IRFB9N65A, SiHFB9N65A Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 650 RDS(on) (Ω) VGS = 10 V 0.93 Qg (Max.) (nC) 48 Qgs (nC) 12 Qgd (nC) 19 Configuration Available • Improved Gate, Avalanche and Dynamic dV/dt RoHS* COMPLIANT Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current Single • Lead (Pb)-free Available D APPLICATIONS TO-220 • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply G • High Speed Power Switching TYPICAL SMPS TOPOLOGIES S G D S • Single Transistor Flyback N-Channel MOSFET • Single Transistor Forward ORDERING INFORMATION Package TO-220 IRFB9N65APbF SiHFB9N65A-E3 IRFB9N65A SiHFB9N65A Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 650 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID UNIT V 8.5 5.4 A IDM 21 1.3 W/°C EAS 325 mJ Currenta IAR 5.2 A Repetitive Avalanche Energya EAR 16 mJ PD 167 W dV/dt 2.8 V/ns TJ, Tstg - 55 to + 150 Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche Maximum Power Dissipation Peak Diode Recovery TC = 25 °C dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 24 mH, RG = 25 Ω, IAS = 5.2 A (see fig. 12). c. ISD ≤ 5.2 A, dI/dt ≤ 90 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91104 S-81243-Rev. B, 21-Jul-08 www.vishay.com 1 IRFB9N65A, SiHFB9N65A Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 0.75 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS VDS VGS = 0 V, ID = 250 µA MIN. TYP. MAX. UNIT 650 - - V - 670 - mV/°C 2.0 - 4.0 V nA Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance ΔVDS/TJ VGS(th) Reference to 25 °C, ID = 1 VDS = VGS, ID = 250 µA VGS = ± 30 V - - ± 100 VDS = 650 V, VGS = 0 V - - 25 VDS = 520 V, VGS = 0 V, TJ = 125 °C - - 250 - - 0.93 Ω VDS = 50 V, ID = 3.1 A 3.9 - - S VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - 1417 - - 177 - - 7.0 - VDS = 1.0 V, f = 1.0 MHz - 1912 - VDS = 520 V, f = 1.0 MHz - 48 - - 84 - - - 48 - - 12 - - 19 - 14 - - 20 - - 34 - - 18 - - - 5.2 - - 21 IGSS IDSS RDS(on) gfs mAd ID = 5.1 Ab VGS = 10 V µA Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Coss Effective Output Capacitance Coss eff. Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd Turn-On Delay Time td(on) Rise Time Turn-Off Delay Time Fall Time VGS = 0 V tr td(off) VDS = 0 V to 520 VGS = 10 V Vc ID = 5.2 A, VDS = 400 V see fig. 6 and 13b VDD = 325 V, ID = 5.2 A RG = 9.1 Ω,RD = 62 Ω, see fig. 10b tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 5.2 A, VGS = 0 S Vb TJ = 25 °C, IF = 5.2 A, dI/dt = 100 A/µsb - - 1.5 V - 493 739 ns - 2.1 3.2 µC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. d. Uses SiHFIB5N65A data and test conditions. www.vishay.com 2 Document Number: 91104 S-81243-Rev. B, 21-Jul-08 IRFB9N65A, SiHFB9N65A Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 10 1 20µs PULSE WIDTH 4.5V TJ = 25 °C 0.1 0.1 1 10 10 TJ = 150 ° C TJ = 25 ° C 1 0.1 4.0 100 Fig. 1 - Typical Output Characteristics I D , Drain-to-Source Current (A) 10 4.5V 1 20µs PULSE WIDTH TJ = 150 ° C 10 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91104 S-81243-Rev. B, 21-Jul-08 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1 6.0 7.0 8.0 9.0 Fig. 3 - Typical Transfer Characteristics TOP 0.1 5.0 VGS , Gate-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 100 V DS = 100V 20µs PULSE WIDTH ID = 5.2A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFB9N65A, SiHFB9N65A Vishay Siliconix 2000 ISD , Reverse Drain Current (A) 1600 C, Capacitance (pF) 100 V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = C ds + C gd Ciss 1200 Coss 800 400 Crss 0 10 100 TJ = 150 ° C 1 TJ = 25 ° C 0.1 0.2 A 1 10 1000 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 0.8 1.0 1.2 Fig. 7 - Typical Source-Drain Diode Forward Voltage 100 ID = 5.2A OPERATION IN THIS AREA LIMITED BY RDS(on) VDS = 520V VDS = 325V VDS = 130V 16 10us ID , Drain Current (A) VGS , Gate-to-Source Voltage (V) 0.6 VSD ,Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V) 20 V GS = 0 V 0.4 12 8 10 100us 1ms 1 10ms 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 10 20 30 40 50 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 0.1 TC = 25 ° C TJ = 150 ° C Single Pulse 10 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91104 S-81243-Rev. B, 21-Jul-08 IRFB9N65A, SiHFB9N65A Vishay Siliconix RD VDS 10.0 VGS D.U.T. RG + ID , Drain Current (A) 8.0 - VDD 10V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 6.0 Fig. 10a - Switching Time Test Circuit 4.0 VDS 90 % 2.0 0.0 25 50 75 100 125 150 10 % VGS TC , Case Temperature ( ° C) t d(on) Fig. 9 - Maximum Drain Current vs. Case Temperature tr t d(off) t f Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 PDM 0.05 t1 0.02 t2 SINGLE PULSE (THERMAL RESPONSE) 0.01 0.01 0.00001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (s) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case V DS tp 15 V L VDS D.U.T. RG IAS 20 V tp Driver + A - VDD A 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91104 S-81243-Rev. B, 21-Jul-08 A I AS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFB9N65A, SiHFB9N65A EAS , Single Pulse Avalanche Energy (mJ) Vishay Siliconix 800 TOP BOTTOM ID 2.3A 3.3A 5.2A QG 600 10 V QGS 400 Q GD VG Charge 200 Fig. 13a - Basic Gate Charge Waveform 0 25 50 75 100 125 150 Current regulator Same type as D.U.T. Starting TJ , Junction Temperature ( °C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current 50 kΩ 12 V 0.2 µF 0.3 µF 800 V DSav , Avalanche Voltage (V) D.U.T. 780 + V - DS VGS 3 mA 760 IG ID Current sampling resistors 740 Fig. 13b - Gate Charge Test Circuit 720 700 A 0 1 2 3 4 5 6 I av , Avalanche Current (A) Fig. 12d - Typical Drain-to-Source Voltage vs. Avalanche Current www.vishay.com 6 Document Number: 91104 S-81243-Rev. B, 21-Jul-08 IRFB9N65A, SiHFB9N65A Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Body diode VDD forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91104. Document Number: 91104 S-81243-Rev. B, 21-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2024