IRFBC30AS, IRFBC30AL, SiHFBC30AS, SiHFBC30AL Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 600 RDS(on) (Ω) VGS = 10 V 2.2 Qg (Max.) (nC) 23 Qgs (nC) 5.4 Qgd (nC) 11 Configuration COMPLIANT Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current Single • Effective Coss Specified D I2PAK (TO-262) Available • Improved Gate, Avalanche and Dynamic dV/dt RoHS* • Lead (Pb)-free Available D2PAK (TO-263) APPLICATIONS • Switch Mode Power Supply (SMPS) G G D • Uninterruptible Power Supply S • High Speed Power Switching TYPICAL SMPS TOPOLOGIES S • Single Transistor Flyback N-Channel MOSFET ORDERING INFORMATION Package Lead (Pb)-free SnPb D2PAK (TO-263) D2PAK (TO-263) D2PAK (TO-263) I2PAK (TO-262) IRFBC30ASPbF IRFBC30ASTRLPbFa IRFBC30ASTRRPbFa IRFBC30ALPbF SiHFBC30AS-E3 SiHFBC30ASTL-E3a SiHFBC30ASTR-E3a SiHFBC30AL-E3 IRFBC30AS IRFBC30ASTRLa IRFBC30ASTRRa IRFBC30AL SiHFBC30AS SiHFBC30ASTLa SiHFBC30ASTRa SiHFBC30AL Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 600 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta, e ID IDM Linear Derating Factor Energyb UNIT V 3.6 2.3 A 14 0.69 W/°C mJ EAS 290 Avalanche Currenta IAR 3.6 A Repetiitive Avalanche Energya EAR 7.4 mJ Single Pulse Avalanche Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc, e Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) for 10 s PD 74 W dV/dt 7.0 V/ns TJ, Tstg - 55 to + 150 300d °C Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 46 mH, RG = 25 Ω, IAS = 3.6 A (see fig. 12). c. ISD ≤ 3.6 A, dI/dt ≤ 170 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. e. Uses IRFBC30A/SiHFBC30A data and test conditions. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91109 S-81412-Rev. A, 07-Jul-08 www.vishay.com 1 IRFBC30AS, IRFBC30AL, SiHFBC30AS, SiHFBC30AL Vishay Siliconix THERMAL RESISTANCE RATINGS SYMBOL TYP. MAX. Maximum Junction-to-Ambient (PCB Mounted, steady-state)a PARAMETER RthJA - 40 Maximum Junction-to-Case (Drain) RthJC - 1.7 UNIT °C/W Note a. When mounted on 1" square PCB (FR-4 or G-10 material). SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 600 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mAd - 0.67 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.5 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 600 V, VGS = 0 V - - 25 VDS = 480 V, VGS = 0 V, TJ = 125 °C - - 250 - - 2.2 Ω VDS = 50 V, ID = 2.2 A 2.1 - - S VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - 510 - - 70 - Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 2.2 Ab VGS = 10 V µA Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Coss VGS = 0 V Coss eff. - 3.5 - VDS = 1.0 V, f = 1.0 MHz - 730 - VDS = 480 V, f = 1.0 MHz - 19 - VDS = 0 V to 480 Vc - 31 - - - 23 ID = 3.6 A, VDS = 480 V, see fig. 6 and 13b - - 5.4 11 Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd - - Turn-On Delay Time td(on) - 9.8 - tr - 13 - - 19 - - 12 - - - 3.6 - - 14 Rise Time Turn-Off Delay Time Fall Time td(off) VGS = 10 V VDD = 300 V, ID = 3.6 A, RG = 12 Ω, RD = 82 Ω, see fig. 10b, d tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 3.6 A, VGS = 0 Vb TJ = 25 °C, IF = 3.6 A, dI/dt = 100 A/µsb, - - 1.6 V - 400 600 ns - 1.1 1.7 µC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. d. Uses IRFBC30A/SiHFBC30A data and test conditions. www.vishay.com 2 Document Number: 91109 S-81412-Rev. A, 07-Jul-08 IRFBC30AS, IRFBC30AL, SiHFBC30AS, SiHFBC30AL Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10 1 0.1 4.5V 20µs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 10 TJ = 150 ° C 1 TJ = 25 ° C 0.1 0.01 4.0 100 Fig. 1 - Typical Output Characteristics I D , Drain-to-Source Current (A) 1 4.5V 20µs PULSE WIDTH TJ = 150 ° C 1 10 Fig. 2 - Typical Output Characteristics Document Number: 91109 S-81412-Rev. A, 07-Jul-08 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VDS , Drain-to-Source Voltage (V) 6.0 7.0 8.0 9.0 Fig. 3 - Typical Transfer Characteristics TOP 0.1 0.1 5.0 VGS , Gate-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 10 V DS = 50V 20µs PULSE WIDTH ID = 3.6A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFBC30AS, IRFBC30AL, SiHFBC30AS, SiHFBC30AL Vishay Siliconix VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance(pF) 1000 Ciss 100 Coss 10 ISD , Reverse Drain Current (A) 100 10000 10 TJ = 150° C TJ = 25 ° C 1 Crss 1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage ID = 3.6A V GS = 0 V 0.6 0.8 1.0 1.2 VSD ,Source-to-Drain Voltage (V) Fig. 7 - Typical Source-Drain Diode Forward Voltage 100 OPERATION IN THIS AREA LIMITED BY RDS(on) VDS = 480V VDS = 300V VDS = 120V 16 ID , Drain Current (A) VGS , Gate-to-Source Voltage (V) 20 0.1 0.4 12 8 10us 10 100us 1 1ms 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 4 8 12 16 20 24 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 0.1 10ms TC = 25 ° C TJ = 150 ° C Single Pulse 10 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91109 S-81412-Rev. A, 07-Jul-08 IRFBC30AS, IRFBC30AL, SiHFBC30AS, SiHFBC30AL Vishay Siliconix RD VDS 4.0 VGS D.U.T. ID , Drain Current (A) RG + - VDD 3.0 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 2.0 Fig. 10a - Switching Time Test Circuit VDS 1.0 90 % 0.0 25 50 75 100 125 10 % VGS 150 TC , Case Temperature ( ° C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 PDM 0.05 0.1 t1 0.02 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.01 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V L VDS D.U.T. RG IAS 20 V tp tp Driver + A - VDD 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91109 S-81412-Rev. A, 07-Jul-08 IAS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFBC30AS, IRFBC30AL, SiHFBC30AS, SiHFBC30AL 400 TOP BOTTOM ID 1.6A 2.3A 3.6A 300 200 100 740 V DSav , Avalanche Voltage ( V ) EAS , Single Pulse Avalanche Energy (mJ) Vishay Siliconix 720 700 680 660 640 0 25 50 75 100 125 150 0.0 1.0 Starting TJ , Junction Temperature ( °C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current 2.0 3.0 4.0 IAV , Avalanche Current ( A) Fig. 12d - Typical Drain-to-Source Voltage vs. Avalanache Current Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91109 S-81412-Rev. A, 07-Jul-08 IRFBC30AS, IRFBC30AL, SiHFBC30AS, SiHFBC30AL Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91109. Document Number: 91109 S-81412-Rev. A, 07-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2024