VISHAY IRFB1 datasheet

IRFB13N50A, SiHFB13N50A
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Lower Gate Charge Qg Results in Simpler Drive
Reqirements
500
RDS(on) (Ω)
VGS = 10 V
0.450
Qg (Max.) (nC)
81
Qgs (nC)
20
Qgd (nC)
• Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
36
Configuration
Available
RoHS*
COMPLIANT
• Fully Characterized Capacitance and Avalanche Voltage
Single
• Lead (Pb)-free Available
D
TO-220
APPLICATIONS
• Switch Mode Power Supply (SMPS)
G
• Uninterruptible Power Supplies
S
D
G
• High Speed Power Switching
S
N-Channel MOSFET
ORDERING INFORMATION
Package
TO-220
IRFB13N50APbF
SiHFB13N50A-E3
IRFB13N50A
SiHFB13N50A
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
500
Gate-Source Voltage
VGS
± 30
Continuous Drain Current
Pulsed Drain
VGS at 10 V
TC = 25 °C
ID
TC = 100 °C
Currenta
IDM
Linear Derating Factor
Single Pulse Avalanche
560
mJ
14
A
EAR
25
mJ
PD
250
W
dV/dt
9.2
V/ns
TJ, Tstg
- 55 to + 150
TC = 25 °C
Operating Junction and Storage Temperature Range
Mounting Torque
56
IAR
dV/dtc
Soldering Recommendations (Peak Temperature)
A
EAS
Energya
Peak Diode Recovery
14
9.1
W/°C
Energyb
Maximum Power Dissipation
V
2.0
Avalanche Currenta
Repetitive Avalanche
UNIT
for 10 s
6-32 or M3 screw
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 5.7 mH, RG = 25 Ω, IAS =14 A, dV/dt = 7.6 V/ns (see fig. 12a).
c. ISD ≤ 14 A, dI/dt ≤ 250 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91095
S-81393-Rev. A, 07-Jul-08
www.vishay.com
1
IRFB13N50A, SiHFB13N50A
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
62
Case-to-Sink, Flat, Greasd Surface
RthCS
0.50
-
Maximum Junction-to-Case (Drain)
RthJC
-
0.50
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDS
VGS = 0 V, ID = 250 µA
500
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.55
-
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
2.0
-
4.0
V
nA
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
Gate-Source Leakage
Zero Gate Voltage Drain Current
Drain-Source On-State Resistance
Forward Transconductance
VGS = ± 30 V
-
-
± 100
VDS = 500 V, VGS = 0 V
-
-
25
VDS = 400 V, VGS = 0 V, TJ = 125 °C
-
-
250
IGSS
IDSS
RDS(on)
gfs
ID = 8.4 Ab
VGS = 10 V
VDS = 50 V, ID = 8.4 A
µA
-
-
0.450
Ω
8.1
-
-
S
-
1910
-
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Output Capacitance
Effective Output Capacitance
Coss
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
Turn-On Delay Time
td(on)
Rise Time
Fall Time
VGS = 0 V
Coss eff.
Total Gate Charge
Turn-Off Delay Time
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
tr
td(off)
-
290
-
-
11
-
VDS = 1.0 V, f = 1.0 MHz
-
2730
-
VDS = 400 V, f = 1.0 MHz
-
82
-
-
160
-
-
-
81
-
-
20
VDS = 0 V to 400
Vc
ID = 14 A, VDS = 400 V,
see fig. 6 and 13b
VGS = 10 V
VDD = 250 V, ID = 14 A,
RG = 7.5 Ω,
see fig. 10b
tf
pF
nC
-
-
36
-
15
-
-
39
-
-
39
-
-
31
-
-
-
14
-
-
56
-
-
1.5
-
370
550
ns
-
4.4
6.5
µC
-
21
31
A
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Body Diode Reverse Recovery Current
IRRM
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
TJ = 25 °C, IS = 14 A, VGS = 0 Vb
TJ = 25 °C, IF = 14 A,
TJ = 125 °C, dI/dt = 100 A/µsb
S
V
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
www.vishay.com
2
Document Number: 91095
S-81393-Rev. A, 07-Jul-08
IRFB13N50A, SiHFB13N50A
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
TOP
ID, Drain-to-Source Current (A)
10
BOTTOM
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
TJ = 150 °C
1
ID, Drain-to-Source Current (A)
100
4.5V
0.1
10
TJ = 25 °C
1
20μs PULSE WIDTH
TJ = 25 °C
VDS = 50
20μs PULSE WIDTH
0.01
0.1
0.1
1
10
100
4
6
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
BOTTOM
3.0
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
10
4.5V
1
20μs PULSE WIDTH
TJ = 150 °C
0.1
0.1
1
10
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
Document Number: 91095
S-81393-Rev. A, 07-Jul-08
12
14
16
ID = 14A
2.5
100
2.0
(Normalized)
ID, Drain-to-Source Current (A)
TOP
10
Fig. 3 - Typical Transfer Characteristics
RDS(on), Drain-to-Source On Resistance
100
8
VGS, Gate-to-Source Voltage (V)
1.5
1.0
0.5
VGS = 10V
0.0
-60
-40
-20
0
20
40
60
80
100
120
140
160
TJ, Junction Temperature (°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRFB13N50A, SiHFB13N50A
Vishay Siliconix
100000
ISD, Reverse Drain Current (A)
10000
C, Capacitance (pF)
100
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Ciss
1000
Coss
100
10
Crss
TJ = 150 °C
10
TJ = 25 °C
1
VGS = 0 V
1
1
10
100
0.1
1000
0.2
0.8
1.1
1.4
VSD, Source-to-Drain Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 7 - Typical Source-Drain Diode Forward Voltage
1000
12
ID = 14A
ID, Drain-to-Source Current (A)
VDS = 400V
VDS = 250V
VDS = 100 V
10
VGS, Gate-to-Source Voltage (V)
0.5
7
5
2
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100
10
1msec
1
0.1
0
0
12
24
36
48
60
OG, Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
100μsec
Tc = 25°C
Tj = 150°C
Single Pulse
10
100
10msec
1000
10000
VDS, Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91095
S-81393-Rev. A, 07-Jul-08
IRFB13N50A, SiHFB13N50A
Vishay Siliconix
RD
VDS
15
VGS
D.U.T.
RG
12
+
- VDD
ID, Drain Current (A)
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
9
Fig. 10a - Switching Time Test Circuit
6
VDS
90 %
3
0
25
50
75
100
125
10 %
VGS
150
TC, Case Temperature (°C)
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
1
Thermal Response (ZthJC)
D = 0.50
0.1
0.20
0.10
0.05
0.02
SINGLE PULSE
(THERMAL RESPONSE)
0.01
P DM
0.01
t1
t2
Notes:
1. Duty factor D = t1 /t2
2. Peak TJ = PDM x ZthJC + TC
0.001
0.00001
0.001
0.001
0.01
0.1
1
t1, Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
15 V
L
VDS
D.U.T.
RG
IAS
20 V
tp
tp
Driver
+
A
- VDD
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91095
S-81393-Rev. A, 07-Jul-08
IAS
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
IRFB13N50A, SiHFB13N50A
Vishay Siliconix
1150
ID
EAS, Single Pulse Avalanche Energy (mJ)
920
TOP
6.3A
BOTTOM
8.9A
14A
690
460
230
0
25
50
75
100
125
150
Starting Tj, Junction Temperature (°C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
VGS
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 91095
S-81393-Rev. A, 07-Jul-08
IRFB13N50A, SiHFB13N50A
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
RG
•
•
•
•
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
VDD
Body diode forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91095.
Document Number: 91095
S-81393-Rev. A, 07-Jul-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1