1 x kg 2 kg 2 kg 2 kg 2 kg x kg x kg x kg 2 kg 2 kg 2 kg 2 kg 2 kg 2 kg 5 Hvert lod vejer ·________ kg. 5 4x = 2 · 10 Skriv ligningen: ······················································ Løsningen er: ······················································ 2 · 10 = 4x ⇔························································ 4x = 20 ⇔ Forklar hvordan ligningen skal løses: ························································ 20 x= 4 ⇔x=5 ··········································································································································································· 2 x kg x kg 2 kg x kg 2 kg 2 kg 2 kg 2 kg 2 kg 4 Hvert lod vejer ··············· kg. 4 3x = 6 · 2 Skriv ligningen: ······················································ Løsningen er: ······················································ 3x = 6 · 2 ⇔··························································· 3x = 12 ⇔ Forklar hvordan ligningen skal løses: ····················································· 12 x= 3 ⇔x=4 ··········································································································································································· 3 10 kg x kg x kg 10 kg 10 kg 10 kg 10 kg 25 kg. Hvert lod vejer ··············· 2x = 10 · 5 Skriv ligningen: ······················································ 25 Løsningen er: ······················································ 2x = 10 · 5 ⇔ 2x = 50 ⇔ Forklar hvordan ligningen skal løses: ··············································································································· 50 x = 2 ⇔ x = 25 ··········································································································································································· M AT E M AT R I X 7 15 ALINEA LIGNINGER 1 Forklar hvad der er sket med ligningerne fra linje til linje og find løsningen. a Ligning Forklaring 3x + 2 = 14 3x + 2 – 2 = 14 – 2 Der er trukket 2 fra på begge sider af lighedstegnet 3x = 12 Der er reduceret på begge sider af lighedstegnet Der er divideret med 3 på begge sider af lighedstegnet 3x 3 = 12 3 x=4 Løsningen er 4 b Ligning Forklaring 8x – 4 – 2x + 7 = 21 6x + 3 = 21 Der er reduceret på venstre side. 6x + 3 – 3 = 21 – 3 Der er trukket 3 fra på begge sider. 6x = 18 Der er reduceret på begge sider. 6x 6 = 18 6 Der er divideret med 6 på begge sider. 3 x = ··················· Løsningen er 3 c Ligning Forklaring 40 + 2x – 3x + 5x = 36 40 + 4x = 36 Der er reduceret på venstre side. 40 + 4x –40 = 36 – 40 Der er trukket 40 fra på begge sider. 4x = –4 Der er reduceret på begge sider. 4x 4 = –4 4 Der er divideret med 4 på begge sider. –1 x = ··················· Løsningen er 2 Find den ubekendte. a 2a = 8 a= b 3b +1 = 10 b= 4 c 12c – 5 = 19 c= d 2d 3 M AT E M AT R I X 7 –1 2 =8 1 4 d= 16 ALINEA e 2e – 12 e = 5 e= f 2f + 0,5 = 1,5 f= 3 13 1 2 LIGNINGER 1 Forbind de ligninger og løsninger der hører sammen. 2x = – 8 –x = 3– 1x 2 4x 1 1 = 2x – 4 2 x=8+ –2 5x = 2 5 9x 3x – 1 = +x 8 1,5 1 2 5 3x = 1, 4 3 –1 1 – 23x –11 2 = –4 –3x = 3 7,5 2x = 4 2 Udfyld de tomme figurer, så udsagnene bliver sande. a –7 12 + 8 = Hvis figurerne i en opgave er ens, skal der stå det samme tal i figurerne · 3 = 33 e 1 2 2 11 i 15 · 15 = 225 j 1 2 k 1 : 25 b f 10 – 11 = –1 c –1 + 5 = 4 d 6 · 2,5 = 15 50 = 12 2 :6= g h 119 1 3 : 7 = 17 l 1 1 2 · 1 2 = 14 =2 = 1 1 3 Forbind ligninger med samme løsning. 4x = 3x + 8 30 + 2 4 Løs ligningerne. a x + 7,3 = 14,2 8 2 = 20 2x + 6 = c 4x – 2 30 x – 18,3 = 9,87 x + 14,1 = 29 d e 0,3x = 9 3x = x = 30 17 ALINEA –8 + –8 2 x – 0,08 = 3,99 x = 4,07 f x = 14,9 M AT E M AT R I X 7 = 30 x = 28,17 x = 6,9 b 3x = 20 3x – 2 = – 6 x = 30 – 6,5 x = 0,13 x = 0,02 LIGNINGER 1 Find den ubekendte: a 2a + 1 = 9 a= 4 e 3z – 12 = 57 z= 23 b 2y + 2 = 12 y= 5 f x + 56 = 34 x= –22 c 2b – 2 = 12 b= 7 g 34 + 6n = 52 n= 3 d 12 – 4c = – 8 c= 5 h 26 + 2p = 16 p= –5 2 Find den ubekendte: a 2a = 1 a= b 2x = 7 x= y 6 = 13 y= d b7 = 42 b= c 2 14 78 294 36 e 3z 4 = 27 z= f 5b 7 = 35 b= g 3p 5 = 12 p= 20 h 4n 5 = 20 n= 25 49 3 Løs ligningerne: a 9x –15 + 2x + 28 = 46 x= b 12x – 14 + 12 = 10 + 4x x= c 3x + 4 + 2 = 2 – 5x + 20 x= 4 På en skålvægt er der ligevægt, når der ligger 2 kugler på den ene skål og 3 klodser på den anden. Sæt streg under de situationer, hvor der også er ligevægt. 3 1,5 M AT E M AT R I X 7 2 d 24 + 15x – 16 – 9x = 50 x= e 10x – 15 – 12 + 2x = 9 x= f 5 + 5x – 10 = 10x + 10 x= 7 3 –3 g 4(2x – 3) – x = –5 x= h –3(2 – x) + 8x = 16 x= i 8(x + 3) – 21 = 67 x= 1 2 8 a 6 kugler og 8 klodser g 0 kugler og 0 klodser b 4 kugler og 6 klodser h 24 kugler og 48 klodser c 1 kugle og 2 klodser i 8 kugler og 12 klodser d 12 kugler og 18 klodser j 24 kugler og 36 klodser e 38 kugler og 57 klodser k 100 kugler og 150 klodser f 15 kugler og 21 klodser l 50 kugler og 75 klodser 18 ALINEA LIGNINGER 1 Hvad er der gået galt i disse omformninger? Find ligningens rigtige løsning. a 5x + 3 = 10x – 7 3 = 5x – 7 10 = 5x 10 = 5x ⇔ x = 105 ⇔ x = 2 5 = x Den rigtige løsning er: 1 b 2 x 2 + 2 = 8 + x 1 2 = 8 + 12 x ⇔ –6 = 12x ⇔ 2 = 8 + 2 x 10 = 2 x 20 = x c 2x – 4 = 7x + 1 –4 = 5x + 1 –4 = 5x + 1 ⇔ –4 – 1 = 5x + 1 – 1 ⇔ –3 = 5x –5 = 5x ⇔ x = –5 – 35 = x Den rigtige løsning er: d 6x – 1 = 3x + 8 6x – 1 = 3x + 8 ⇔ 6x – 3x = 8 + 1 ⇔ 9x – 1 = 8 3x = 9 ⇔ x = 9x = 9 ⇔x=3 x = 1 Den rigtige løsning er: e 0,5x + 4 = 4x – 3 4 = 3,5x – 3 7 = 3,5x 1 = x 2 Løs ligningerne: a 5x + 6 = 7x – 2 b 4x – 12 + 6x = 5 – x x = 0,5 c 5y + 5 = 7 + y y = 0,5 1 Den rigtige løsning er: –5 3 7 7 = 3,5x ⇔ x = 315 ⇔x=2 Den rigtige løsning er: 2 x=4 x=1 9z + 2 – 6z = 6 + z – 4 z=0 M AT E M AT R I X 7 –12 9 3 + 4 – x = 2 12 + x d 12 x e –6 · 2 = 12x · 2 ⇔ x = –12 y=2 f 15y + 6 – 32 y = 32 + 12 y g 35z + 12 – 15z = 10z – 18 z = –3 h 20z + 5 + 12,5z = 16 – 0,5z z= i 25b + 3 + 10b = 70 – b + 5 b=2 j 12 + 35 – 9x = x – 10 + 7 x=5 19 ALINEA 1 3 LIGNINGER 1 a Find højden i en trekant, når arealet er 32 cm2, og grundlinjen er 8 cm. h= b Opstil en ligning, der kan bruges til at finde højden (h) i en trekant, når arealet er A cm2 og grundlinjen er g cm. 32 · 2 8 h= c h g A·2 g Omform ligningen og find grundlinjen (g) i en trekant, når arealet er 15 cm2 og højden er 12 cm. g= 2 cm = 8 cm A·2 h 15 · 2 12 g = I en trekant er den korteste side x cm lang, den anden side er dobbelt så lang og den tredje side er 9 cm længere end den korteste. a Opstil en ligning, der kan bruges til at beregne trekantens omkreds O. O= b Beregn omkredsen af trekanten, når den korteste side er 4 cm. cm = 2,5 cm x + 2x + (x + 9) = 4x + 9 4 · 4 + 9 cm = 25 cm c Find længderne af alle sider, når omkredsen er 41 cm. 4x + 9 = 41 cm ⇔ 4x = 32 cm ⇔ x = 8 cm Side 1: 8 cm 16 Side 2: 3 Omskriv formlen for trapezets areal. a h= 2 · (a A+ b) b (a + b) = 2· A h c a= 2· A h 2· A h cm h b –b A= –a b= 4 I et parallelogram er den ene side 6 cm og den tilsvarende højde er 4 cm. Beregn den anden højde (h2), når den anden side har længden 8 cm. A = 6 · 4 = 24 cm2 h2 · cm a d 17 Side 3: 24 8 1 2 · h · (a + b) h =3 A=h·g M AT E M AT R I X 7 20 ALINEA LIGNINGER Uligheder 1 Forbind ulighederne med de rigtige løsningsmængder. 4x + 3 < x>3 3x + 10x + 5 1> 10 x<2 3x – 6 < 2x > 10 x>5 5x + 2 < 65 x<4 x<6 x>4 x 3x + 5x < 3– 16 x<– 2x > 1 3x – > 22 x<5 2x < 8 12 9 2 Løs ulighederne: a x–2<6 x<8 e 12 + 5x ≥ 4x – 6 b 3y ≥ 90 y ≥ 30 f 6x – 3,6 < 2,4 c 9y < 36 + 6y y < 12 g 2z + 16 ≤ 2 + z d 4x – 2 < 22 x<6 h 24 – 4x + 12 > 8x + 12 d y≤9 e q ≥ –6 f a≥0 x<3 x ≥ –18 x<1 z ≤ –14 x<2 Indtegn ulighederne på tallinjer: a x>5 b z < –4 c p≤–2 1 2 3 4 5 6 7 8 9 10 11 12 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 3 Løs ulighederne: a 2x + 2 < 3x – 12 b 12 y >4–y c x + 7 – x < 2(x + 6) d 4(3x – 5) > 4(x + 3) e 12 (4x f + 2) ≤ 3(4x – 3) –13 + 7x > –x + 19 M AT E M AT R I X 7 x > 14 –1 0 1 2 3 4 5 6 7 8 9 10 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 x < –11 g 3(2x – 1) > 3x + 4(x + 2) h 1 + 7x + 12 (2x + 2) > 14x – 28 x<5 i 4(2x + 1) < 2(2x + 8) x<3 x>4 j –6(2x + 1) ≥ 11x – 29 x≤1 x≥1 k 7(3 + 5x) < 19x – 53 x < –2 x>4 l –(7x + 5) ≥ 8(5 – 2x) x≥5 y> 8 3 x > –2,5 21 ALINEA LIGNINGER
© Copyright 2024