IRFB13N50A, SiHFB13N50A Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Lower Gate Charge Qg Results in Simpler Drive Reqirements 500 RDS(on) (Ω) VGS = 10 V 0.450 Qg (Max.) (nC) 81 Qgs (nC) 20 Qgd (nC) • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness 36 Configuration Available RoHS* COMPLIANT • Fully Characterized Capacitance and Avalanche Voltage Single • Lead (Pb)-free Available D TO-220 APPLICATIONS • Switch Mode Power Supply (SMPS) G • Uninterruptible Power Supplies S D G • High Speed Power Switching S N-Channel MOSFET ORDERING INFORMATION Package TO-220 IRFB13N50APbF SiHFB13N50A-E3 IRFB13N50A SiHFB13N50A Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 Continuous Drain Current Pulsed Drain VGS at 10 V TC = 25 °C ID TC = 100 °C Currenta IDM Linear Derating Factor Single Pulse Avalanche 560 mJ 14 A EAR 25 mJ PD 250 W dV/dt 9.2 V/ns TJ, Tstg - 55 to + 150 TC = 25 °C Operating Junction and Storage Temperature Range Mounting Torque 56 IAR dV/dtc Soldering Recommendations (Peak Temperature) A EAS Energya Peak Diode Recovery 14 9.1 W/°C Energyb Maximum Power Dissipation V 2.0 Avalanche Currenta Repetitive Avalanche UNIT for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 5.7 mH, RG = 25 Ω, IAS =14 A, dV/dt = 7.6 V/ns (see fig. 12a). c. ISD ≤ 14 A, dI/dt ≤ 250 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91095 S-81393-Rev. A, 07-Jul-08 www.vishay.com 1 IRFB13N50A, SiHFB13N50A Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greasd Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 0.50 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.55 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V nA Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance VGS = ± 30 V - - ± 100 VDS = 500 V, VGS = 0 V - - 25 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 IGSS IDSS RDS(on) gfs ID = 8.4 Ab VGS = 10 V VDS = 50 V, ID = 8.4 A µA - - 0.450 Ω 8.1 - - S - 1910 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Coss Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd Turn-On Delay Time td(on) Rise Time Fall Time VGS = 0 V Coss eff. Total Gate Charge Turn-Off Delay Time VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 tr td(off) - 290 - - 11 - VDS = 1.0 V, f = 1.0 MHz - 2730 - VDS = 400 V, f = 1.0 MHz - 82 - - 160 - - - 81 - - 20 VDS = 0 V to 400 Vc ID = 14 A, VDS = 400 V, see fig. 6 and 13b VGS = 10 V VDD = 250 V, ID = 14 A, RG = 7.5 Ω, see fig. 10b tf pF nC - - 36 - 15 - - 39 - - 39 - - 31 - - - 14 - - 56 - - 1.5 - 370 550 ns - 4.4 6.5 µC - 21 31 A ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Body Diode Reverse Recovery Current IRRM Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 14 A, VGS = 0 Vb TJ = 25 °C, IF = 14 A, TJ = 125 °C, dI/dt = 100 A/µsb S V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91095 S-81393-Rev. A, 07-Jul-08 IRFB13N50A, SiHFB13N50A Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted TOP ID, Drain-to-Source Current (A) 10 BOTTOM 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TJ = 150 °C 1 ID, Drain-to-Source Current (A) 100 4.5V 0.1 10 TJ = 25 °C 1 20μs PULSE WIDTH TJ = 25 °C VDS = 50 20μs PULSE WIDTH 0.01 0.1 0.1 1 10 100 4 6 VDS, Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics BOTTOM 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 4.5V 1 20μs PULSE WIDTH TJ = 150 °C 0.1 0.1 1 10 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91095 S-81393-Rev. A, 07-Jul-08 12 14 16 ID = 14A 2.5 100 2.0 (Normalized) ID, Drain-to-Source Current (A) TOP 10 Fig. 3 - Typical Transfer Characteristics RDS(on), Drain-to-Source On Resistance 100 8 VGS, Gate-to-Source Voltage (V) 1.5 1.0 0.5 VGS = 10V 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ, Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFB13N50A, SiHFB13N50A Vishay Siliconix 100000 ISD, Reverse Drain Current (A) 10000 C, Capacitance (pF) 100 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Ciss 1000 Coss 100 10 Crss TJ = 150 °C 10 TJ = 25 °C 1 VGS = 0 V 1 1 10 100 0.1 1000 0.2 0.8 1.1 1.4 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 7 - Typical Source-Drain Diode Forward Voltage 1000 12 ID = 14A ID, Drain-to-Source Current (A) VDS = 400V VDS = 250V VDS = 100 V 10 VGS, Gate-to-Source Voltage (V) 0.5 7 5 2 OPERATION IN THIS AREA LIMITED BY RDS(on) 100 10 1msec 1 0.1 0 0 12 24 36 48 60 OG, Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 100μsec Tc = 25°C Tj = 150°C Single Pulse 10 100 10msec 1000 10000 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91095 S-81393-Rev. A, 07-Jul-08 IRFB13N50A, SiHFB13N50A Vishay Siliconix RD VDS 15 VGS D.U.T. RG 12 + - VDD ID, Drain Current (A) 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 9 Fig. 10a - Switching Time Test Circuit 6 VDS 90 % 3 0 25 50 75 100 125 10 % VGS 150 TC, Case Temperature (°C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms 1 Thermal Response (ZthJC) D = 0.50 0.1 0.20 0.10 0.05 0.02 SINGLE PULSE (THERMAL RESPONSE) 0.01 P DM 0.01 t1 t2 Notes: 1. Duty factor D = t1 /t2 2. Peak TJ = PDM x ZthJC + TC 0.001 0.00001 0.001 0.001 0.01 0.1 1 t1, Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V L VDS D.U.T. RG IAS 20 V tp tp Driver + A - VDD 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91095 S-81393-Rev. A, 07-Jul-08 IAS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFB13N50A, SiHFB13N50A Vishay Siliconix 1150 ID EAS, Single Pulse Avalanche Energy (mJ) 920 TOP 6.3A BOTTOM 8.9A 14A 690 460 230 0 25 50 75 100 125 150 Starting Tj, Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91095 S-81393-Rev. A, 07-Jul-08 IRFB13N50A, SiHFB13N50A Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91095. Document Number: 91095 S-81393-Rev. A, 07-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2024