KYT seminar 18.3.2015 Microbiology research in KYT2014 Merja Itävaara VTT Technical Research Centre of Finland www.vtt.fi Contents Introduction - Microbiology in repositories – why microorganisms and their functions should be studied Microbiology research in KYT2014 (2010-2014) GEOMICRO SALAMI GEOBIOINFO VTT GTK Aalto (2011-2014) Deep BIOSPHERE/GEOSPHERE BOA microbes in bentonite, VTT (2011-2014) BUFFER KKK-koe (Gas generation of low radioactive waste) (2013-2014) VTT REMIC (Corrosion of demolition waste) (2012-2014) VTT LLW 30/04/2015 Conclusions Merja Itävaara, VTT 2 IGD-TP Implementing Geological Disposal of Radioactive Waste Technology Platform http://www.igdtp.eu/ Euratom/Mind project (2015-2019) to support the implementation of planned geological disposal projects for higher-level radioactive wastes across the EU. “high urgency” and “high importance” topics identified in the most recent IGDTP Strategic Research Agenda, focusing specifically on the influence of microbial processes on waste forms and their behavior, and the technical feasibility and longterm performance of repository components. 15 European groups working on the impact of microbial processes on safety cases for geological repositories across the EU, focusing on key questions posed by waste management organisations 30/04/2015 Merja Itävaara, VTT 3 Introduction What microbes can do in the repositories? Microbes can - degrade organic C and can disintegrate construction materials - utilize and generate gases - migrate radionuclides - change geochemistry - oxidize and reduce metals - form hydrogen sulphides which are corrosive for steel and copper - change redox state of radionuclides 30/04/2015 Merja Itävaara, VTT 4 Metagenomics to study uncultivable Only 1-5% of microbes are cultivable Isolate (pure culture) Genomics Courtesy of Susannah Green Tringe, DOE JGI Microbial community Metagenomics 5 Opening the genetic code - Sequencing Reading the nucleotide structure (A, G, T, C) of the genome or metagenome Sequencing technologies - Sanger sequencing - Next generation sequencing (high throughput sequencing): 454 pyrosequencing, Illumina sequencing; HiSeq, MiSeq. Next Seq Ion Torrent PGM, PacBio RS Oxford Nanopore (Life technologies) 6 Bioinformatics for highthroughput data analysis Fast development of tools ongoing What species are there? Bacteria and Archaea, 16S rRNA, Fungal diversity, ITS region Blast, Mothur, Geneious, Green genes, Bionumerics, Giime pipeline for more automatic large data analysis What are they doing? Total sequencing of the whole community to study metabolic pathways: IMG/M, MG-RAST, Megan, Uniprot, KEGG,etc New pipeline developed recently in HUMAnN microbiome project (Abubucker, S et al. 2012, Plos Computational biology 8, 6) 30/04/2015 Merja Itävaara, VTT 7 Future research is focusing on OMIC’s approach in Systems Biology of living Accurate organisms Link with cognate Identification of enzymes involved in metabolite transformation annotation of ORFs metabolic pathways Metabolome Metaproteome Metabolism Metatranscriptome Metagenome Maria-eugenia Guazzaroni and Manuel Ferrer 2011. Handbook of Molecular Microbial Ecology, Vol. I Metagenic approaches in systems biology, Chapter 54 Final cellular output 8 9 30.4.2015 Competences developed in the microbiology projects DIVERSITY QUANTIFICATION qPCR Geomicrobiology DGGE,functional genes, 454 pyrosequencing 16S rRNA VTT Functional genes FUNCTION INTERACTION Radiolabelled substrates, SIP, Total sequencing, Metabolic pathways’ Geosphere/biosphere Deep biosphere consortium SALAMI, GEOMICRO, GEOBIOINFO 2011-2014 SALAMI GTK Ilmo Kukkonen, L Ahonen -Deep groundwater sampling techniques -Geochemistry, gases, isotopes -Online gas analysis GEOMICRO M. Itävaara/VTT -Microbial sampling -Microbial diversity anjd function, highthrouhput sequencingi -Anaerobic methane oxidation -Chemical small molecules in groundwaters Collaboration: GTK, Prof. Ilmo Kukkonen (HY), Lasse Ahonen, Riikka Kietäväinen Aalto University Prof. Juho Rousu, Funding: Finnish National Research Program for nuclear waste disposal (KYT2010, KYT 2014) Finnish Academy; Projects 1. Deep Life, 2. Deep metapathway Finnish Natural Science Foundation Ph.D grant Posiva Ltd. TVO Ltd. 30/04/2015 Merja Itävaara, VTT Scientists involved at VTT Microbial diversity Malin Bomberg Mari Nyyssönen Lotta Purkamo Maija Nuppunen-Puputti, Pauliina Rajala, Mari Raulio Leea Ojala Hanna Miettinen Minna Vikman Elina Sohlberg Metapathway analysis and enzymes Heikki Salavirta Kaisa Marjamaa Peter Blomberg Antti Nyyssölä Mikko Arvas Merja Oja Fahad Syed 11 Deep biosphere and major processes Bacteria, archaea, fungi, viruses, nematodes Chemolithotrophic processes Iron and sulphur oxidation and reduction Methane production, methane oxidation Hydrogen use and production Nitrogen fixation, ammonia oxidation, denitrification Heterotrophic, organic compound degradation Carbon dioxide fixation 30/04/2015 Merja Itävaara 12 Goals To Characterize microbial diversity of Fennoscandian Shield by highthroughput sequencing Combine geochemistry and geology to microbial data To estimate the major metabolic functions based on whole genome sequencing and metabolic network analysis 30/04/2015 Merja Itävaara, VTT 13 Sampling sites (2006-2014) 30/04/2015 14 To provide knowledge about microbial diversity and metabolism in Finnish bedrock aquifers Major sites Outokumpu deep borehole (2.5 km) Cu-Zn-Ni-Cosulphide ore province, 2.5 km, Geolaboratory, research borehole Olkiluoto: Nuclear waste disposal site, several drillholes 300-1000m, 15 boreholes Outokumpu deep borehole studies Metapeltic rocks (mica gneiss) representing original marine clay deposition (sulphides present), metamorphosed and associated with intrusives (granite, tonalite) Pyhäsalmi cave, 2 km Kuhmo 600m Outokumpu 2.5km Itävaara et al. 2011. . DOI:10.1111/j.1574-6941.2011.01111.x Kietäväinen, R., et al. 2013 and 2014. doi.org/10.1016 j.apgeochem.22012.10.013 Purkamo et al. 2013 and 2014 DOI: 10.1111/1574-6941.12126 and doi 10.1007/s00248-014-0490-6 Rajala, P. et al. 2015. doi:10.3390/microorganisms3010017 Olkiluoto 300-1000m Palmottu 30/04/2015 15 Anaerobic sampling in Outokumpu (deep borehole 2.5km) Sampling every summer 2007-2012 30.4.2015 16 Development of sampling techniques in KYT2014 Sites: Outokumpu deep borehole 2.5 km Kuhmo, Romuvaara 600m Pyhäsalmi cave ca 2 km Tube sampling, samples from 50 tai 100m Pumping water samples Pressure samples Biotraps Filtration of large water samples from Pyhäsalmi cave, decrease in pressure systems Outokumpu: On-line monitoring (pH, EC, T, O2, Eh) Measurement of gas evolution from the head space of the borehole 30l/day, major gas methane 30.4.2015 Pyhäsalmi SEM & EDX analysis Very small number of cells observed A lot of crystals which plugged the filter High pressure problems in sampling Kuvat Mari Raulio 17 Saline fluids, gases and microbes in crystalline bedrock -SALAMI • Sampling for representative gas and microbiological samples Pressurised cylinder Pressure gauge Vacuum pump Sampling at the Outokumpu Deep Drill Hole (2.5 km deep) Ultrasonic bath Sampling in the Pyhäsalmi mine (-1430 m) KYT2014 18.3.2015 Riikka Kietäväinen Gas separation in a vacuum line SALAMI: Residence times of deep groundwaters • • • Concentration of crustal noble gas nuclides Concentration of U, Th and K + physical properties of the bedrock accumulation rate Noble gas components • 3He/4He 1.5 · 10-8 No mantle component Modified after Ballentine & Burnard (2002) and Ballentine et al. (2002) Mantle •In Outokumpu the average residence time 30 million years (Kietäväinen et al. 2014, GCA) Anaerobic methane oxidation - risk for nulcear waste safety at the disposal site - may occur at sulphate methane transition zone - until now has been observed in sediments at sea bottom - in our studies we suggest that is connected to connection of methylotrophic, and sulphate reducing microbial community interactions Terminal electron acceptors in anaerobic methane oxidation a) Mangane CH4 + 4MnO2 + 7H+ b) Iron CH4 + 8 Fe(OH) 3 + 15H+ c) Nitrite: 3 CH4 + 8NO2- + 8H+ d) Nitrate: 5 CH4 + 8NO 3- + 8H+ e) Sulphate: CH4 + SO42- 30/04/2015 HCO3- + 4Mn2 + 5 H2O HCO3- + 8Fe2+ + 21 H2O 3CO2 + 4N2 + 10 H2O 5CO2 + 4N2 + 14 H2O HS- + HCO3- + H2O Merja Itävaara 20 Outokumpu deep borehole research What has been done - the diversity of microbial communities each 100m depths - pathways (3 depths) Bacteria - borehole water and fracture microbiology DGGE and 454 pyrosequencing 0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % Flavobacteria OUTOII 150-250 m Gammaproteobacteria Actinobacteria OUTOII 550-650m m Alphaproteobacteria Mollicutes OUTOII 950-1050 m Clostridia OUTOII 1050-1150 m Betaproteobacteria unclassified_Bacteria OUTOII 1450-1550 m Deltaproteobacteria OUTOII 1850-1950 m Erysipelotrichi Anaerolineae OUTOII 2250-2350 m Whole genome sequencing and pathways (MG/Rast) Sphingobacteria Archaea 1 2 3 4 0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % OUTOII 150-250 m * * 100 % Methanolobus Methanomethylovorans OUTOII 550-650 m OUTOII 950-1050 m * * OUTOII 1050-1150 m OUTOII 1850-1950 m Methanobacterium Methanosarcina unclassified_Methanobacteriaceae unclassified_Euryarchaeota unclassified_Archaea unclassified_Methanosarcinaceae unclassified_Methanomicrobia OUTOII 2250-2350 m unclassified_Methanobacteriales * * * Itävaara, M., Nyyssönen, M., Kapanen, A.,Nousiainen, A., Ahonen, L., Kukkonen, I. 2011. Characterization of bacterial diversity down to a depth of 1500 m of the Outokumpu deep borehole. FEMS Microbiology 2011, 1-15,. DOI:10.1111/j.1574-6941.2011.01111.x Deep metapathways: - Energy metabolism based on metagenomic data Nyyssönen, M. Hultman, J., Ahonen, L., Kukkonen, I., Paulin, L., Laine, P., Itävaara, M. and Auvinen, P. 2014.. Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield" - ISME J, 8: 126–138; 30/04/2015 Merja Itävaara, VTT doi:10.1038/ismej.2013.125. - What are the major metabolic pathways driving the community 21 Statistical analysis of Sulphate reducers, geochemistry and geophysics Viivi Uurtio graduation thesis Supervised by Prof. Juho Rousu /Aalto Yliopisto Sites compared: Olkiluoto, Outokumpu, Nummi-Pusula 30/04/2015 Merja Itävaara, VTT 22 KKK-koe Biodegradation of low-level radioactive waste in geological disposal Merja Itävaara, Minna Vikman, Kaisa Marjamaa VTT Technical Research Centre of Finland Ltd Operating waste generated during operation and maintenance Low level: Paper, cardboard, cotton Fire-protected fabrics Plastic wrappings and protective clothing Machinery parts and pipes 59% cellulose-based material Itävaara, VTT Silo for low level radioactiveMerjawaste 30/04/2015 Photo: Posiva Oy Picture: Small et al., 200824 Microbiological risks in geological disposal of LLW Methane evolution Organic C cause accelerated biocorrosion and increased activity of microbes Microbial metabolites Low-level waste: Cellulose-based waste: radiation paper, cardboard, cotton, fabrics etc. Environmental conditions (pH) Others: PVC, PE, rubber, metals etc.. Migration of radionuclides 30/04/2015 microbes 25 Results Anaerobic biodegradation of LLW waste is ongoing Constant biogas formation Methanogens detected Microbial groups related to the hydrolysis of cellulosic materials Biodegradability of LLW was below 5% in 2013 The heterogenity in environmental conditions in different parts of the tank can also be seen in microbial activity and microbial diversity highest microbial activity in the drum containing mostly biodegradable waste Corrosion of steel plates was proceeding more rapidly in the capsules containg biodegradable waste 30/04/2015 Merja Itävaara, VTT 26 Mikrobiologisen korroosion riskit Suomen loppusijoitusolosuhteissa (REMIC) Leena Carpén, Pauliina Rajala, Malin Bomberg KYT2014 Loppuseminaari 18.3.2015 Tavoitteet Hankkeen tavoitteena oli arvioida biofilmien muodostumista ja mikrobiologisen korroosion riskiä metallisille materiaaleille (purkujätemetallit) Suomen loppusijoitusolosuhteissa sekä kehittää luotettava lopusijoitusolosuhteita simuloiva koejärjestely. 30/04/2015 28 Mikrobiologiset tulokset – betonin ja ravinteet Biotic Biotic Methane A Biotic Glucose B Biotic Glucose A Biotic Concrete B Biotic Concrete A Biotic B A Abiotic Abiotic Methane B Biotic • Ravinteiden lisäys muutti bakteeriyhteisön koostumusta ja kiihdytti hiiliteräksen korroosiota • Betoni inhiboi biofilmin muodostumista ja hidasti korroosiota, mutta aiheutti voimakkaammin korroosion paikallistumista Betaproteobacteria Deltaproteobacteria Bacilli Mikrobit korroosiokuopassa Alphaproteobacteria Kuva: Mari Raulio B Bacilli A 0% 10% Alphaproteobacteria Sphingobacteriia Gammaproteobacteria Zetaproteobacteria Armatimonadetes_gp4 Caldilineae Epsilonproteobacteria Planctomycetia Anaerolineae Nitrospira Anaerolineae 30/04/2015 Erysipelotrichia 20% 30% 40% 50% Deltaproteobacteria Ignavibacteria Actinobacteria Clostridia SR1_genera_incertae_sedis Flavobacteriia Negativicutes Subdivision3 Chlorobia Spirochaetia Bacilli Mollicutes 60% 70% 80% 90% 100% Betaproteobacteria Cytophagia Acidobacteria_Gp6 Verrucomicrobiae Anaerolineae Parcubacteria Bacteroidia Acidobacteria_Gp16 Holophagae Aquificae Bacteroidetes_incertae_sedis 29 30.4.2015 30 Yhteenveto tuloksista Mikrobilajistot hyvin erilaisia paikkakohtaisesti: Rakovyöhykkeissä erilainen lajisto kuin kairareiässä (Purkamo et al. 2013) Sienilajistoja runsaasti, niiden toiminta on huonosti tunnettu geologisissa olosuhteissa, monet happoja tuottavia Mikrobien aktiivisuus on erittäin hidas geologisessa ympäristössä. kuitenkin muutokset elektroniakseptorien saannissa voivat aiheuttaa nopeita aktiivisuuden muutoksia esim. metaani pulssi maan kuoresta Ihmisen muokkaama geologinen ympäristö altistuu mikrobien lisääntyvälle toiminnalle ja vaikutukset huonosti tunnettu Orgaanisen hiilen esiintyminen edistää biokorroosiota Mikrobit voi muuttaa ympäristönsä kemiaa, pH:ta ja lämpötilaa Geologia, geokemia, paine, syvyys, lt, geokaasut TECHNOLOGY FOR BUSINESS
© Copyright 2024