IRFS9N60A, SiHFS9N60A Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg results in Simple Drive Requirement 600 RDS(on) (Ω) VGS = 10 V 0.75 Qg (Max.) (nC) 49 Qgs (nC) 13 Qgd (nC) 20 Configuration Available • Improved Gate, Avalanche and Dynamic dV/dt RoHS* COMPLIANT Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current • Lead (Pb)-free Available Single D APPLICATIONS D2PAK (TO-263) • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply • High Speed Power Switching G APPLICABLE OFF LINE SMPS TOPOLOGIES G D • Active Clamped Forward S S • Main Switch N-Channel MOSFET ORDERING INFORMATION Package Lead (Pb)-free SnPb D2PAK (TO-263) D2PAK (TO-263) D2PAK (TO-263) IRFS9N60APbF IRFS9N60ATRRPbFa IRFS9N60ATRLPbFa SiHFS9N60A-E3 SiHFS9N60ATR-E3a SiHFS9N60ATL-E3a IRFS9N60A IRFS9N60ATRRa IRFS9N60ATRLa SiHFS9N60A SiHFS9N60ATRa SiHFS9N60ATLa Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 600 Gate-Source Voltage VGS ± 30 ID 9.2 5.8 IDM 37 1.3 W/°C Single Pulse Avalanche Energyb EAS 290 mJ Repetitive Avalanche Currenta IAR 9.2 A Repetitive Avalanche Energya EAR 17 mJ VGS at 10 V Continuous Drain Current TC = 25 °C TC = 100 °C Pulsed Drain Currenta Linear Derating Factor TC = 25 °C Maximum Power Dissipation Operating Junction and Storage Temperature Range V A PD 170 W dV/dt 5.0 V/ns TJ, Tstg - 55 to + 150 Peak Diode Recovery dV/dtc Soldering Recommendations (Peak Temperature) UNIT for 10 s 300d °C Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 6.8 mH, RG = 25 Ω, IAS = 9.2 A (see fig. 12). c. ISD ≤ 9.2 A, dI/dt ≤ 50 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91287 S-Pending-Rev. A, 22-Jul-08 WORK-IN-PROGRESS www.vishay.com 1 IRFS9N60A, SiHFS9N60A Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 40 Maximum Junction-to-Case (Drain) RthJC - 0.75 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 600 - - V Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.66 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V nA IGSS IDSS RDS(on) gfs VGS = ± 30 V - - ± 100 VDS = 600 V, VGS = 0 V - - 25 VDS = 480 V, VGS = 0 V, TJ = 125 °C - - 250 - - 0.75 Ω 5.5 - - S - 1400 - ID = 5.5 Ab VGS = 10 V VDS = 25 V, ID = 3.1 A µA Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Coss VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 VGS = 0 V Coss eff. - 180 - - 7.1 - VDS = 1.0 V, f = 1.0 MHz - 1957 - VDS = 480 V, f = 1.0 MHz - 49 - - 96 - - - 49 VDS = 0 V to 480 Vc pF Total Gate Charge Qg Gate-Source Charge Qgs - - 13 Gate-Drain Charge Qgd - - 20 Turn-On Delay Time td(on) - 13 - - 25 - - 30 - - 22 - - - 9.2 - - 37 - - 1.5 - 530 800 ns - 3.0 4.4 µC Rise Time Turn-Off Delay Time Fall Time tr td(off) VGS = 10 V ID = 9.2 A, VDS = 400 V see fig. 6 and 13b VDD = 300 V, ID = 9.2 A RG = 9.1 Ω, RD = 35.5 Ω, see fig. 10b tf nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 9.2 A, VGS = 0 Vb TJ = 25 °C, IF = 9.2 A, dI/dt = 100 A/µsb V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91287 S-Pending-Rev. A, 22-Jul-08 IRFS9N60A, SiHFS9N60A Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.7V I D , Drain-to-Source Current (A) 10 1 4.7V 20µs PULSE WIDTH TJ = 25 °C 0.1 0.1 100 1 10 TJ = 150 ° C TJ = 25 ° C 1 100 V DS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 9.0 VDS , Drain-to-Source Voltage (V) VGS , Gate-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.7V TOP I D , Drain-to-Source Current (A) 10 0.1 4.0 10 4.7V 20µs PULSE WIDTH TJ = 150 ° C 1 1 10 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91287 S-Pending-Rev. A, 22-Jul-08 100 r DS(on), Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) TOP 10.0 ID = 9.2A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFS9N60A, SiHFS9N60A Vishay Siliconix 2400 ISD , Reverse Drain Current (A) 2000 C, Capacitance (pF) 100 V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = C ds + C gd iss 1600 oss 1200 800 rss 400 0 A 1 10 100 1000 10 TJ = 150 ° C 1 TJ = 25 ° C V GS = 0 V 0.1 0.2 0.5 ID = 9.2A 1.2 Fig. 7 - Typical Source-Drain Diode Forward Voltage 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) VDS = 480V VDS = 300V VDS = 120V 16 100 ID , Drain Current (A) VGS , Gate-to-Source Voltage (V) 20 1.0 VSD ,Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 0.7 12 8 10us 10 100us 1ms 1 4 10ms FOR TEST CIRCUIT SEE FIGURE 13 0 0 10 20 30 40 50 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 0.1 TC = 25 ° C TJ = 150 ° C Single Pulse 10 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91287 S-Pending-Rev. A, 22-Jul-08 IRFS9N60A, SiHFS9N60A Vishay Siliconix RD VDS 10.0 VGS ID , Drain Current (A) D.U.T. RG 8.0 + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 6.0 Fig. 10a - Switching Time Test Circuit 4.0 VDS 90 % 2.0 0.0 25 50 75 100 125 10 % VGS 150 TC , Case Temperature ( ° C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 PDM 0.05 t1 0.02 t2 SINGLE PULSE (THERMAL RESPONSE) 0.01 0.01 0.00001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T RG IAS 20 V tp Driver + A - VDD IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91287 S-Pending-Rev. A, 22-Jul-08 Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFS9N60A, SiHFS9N60A EAS , Single Pulse Avalanche Energy (mJ) Vishay Siliconix 600 TOP 500 BOTTOM ID 4.1A 5.8A 9.2A 400 300 200 100 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91287 S-Pending-Rev. A, 22-Jul-08 IRFS9N60A, SiHFS9N60A Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Body diode VDD forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91287. Document Number: 91287 S-Pending-Rev. A, 22-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2024