Solid state NMR: why/how and some applications from organic/bio molecules to inorganic materials K. Takegoshi Kyoto Univ. NMR observables and interactions and structure and .... Observables Spin interactions Lineshape Chemical shift Structure 600 400 200 0 -200 -400 C= Longitudinal magnetization Transverse Magnetization O Relaxation times Orientation M0 Dipole-dipole Distance M0 Dynamics time Magnetization-transfer rate/efficiency Quadrupolar and others Why solid-NMR? ★Various targets are non-solvable or interesting as a solid material. Glass, coal, wood, fiber, polymer, .... ★In solution, molecular overall rotation does average spin interactions that bear structural information Let us estimate rotational correlation time τ from molecular diffusion constant D in solution Stokes-Einstern Eq. D = kT/6πaη τ = d 2 /2D a : hydrodynamic radius d : radius 2a η: viscosity For sucrose/H2 O, we have D = 0.521X10 -5cm 2 s-1, then d = 1 nm τ 10 -13 s d = 10 nm τ 10 -11 s NMR frequency ~ 10 8Hz All spin interactions become isotropic in solution, so how it can be used for structural determination? How to utilize anisotropic spin interactions ... Chemical Shift Anisotropy (CSA) C=O C=O Magnetic field If your sample has a unique axis, such as single crystal, liquid crystal, oriented membrain, elongated polymer... Naito et al., Biophysical J. 78 (2000) 2405 If your sample has no particular orientation (powder) ... X-13C=O X C= A powder pattern Dipolar O CSA C Orientation X-C distance The Pake pattern 200 100 0 200 300 =O 300 100 0 Even for one C-13 with two interactions, If you have both . .. we have enough complexity 600 The lineshape depends on the relative orientation -100 400 200 0 -200 Chemical Shift/ppm -400 To make it simple, Magic-Angle Spinning (MAS) ... B0 Almost SSB-less isotropic spectrum 54.7 o Liquid-like ... means less information! 8 kHz Sample 4 kHz Z Spinning-side bands (SSB) 2 kHz Y X C=O 0 kHz (static) C-O Two CSA powder patterns overlapped MAS removes anisotropy 300 250 200 150 100 50 0 Chemical Shift/ppm -50 -100 Selective observation of a particular interaction Dipiolar and CSA 13 X- C=O rf irradiation to remove only CSA 600 400 200 0 -200 Chemical Shift/ppm -400 Dipolar pattern X-C distance MAS to remove both 200 MAS synchronized rf irradiation to recouple the X-C dipolar interaction 300 200 100 0 100 0 -100 For selective observation of dipolar interactions CSA H = δ(α,β,γ) I z1 + δ(α ,β ,γ ) I z2 Dipolar H = d(α*,β*,γ*) I z1 I z2 o A π (180 ) pulse Iz -I z One-point sampling CSA Dipolar Iz -I z Iz -I z I z1 I z2 Iz -I z Observation of a C-C distance, any use? :13C enriched 99.9% a) Insertion mechanism Ph Ph Rh Rh Ph Ph Ph Ph Ph b) Metathesis mechanism Ph Ph Rh Rh Ph Ph Ph Rh Ph Observation of a C-C distance can be useful in many cases. 13 C dipolar powder pattern Rc- c = 0.1386 ± 0.0009 nm ref. (polyacetylene, 77K) C- C = 0.148 nm C=C = 0.136 nm The mechanism is the insertion mechanism! Hirao et al., Macromolecules 31 (1998) 3405. How about MAS and recoupling We would like to enjoy resolved peaks under MAS and appreciate dipolar. CSA H = δ(α,β,γ) I z1 + δ(α ,β ,γ ) I z2 Dipolar H = d(α*,β*,γ*) I z1 I z2 MAS CSA δ(α,β,γ) δisotropic d 0 Let us examine how MAS works. Alas, all gone! How dipolar becomes 0 by MAS Z Dipolar H = d(α*,β*,γ*) I z1 I z2 β X B//Z B//X d ∝ 3 sin 2 β cos 2α- 1 X Y α dZ ∝ 3 cos 2 β - 1 B//Y dY ∝ 3 sin 2 β sin 2α- 1 MAS averaging Z dx + dY+ dz = 0 o 120 Y X H = d(α*,β*,γ*) I z1 I z2 MAS H (t) = d(t) I z1 I z2 t = 1 rotational period ∫ d(t) dt = 0 t=0 Dipolar recoupling under MAS rf irradiation applied synchronously H (t) = d(t) I z1 I z2 to modulate the spin part t t t = 1 cycle ∫ t=0 H (t) dt = 0 t = 1 cycle ∫ t=0 H (t) dt ≠ 0 13 15 Modulatory resonance (MORE) for C- N recoupling (a) conventional CPMAS 13 15 C N CP (b) MORE experimental + - + - + Sinusoidal amplitude modulation (c) MORE simulation 800 400 C-N dipolar powder pattern 0 Hz - 400 - 800 [2- 13 C,15 N] glycine K. Takegoshi, et al., Chem. Phys. Lett., 260 (1996) 331. OK for a single pair, but for a multi-spin system .... If you want to determine a local structure, you must determine several distances.... Strategy for a multispin system .... Decoupling by MAS Broadband resoupling Selective recoupling Uniform Labeling by 13C / 15N Uniform Decoupling by MAS Selective Recoupling by R2TR G 180 o o 180 o I -76 I 144 1 179 2 160 I I G o o o 165 o 170 o o I -70 I 153o I I 1 2 o 178 170 o J. Biomol. NMR, 17 (2000) 111. For broadband, we measure polarization-transfer rate flip-flop exchange Broadband recoupling under MAS 1 H 13 C CP Decouple Decouple recoupling t1 t2 Distance precision is not very good but enough for many pursposes High resolution Magnetization transfer between recoupled spins High resolution Application of broadband recoupling under MAS Amyloid-β fibrils is related to Altzheimer's disease. 13 These depositions are composed of amyloid-β peptides of 40- and 42-residues. Aggrigative ability of these peptides relate to the 3D structures. Val2-β↓ Val1-β↓ Val2-γ↓ Val1-γ↓ Lys-β↓ Asp1-α↓ Asp1-β↓ Ala-β↓ Lys-α↓ Asp2-β↓ Lys-γ↓ Asp2-α↓ Lys-ε↓ Lysδ↓ Val1,2-α↓ ↓Ala -α Ala-CO↓ ↓Lys-CO Val1,2-CO ↓ Asp1-γ↓ Asp2-γ↓ 184 180 13 Assignment of C signals of C-labeled 21-24 aa by DARR with the mixing time of 20ms 176 172 168 60 40 20 The Irie's model of amyloid- (Italian) 42 39 or 40 32 24 20 β-sheet β-sheet β-sheet 15 40 21 60 Y. Masuda, et al., Bioorg. Med. Chem. Lett. 18 (2008) 3206; Boiosci. Biomtech. BioChem. 72 (2008) 2170; Chem.BioChem,. 10 (2009) 287. 184 180 176 172 Chemical Shift/ppm 168 60 40 Chemical Shift/ppm 20 The turn structure of Aβ42 at 21-24 residues DARR (mixing time=1 s) Lys 40 30 160 160 120 80 40 40 Ala Chemical Shift/ppm 120 Chemical Shift/ppm 80 20 Val Asp If 21-24 residue is β-sheet, the side chains of Lys and Asp are too far. 50 Chemical Shift/ppm 60 180 176 172 Chemical Shift/ppm 21 Ala NH CαH CH3 22 Lys 23 Asp 24 Val CO NH CαH CO NH CαH CO NH CαH (b) CβH CβH CβH 2 CγH2 Ala Lys CO Asp 2 (C) CγOOH CδH2 CεH2 NζH2 H 3 Cγ CγH3 (a) Val Recent collaboration with the Paris group on Aβ42 DARR uses just X M. Weingarth, Y. Masuda, K. Takegoshi, G. Bodenhausen, and P. Tekely, J. Biomol. NMR, in press Distance measurement by solid-state NMR 1) From dipolar powder patterns 2) From magnetization transfer/spin diffusion site A site B 3) From molecular diffusion Photo-dimerization of solid anthracene UV If reaction occurs at the position If reaction occurs at defect where a photon is adsorbed, sites, the dimer forms the dimer molecule distributes domains. randomly. ? Can we distinguish these? Polarization/magnetization transfer by spin diffusion Relax independently No diffus ion Short relaxation time Slow spin diffusion Long relaxation time Fas t s pin diffus ion Fast diffusion Relax together Relaxation and spin diffusion Dimer Monomer M D = -( R D+ f D K) M D (t) + f M K M M (t) spin diffusion MD MM K RD M M = -( R M+ f MK) M M (t) + f D K M D (t) RM 4 -ln((1-M(t))/2) Lattice R M = 1/152 s-1 R D = 1/11 s -1 f D & K : Fitting parameters fD (t) = 1 - exp(- k d t) kd 3.5 X 10 -4 s -1 Pure dimer 3 After 10 min UV irr 2 Pure monomer 1 0 0 50 100 150 200 250 300 Time / s Reaction site Photo dimerization reaction The maximum domain size estimated is 300 nm. Spin-diffusion rate K/s-1 2.0 >1 s-1 1.5 1.0 Fast 0.5 0.06 Fast spin diffusion 0.04 Slow Fast 0.02 0.0 0.5 1.0 Fraction of dimer fD Photo-reaction takes place at defects Takegoshi et al., Solid State NMR, 11 (1998) 189. Domain structure can be studied by SS-NMR For one example, glass 7.4Na2 O-24.9B 2O3 -66.3SiO2 -1.3Al2 O3 Q4 29 11.7 T Q3 Si I=1/2 -70 23 I=3/2 -80 Na -90 -100 -110 -120 -130 -140 -150 + Na(aq) H Li B e Na Mg K Ca Sc Rb Sr Y Cs B a La Fr R a Ac amorphous inorganic solids Red : I = 1/2 Blue : I >1/2 Black : I = 0 B C N O Al S i P S T i V C r Mn Fe C o Ni C u Zn G a G e As S e Zr NbMo T c R u R h P d AgC d In S n S b T e Hf T a W R e Os Ir P t Au Hg T l P b B i P o Ku Ha F Cl Br I At He Ne Ar Kr Xe Rn L a C e P r NdP mS mE u G d T b Dy Ho E r T mY b L u Ac T h P a U Np P u AmC mB k C f E s FmMdNo L r + Na(solvated) 21.8 T 30 27 I=5/2 20 10 0 -10 -20 -30 -40 -50 four-coordinated Al 21.8 T 90 11 80 70 60 50 40 B 30 Unlike organic molecules, we must deal with I>1/2 nuclei in inorganic materials. 20 21.8 T I=3/2 30 20 10 0 -1 Chemical shift / ppm M. Murakami et al, to be publiched For I>1/2, we must worry about the quadrupolar interaction..... Solid-state NMR of O H O B2 O H O B1 O B1 O H 11 10 B (I=3) and B(I=3/2) 2- 10 B B1 B2 11 B B1 B2 O B2 O H O 10B: 11 B: borax e2qQ/h (MHz) 1.042 5.4 0.487 2.544 B1 0.711 0.10 0.714 0.089 11 B(I=3/2) B2 Izv. Vyssh. Uchebn. Zaved. Fiz. 29, 3 (1986) J Chem. Phys., 38, 1912 (1963) B1 11 Static powder B ー NMR 10 Intensities are distributed to B2 B(I=3) spinning sidebands, thus leading a smaller main peak * 120 MAS * 60 0 -60 -120 /ppm 20 0 Chemical shift / ppm -20 The characteristic second-order quadrupolar powder pattern for I=3/2 under MAS M. Murakami, Bunseki (12) 658-663 2008. MAS can not remove the anisotropic broadening due to the quadrupolar interaction. How to reduce/remove the 2nd-order quadrupolar interaction B1 Static I=3/2 MAS spectra (simulated) Quadrupolar = 2 MHz B2 MAS Static field=200 MHz * 120 0 -60 -120 /ppm −10 60 MQMAS 0 100 MHz 50 MHz 10 B1 100 50 0 -50 -100 -150 -200 20 The 2nd-order broadening Chemical Shift/ppm The isotropic shift 30 B2 30 Either use higher magnetic field or do 2D-MQMAS! 20 10 0 −10 Chemical shift/ppm M. Murakami, Bunnseki、(12) 658-663 2008. Mesoporous B-C-N (1/3) Mesoporous BCN prepared using graphite as a template Sample1(MBN) :45min@2020K Sample 2 (MBCN):20min@1720-1820K 11 Sample : MBCN B MAS NMR 21.9T Experimental A small amount of carbon remains At 21.9T, three distinct peaks were resolved. 11.7T At 11.7T, the characteristic 2nd-order site3 lineshape appears, which can be used site1 to deduce quadrupolar coupling constants. site2 δiso / ppm site1 30.4 site2 18.8 Simulated site3 40 20 0 Chemical Sift (ppm) -20 40 20 0 Chemical Sift (ppm) -20 M. Muramkami et al., Chem. Lett. 35 (2006) 986-987 0.94 e2Qqh-1 / MHz 3.5 2.7 η 0.4 0.2 < 0.1 0 For MBN, the site-2 and site-3 are less intense (not shown). Mesoporous B-C-N (2/3) The quadrupolar coupling constants can be reproduced by using Gaussian03 (6-31G*) The model compounds for calculation. (● : Boron, ● : Nitrogen, : Hydrogen) Left: hexagonal BN-like Right:cubic BN-like Calculated constants and observed ones hBN e2Qq / h η cBN calc. ref.1 2.85 0 2.936 0 calc. - 0.72 0.01 ref.2 < 0.05 (MHz) 0 1) Solid State NMR 12, 1-7 (1998) 2) Solid State NMR 8, 109-121 (1997) Quadrupolar interection is nuisance but useful for structure elcidation. Mesoporous B-C-N (3/3) Structural determination by11B-11B 2D distance correlation From the size of the quadrupolar couplings, 0 borons of site 1 and 2 are trigonal boron and 10.0 site3 the site-1 boron is tetragonal one. From the 2D correlation pattern, we postulated the pillar and wall structure shown below. 20.0 site2 This cross peak 30.0 shows site2 and 3 The wall domain (site 1) are in close proximity site1 30.0 20.0 10.0 0 Chemical shift / ppm The pillar domain (site 2 and 3) These implys that site 1 and site2&3 do not belong to different particules. There must be molecular contact between two groups M.Murakami et al., Solid State NMR, 2007 (31) 193. Acknowledgement
© Copyright 2024