: I alphabet A = A1 × · · · × Ad I states Q I + transitions Q × (A+ 1 × · · · × Ad ) → Q I acceptance: infinite run starting from any state 000 | 11 01 | 00 X Y 1 | 001 1|0 Accepted infinite word starting from X: 0001010001 11000110 A = {0, 1} × {0, 1} Q = {X, Y } Multi-tape automata d-tape automaton: I alphabet A = A1 × · · · × Ad I states Q I + transitions Q × (A+ 1 × · · · × Ad ) → Q I acceptance: infinite run starting from any state 000 | 11 01 | 00 X Y 1 | 001 1|0 Accepted infinite word starting from X: 0001010001000 1100011011 A = {0, 1} × {0, 1} Q = {X, Y } Multi-tape automata d-tape automaton: I alphabet A = A1 × · · · × Ad I states Q I + transitions Q × (A+ 1 × · · · × Ad ) → Q I acceptance: infinite run starting from any state 000 | 11 01 | 00 X Y 1 | 001 A = {0, 1} × {0, 1} Q = {X, Y } 1|0 Accepted infinite word starting from X: 0001010001000 . . . ∈ AN = ({0, 1} × {0, 1})N 1100011011 . . . Multi-tape automaton 7−→ GIFS u|v Transition (tape alphabets A1 , A2 ) Multi-tape automaton 7−→ GIFS u|v Transition 7−→ Mapping f (tape alphabets A1 , A2 ) x y = |A |−|u| 1 0 x 0.u . . . u 0 1 |u| + −|v| y 0.v1 . . . v|v| |A2 | Multi-tape automaton 7−→ GIFS u|v Transition (tape alphabets A1 , A2 ) 7−→ Mapping f x y = |A |−|u| 1 0 Automaton: x 0.u . . . u 0 1 |u| + −|v| y 0.v1 . . . v|v| |A2 | 000 | 11 01 | 00 X Y 1|0 1 | 001 Multi-tape automaton 7−→ GIFS u|v Transition (tape alphabets A1 , A2 ) 7−→ Mapping f x y = |A |−|u| 1 0 Automaton: x 0.u . . . u 0 1 |u| + −|v| y 0.v1 . . . v|v| |A2 | 000 | 11 01 | 00 X 1 | 001 Y 1|0 Associated GIFS: 1/4 0 0 1/4 x y + 0.01 0.00 1/8 0 0 1/4 x y + X 1/2 0 0.000 0.11 Y 0 1/2 x y + 0.1 0.0 1/2 0 0 1/8 x y + 0.1 0.001 Multi-tape automaton 7−→ GIFS u|v Transition 7−→ Mapping f (tape alphabets A1 , A2 ) x |A1 |−|u| = y 0 Automaton states edges #tapes tape i 0 |A2 |−|v| x 0.u1 . . . u|u| + y 0.v1 . . . v|v| GIFS fractal sets contracting mappings dimension base-|Ai | representation of ith coordinate Multi-tape automaton 7−→ GIFS 1011 | 11 I I f x y = 1/16 0 0 0.x1 x2 . . . 0.1011 + 0.11 1/4 0.y1 y2 . . . Multi-tape automaton 7−→ GIFS 1011 | 11 I I f x y = = 0 0.x1 x2 . . . 0.1011 + 0.11 0 1/4 0.y1 y2 . . . 0.0000x1 x2 . . . 0.1011 + 0.00y1 y2 . . . 0.11 1/16 Multi-tape automaton 7−→ GIFS 1011 | 11 I I f x y = = = 0 0.x1 x2 . . . 0.1011 + 0.11 0 1/4 0.y1 y2 . . . 0.0000x1 x2 . . . 0.1011 + 0.00y1 y2 . . . 0.11 0.1011x x . . . 1 2 0.11y1 y2 . . . 1/16 Multi-tape automaton 7−→ GIFS 1011 | 11 I I f x y = = = 0 0.x1 x2 . . . 0.1011 + 0.11 0 1/4 0.y1 y2 . . . 0.0000x1 x2 . . . 0.1011 + 0.00y1 y2 . . . 0.11 0.1011x x . . . 1 2 0.11y1 y2 . . . 1/16 Key correspondence GIFS fractal associated with state X = n 0.x x . . . x x . . . o 1 2 1 2 ∈ R2 : accepted by M starting at X 0.y1 y2 . . . y1 y2 . . . Multi-tape automaton 7−→ GIFS Example: 1 2 0|0 1|0 1 2 0|1 Automaton x y + 0 1/2 x y + 0 0 1 2 x y + 1/2 0 GIFS = n 0.x x . . . o 1 2 : (xn , yn ) 6= (1, 1), ∀n > 1 0.y1 y2 . . . Multi-tape automaton 7−→ GIFS Example: 0|0 0|1 1|0 10|10 X Y 11|11 10|11 Multi-tape automaton ←→ GIFS Automaton states edges #tapes alphabet Ai GIFS fractal sets contracting mappings dimension base-|Ai | representation on tape i Multi-tape automaton ←→ GIFS Automaton states edges #tapes alphabet Ai GIFS fractal sets contracting mappings dimension base-|Ai | representation on tape i Languages properties GIFS properties ∃ configurations with = tapes Intersects the diagonal [Dube] Is universal Is equal to [0, 1]d Has universal prefixes Has nonempty interior ? Is connected ? Is totally disconnected Compute language entropy Compute fractal dimension Multi-tape automaton ←→ GIFS Theorem [Dube 1993] For 1-state, 2D GIFS, it is undecidable if X intersects the diagonal. Proof idea: I X ∩ {(x, x) : x ∈ [0, 1]} 6= ∅ ⇐⇒ Automaton accepts a word of the form I 0.x1 x2 . . . 0.x1 x2 . . . Reduce the infinite Post Correspondence Problem: I PCP instance (u1 , v1 ), . . . , (un , vn ) I Automaton ui |vi Language universality ⇐⇒ nonempty interior Fact 1: M is universal ⇐⇒ X = [0, 1]d Language universality ⇐⇒ nonempty interior Fact 1: M is universal ⇐⇒ X = [0, 1]d I Example (universal): 0|0, 0|1, 1|0, 1|1 Language universality ⇐⇒ nonempty interior Fact 1: M is universal ⇐⇒ X = [0, 1]d I Example (universal): I Example (not universal): 0|0, 0|1, 1|0, 1|1 0|0, 0|1, 1|0 Language universality ⇐⇒ nonempty interior Fact 1: M is universal ⇐⇒ X = [0, 1]d I Example (universal): I Example (not universal): 0|0, 0|1, 1|0, 1|1 0|0, 0|1, 1|0 Fact 2: M is prefix-universal ⇐⇒ X has nonempty interior Language universality ⇐⇒ nonempty interior Fact 1: M is universal ⇐⇒ X = [0, 1]d I Example (universal): I Example (not universal): 0|0, 0|1, 1|0, 1|1 0|0, 0|1, 1|0 Fact 2: M is prefix-universal ⇐⇒ X has nonempty interior I Example (universal with prefix 1): (one-dimensional; not universal) f1 (x) = x/2 + 1/2 f2 (x) = x/4 f3 (x) = x/4 + 1/2 1, 10, 00 Undecidability results Theorem [J-Kari 2013] For 3-state, 2-tape automata: I universality is undecidable I prefix-universality is undecidable Corollary For 2D affine GIFS with 3 states (with coefficients in Q): I = [0, 1]2 is undecidable I empty interior is undecidable Proof Prefix-PCP Input: (u1 , v1 ), . . . , (un , vn ) i , . . . , ik such that ui1 · · · uik = vi1 · · · vi` Question: ∃ 1 i1 , . . . , i ` and one of the words i1 · · · ik and i1 · · · i` is a prefix of the other Proof Prefix-PCP Input: (u1 , v1 ), . . . , (un , vn ) i , . . . , ik such that ui1 · · · uik = vi1 · · · vi` Question: ∃ 1 i1 , . . . , i ` and one of the words i1 · · · ik and i1 · · · i` is a prefix of the other Example: I (u1 , v1 ) = (a, abb), (u2 , v2 ) = (bb, aa) I Prefix-PCP solution: u1 u2 u1 u1 = v1 v2 = abbaa I No PCP solution (no (ui , vi ) ends with the same letter) Proof Prefix-PCP Input: (u1 , v1 ), . . . , (un , vn ) i , . . . , ik such that ui1 · · · uik = vi1 · · · vi` Question: ∃ 1 i1 , . . . , i ` and one of the words i1 · · · ik and i1 · · · i` is a prefix of the other Example: I (u1 , v1 ) = (a, abb), (u2 , v2 ) = (bb, aa) I Prefix-PCP solution: u1 u2 u1 u1 = v1 v2 = abbaa I No PCP solution (no (ui , vi ) ends with the same letter) Reduction to (prefix-)universality of a 3-state automaton Conclusion & perspectives Decidability of nonempty interior: dimension 1 dimension > 2 IFS ? ? 2-state GIFS ? ? > 3-state GIFS ? Undecidable Conclusion & perspectives Decidability of nonempty interior: dimension 1 dimension > 2 I IFS ? ? 2-state GIFS ? ? dimension 1: we need new tools > 3-state GIFS ? Undecidable Conclusion & perspectives Decidability of nonempty interior: dimension 1 dimension > 2 I I IFS ? ? 2-state GIFS ? ? > 3-state GIFS ? Undecidable dimension 1: we need new tools Case A = kId: “Presburger brute-forcing”, links with automatic sequences [Charlier-Leroy-Rigo] Conclusion & perspectives Decidability of nonempty interior: dimension 1 dimension > 2 I I I IFS ? ? 2-state GIFS ? ? > 3-state GIFS ? Undecidable dimension 1: we need new tools Case A = kId: “Presburger brute-forcing”, links with automatic sequences [Charlier-Leroy-Rigo] Reachability problems: can we reinterpret these problems in terms of matrix/vector products? Conclusion & perspectives Decidability of nonempty interior: dimension 1 dimension > 2 I I I I IFS ? ? 2-state GIFS ? ? > 3-state GIFS ? Undecidable dimension 1: we need new tools Case A = kId: “Presburger brute-forcing”, links with automatic sequences [Charlier-Leroy-Rigo] Reachability problems: can we reinterpret these problems in terms of matrix/vector products? Other topological properties: I I Connectedness, ∼ = disk, . . . int(X) 6= ∅ ⇒ µ(X) > 0 ⇒ dimH (x) = d Conclusion & perspectives Decidability of nonempty interior: dimension 1 dimension > 2 I I I I IFS ? ? 2-state GIFS ? ? > 3-state GIFS ? Undecidable dimension 1: we need new tools Case A = kId: “Presburger brute-forcing”, links with automatic sequences [Charlier-Leroy-Rigo] Reachability problems: can we reinterpret these problems in terms of matrix/vector products? Other topological properties: I I Connectedness, ∼ = disk, . . . int(X) 6= ∅ ⇒ µ(X) > 0 ⇒ dimH (x) = d Thank you for your attention References I Lagarias, Wang, Self-affine tiles in Rn , Adv. Math., 1996 I Wang, Self-affine tiles, in book Advances in wavelets, 1999 (great survey, available online) I Lai, Lau, Rao, Spectral structure of digit sets of self-similar tiles on R1 , Trans. Amer. Math. Soc., 2013 I Dube, Undecidable problems in fractal geometry, Complex Systems, 1993 I Jolivet, Kari, Undecidable properties of self-affine sets and multi-tape automata, MFCS 2014, arXiv:1401.0705
© Copyright 2024