IRFP31N50L, SiHFP31N50L Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Super Fast Body Diode Eliminates the Need for External Diodes in ZVS Applications 500 RDS(on) (Ω) VGS = 10 V 0.15 Available RoHS* Qg (Max.) (nC) 210 Qgs (nC) 58 • Lower Gate Charge Results in Simpler Drive Requirements 100 • Enhanced dV/dt Capabilities Offer Improved Ruggedness Qgd (nC) Configuration Single COMPLIANT • Higher Gate Voltage Threshold Offers Improved Noise Immunity D TO-247 • Lead (Pb)-free Available APPLICATIONS G • Zero Voltage Switching SMPS • Telecom and Server Power Supplies S D G • Uninterruptible Power Supplies S • Motor Control Applications N-Channel MOSFET ORDERING INFORMATION Package TO-247 IRFP31N50LPbF SiHFP31N50L-E3 IRFP31N50L SiHFP31N50L Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID UNIT V 31 20 A IDM 124 3.7 W/°C Single Pulse Avalanche Energyb EAS 460 mJ Repetitive Avalanche Currenta IAR 31 A Repetitive Avalanche Energya EAR 46 mJ Linear Derating Factor Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw PD 460 W dV/dt 19 V/ns TJ, Tstg - 55 to + 150 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 1 mH, RG = 25 Ω, IAS = 31 A (see fig. 12). c. ISD ≤ 31 A, dI/dt ≤ 422 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91220 S-81274-Rev. A, 16-Jun-08 www.vishay.com 1 IRFP31N50L, SiHFP31N50L Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER Maximum Junction-to-Ambient Case-to-Sink, Flat, Greased Surface Maximum Junction-to-Case (Drain) SYMBOL TYP. MAX. UNIT RthJA RthCS RthJC 0.24 - 40 0.26 °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.28 - V/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V VGS = ± 30 V - - ± 100 nA VDS = 500 V, VGS = 0 V - - 50 µA VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 2.0 mA IGSS IDSS RDS(on) gfs VGS = 10 V ID = 19 Ab VDS = 50 V, ID = 19 Ab - 0.15 0.18 Ω 15 - - S - 5000 - - 553 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Coss Effective Output Capacitance Coss eff. Effective Output Capacitance Coss eff. (ER) Total Gate Charge Qgs Gate-Drain Charge Qgd Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time VGS = 0 V - 59 VDS = 1.0 V , f = 1.0 MHz - 6630 - VDS = 400 V , f = 1.0 MHz - 155 - VDS = 0 V to 400 Vc Qg Gate-Source Charge Internal Gate Resistance VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 rG VGS = 10 V ID = 31 A, VDS = 400 V, see fig. 7 and 13b f = 1 MHz, open drain td(on) tr td(off) VDD = 250 V, ID = 31 A, RG = 4.3 Ω, see fig. 10b tf - 276 - - 200 - - - 210 - - 58 - - 100 - 1.1 - - 28 - - 115 - - 54 - - 53 - - - 31 - - 124 pF nC Ω ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Reverse Recovery Current IRRM MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 31 A, VGS = 0 S Vb - - 1.5 TJ = 25 °C, IF = 31 A - 170 250 V TJ = 125 °C, dI/dt = 100 A/µsb - 220 330 TJ = 25 °C, IS = 31 A, VGS = 0 Vb - 570 860 nC TJ = 125 °C, dI/dt = 100 A/µsb - 1.2 1.8 TJ = 25 °C - 7.9 12 µC A ns Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Forward Turn-On Time ton Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. Coss eff. (ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91220 S-81274-Rev. A, 16-Jun-08 IRFP31N50L, SiHFP31N50L Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted ID, Drain-to-Source Current (A) Top 100 Bottom 1000 VGS 15 V 12 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V ID, Drain-to-Source Current (A) 100 10 1 5.0 V 0.1 0.01 0.1 1 20 μs PULSE WIDTH TJ = 25 °C 100 10 100 TJ = 150 °C 10 TJ = 25 °C 1 VDS = 50 V 20 μs PULSE WIDTH 0.1 4 VDS, Drain-to-Source Voltage (V) 100 ID, Drain-to-Source Current (A) Top 10 Bottom VGS 15 V 12 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V 5.0 V 1 0.1 20 μs PULSE WIDTH TJ = 25 °C 0.01 0.1 10 1 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91220 S-81274-Rev. A, 16-Jun-08 6 9 8 7 VGS, Gate-to-Source Voltage (V) 10 11 Fig. 3 - Typical Transfer Characteristics 100 RDS(on), Drain-to-Source On Resistance (Normalized) Fig. 1 - Typical Output Characteristics 5 3.0 ID = 31 A 2.5 2.0 1.5 1.0 0.5 0.0 - 60 - 40 - 20 0 VGS = 10 V 20 40 60 80 100 120 140 160 TJ, Junction Temperature Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFP31N50L, SiHFP31N50L Vishay Siliconix 20 10000000 C, Capacitance (pF) 1000000 ID = 31 A f = 1 MHz SHORTED VGS, Gate-to-Source Voltage (V) VGS = 0 V, Ciss = Cgs + Cgd, Cds Crss = Cgd Coss = Cds + Cgd 10000 Ciss 1000 Coss 100 VDS = 400 V VDS = 250 V VDS = 100 V 12 8 4 Crss 10 0 1 1000 100 10 0 VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 120 40 80 QG, Total Gate Charge (nC) 160 Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage 30 1000 ISD, Reverse Drain Current (A) 25 Energy (μs) 20 15 10 100 TJ = 150 °C 10 TJ = 25 °C 1 5 0 0 100 200 300 400 500 600 VDS, Drain-to-Source Voltage (V) Fig. 6 - Output Capacitance Stored Energy vs. VDS www.vishay.com 4 0.1 0.2 VGS = 0 V 1.4 1.0 0.6 VSD, Source-to-Drain Voltage (V) 1.8 Fig. 8 - Typical Source Drain Diode Forward Voltage Document Number: 91220 S-81274-Rev. A, 16-Jun-08 IRFP31N50L, SiHFP31N50L Vishay Siliconix RD VDS 35 VGS ID, Drain Current (A) D.U.T. RG 30 25 + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 20 Fig. 10a - Switching Time Test Circuit 15 VDS 10 90 % 5 0 25 50 75 125 100 10 % VGS 150 TC, Case Temperature (°C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (ZthJC) 1 D = 0.50 0.1 0.20 0.10 0.05 PDM 0.02 0.01 0.01 SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t1/ t2 2. Peak TJ = PDM x ZthJC + TC 0.001 0.00001 0.001 0.0001 0.01 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T RG IAS 20 V tp Driver + A - VDD IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91220 S-81274-Rev. A, 16-Jun-08 A Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFP31N50L, SiHFP31N50L Vishay Siliconix ID, Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 100 10us 100us 10 1 1ms TC = 25 °C TJ = 150 °C Single Pulse 10ms 100 10 1000 EAS, Single Pulse Avalanche Energy (mJ) 1000 1000 ID 14A 20A BOTTOM 30A TOP 800 600 400 200 0 25 50 Fig. 12c - Maximum Avalanche Energy vs. Drain Current 75 100 125 150 Starting TJ, Junction Temperature(°C) VDS, Drain-to-Source Voltage (V) Fig. 12d - Gate Charge Test Circuit Current regulator Same type as D.U.T. QG VGS 50 kΩ 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. - VDS VG VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Maximum Safe Operating Area www.vishay.com 6 Fig. 13b - Basic Gate Charge Waveform Document Number: 91220 S-81274-Rev. A, 16-Jun-08 IRFP31N50L, SiHFP31N50L Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by R G Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91220. Document Number: 91220 S-81274-Rev. A, 16-Jun-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2024