IRF730A, SiHF730A Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg results in Simple Drive Requirement 400 RDS(on) (Ω) VGS = 10 V 5.5 • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Qg (Max.) (nC) 22 Qgs (nC) 5.8 Qgd (nC) 9.3 • Fully Characterized Capacitance Avalanche Voltage and Current Single • Effective Coss Specified (See AN1001) Configuration Available RoHS* COMPLIANT and • Lead (Pb)-free Available D APPLICATIONS TO-220 • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply G • High Speed Power Switching TYPICAL SMPS TOPOLOGIES S G D S • Single Transistor Flyback Xfmr. Reset N-Channel MOSFET • Single Transistor Forward Xfmr. Reset (Both US Line Input Only) ORDERING INFORMATION Package TO-220 IRF730APbF Lead (Pb)-free SiHF730A-E3 IRF730A SnPb SiHF730A ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT UNIT VGS ± 30 V Gate-Source Voltage VGS at 10 V Continuous Drain Current TC = 25 °C ID TC = 100 °C Pulsed Drain Currenta 5.5 3.5 A IDM 22 0.6 W/°C Single Pulse Avalanche Energyb EAS 290 mJ Repetitive Avalanche Currenta IAR 5.5 A Repetitive Avalanche Energya EAR 7.4 mJ Linear Derating Factor Maximum Power Dissipation TC = 25 °C PD 74 W dV/dt 4.6 V/ns TJ, Tstg - 55 to + 150 Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 19 mH, RG = 25 Ω, IAS = 5.5 A (see fig. 12). c. ISD ≤ 5.5 A, dI/dt ≤ 90 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91045 S-Pending-Rev. A, 19-Jun-08 WORK-IN-PROGRESS www.vishay.com 1 IRF730A, SiHF730A Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Case (Drain) RthJC - 1.70 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Ambient RthJA - 62 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance VDS VGS = 0 V, ID = 250 µA 400 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.5 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.5 V nA IGSS IDSS RDS(on) gfs VGS = ± 30 V - - ± 100 VDS = 400 V, VGS = 0 V - - 25 VDS = 320 V, VGS = 0 V, TJ = 125 °C - - 250 - - 1.0 Ω VDS = 50 V, ID = 3.3 A 3.1 - - S ID = 3.3 Ab VGS = 10 V µA Dynamic Input Capacitance Ciss VGS = 0 V, - 600 - Output Capacitance Coss VDS = 25 V, - 103 - Reverse Transfer Capacitance Crss f = 1.0 MHz, see fig. 5 - 4.0 - Output Capacitance Coss VDS = 1.0 V, f = 1.0 MHz - 890 - VDS = 320 V, f = 1.0 MHz - 30 - - 45 - - - 22 - - 5.8 - - 9.3 - 10 - - 22 - - 20 - - 16 - - - 5.5 - - 22 Effective Output Capacitance Coss eff. Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd Turn-On Delay Time td(on) Rise Time Turn-Off Delay Time Fall Time VGS = 0 V tr td(off) VDS = 0 V to 320 VGS = 10 V Vc ID = 3.5 A, VDS = 320 V see fig. 6 and 13b VDD = 200 V, ID = 3.5 A RG = 12 Ω, RD = 57 Ω, see fig. 10b tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 5.5 A, VGS = 0 S Vb TJ = 25 °C, IF = 3.5 A, dI/dt = 100 A/µsb - - 1.6 V - 370 550 ns - 1.6 2.4 µC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. COSS eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91045 S-Pending-Rev. A, 19-Jun-08 IRF730A, SiHF730A Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V BOTTOM 4.5 V 10 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 0.1 10 TJ = 25 °C 1 4.5 V VDS = 50 V 20 µs PULSE WIDTH 20 µs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 0.1 4.0 100 VDS, Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 100 2.5 VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V BOTTOM 4.5 V 1 4.5 V 0.1 0.01 0.1 20 µs PULSE WIDTH TJ = 25 °C 1 10 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91045 S-Pending-Rev. A, 19-Jun-08 100 RDS(on), Drain-to-Source On Resistance (Normalized) 10 5.0 6.0 7.0 8.0 9.0 10.0 VGS, Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics TOP ID, Drain-to-Source Current (A) TJ = 150 °C ID = 5.5 A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10 V 0 20 40 60 80 100 120 140 160 TJ, Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRF730A, SiHF730A Vishay Siliconix 100 VGS = 0 V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 10000 1000 Ciss Coss 100 10 ISD, Reverse Drain Current (A) C, Capacitance (pF) 100000 TJ = 150 °C 10 TJ = 25 °C 1 Crss 1 1 10 100 0.1 0.4 1000 16 1.2 1.0 Fig. 7 - Typical Source-Drain Diode Forward Voltage 100 VDS = 320 V VDS = 200 V VDS = 80 V OPERATION IN THIS AREA LIMITED BY RDS(on) ID, Drain Current (A) VGS, Gate-to-Source Voltage (V) ID = 5.5 A 0.6 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 20 VGS = 0 V 0.8 12 8 10 us 10 100 us 1 ms 1 10 ms 4 TC = 25 °C TJ = 150 °C Single Pulse FOR TEST CIRCUIT SEE FIGURE 13 0 0 5 10 15 20 25 QG, Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 0.1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91045 S-Pending-Rev. A, 19-Jun-08 IRF730A, SiHF730A Vishay Siliconix RD 6.0 VDS VGS ID, Drain Current (A) 5.0 D.U.T. RG 4.0 + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 3.0 Fig. 10a - Switching Time Test Circuit 2.0 VDS 90 % 1.0 0.0 75 50 25 100 TC, Case Temperature 125 150 10 % VGS (°C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (ZthJC) 10 1 D = 0.50 0.20 0.10 PDM 0.05 0.1 t1 0.02 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t1 / t2 2. Peak TJ = PDM x ZthJC + TC 0.01 0.00001 0.001 0.0001 0.01 0.1 1 t1, Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V L VDS D.U.T. RG IAS 20 V tp tp Driver + A - VDD 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91045 S-Pending-Rev. A, 19-Jun-08 IAS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRF730A, SiHF730A Vishay Siliconix 610 ID 2.5 A 3.5 A BOTTOM 5.5 A TOP 600 600 VDSav, Avalanche Voltage (V) EAS, Single Pulse Avalanche Energy (mJ) 700 500 400 300 200 590 580 570 560 550 100 540 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current 0.0 1.0 2.0 3.0 4.0 Iav, Avalanche Current (A) 5.0 6.0 Fig. 12d - Typical Drain Source Voltage vs. Avalanche Current Current regulator Same type as D.U.T. QG 10 V 50 kΩ 12 V QGS 0.2 µF 0.3 µF QGD + D.U.T. - VDS VG VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91045 S-Pending-Rev. A, 19-Jun-08 IRF730A, SiHF730A Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Body diode VDD forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91045. Document Number: 91045 S-Pending-Rev. A, 19-Jun-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2024