Naturvetenskap 150116

Naturvetenskap
Provmoment: Tentamen
Ladokkod: TT041A
Tentamen ges för:
Af1, Al1, Log1
Tentamensdatum:
Tid:
7,5 högskolepoäng
2015-01-16
14.00 – 18.00
Hjälpmedel:
Miniräknare
Ölme m fl: Tabeller och formler, Liber 2003, alternativt förlagsutgiven gymnasieformelsamling.
Formelsamlingen får inte innehålla egna anteckningar, endast vara namnad.
Totalt antal poäng på tentamen:
För att få respektive betyg krävs:
3 = 30 poäng
4 = 40 poäng
5 = 50 poäng
60 poäng
Allmänna anvisningar:
Alla uppgifter redovisas på separata blad.
Lösningarna ska vara tydliga och uppställda ekvationer väl motiverade.
Då konstanter och formler hämtas från formelsamling ska detta anges.
Lösningarna kan ges på svenska eller engelska.
Observera att uppgifterna inte kommer i svårighetsordning.
Viktigt! Glöm inte att skriva namn på alla blad du lämnar in.
Lycka till!
Ansvarig lärare:
Telefonnummer:
Anders Mattsson
033 - 435 46 28
Del A (använd g = 9,8 m/s2) Endast svar krävs (totalt max 18 poäng)
1. En kropp har massan 3,5 kg. Hur stor är dess tyngd? (1 p)
2. En boll kastas rakt uppåt med farten 6,8 m/s. Vilken fart har den efter 0,50 s? (1 p)
3. Ett bord skjuts längs ett golv med konstant fart med kraften 60 N. Hur stor är den
friktionskraft som verkar på bordet? (1 p)
4. En flaska saft med massan 0,89 kg flyttas till en högre placerad hylla och flaskans
lägesenergi ökar med 3,8 J. Vilken sträcka i höjdled har flaskan lyfts? (1 p)
5. En bil bromsas från farten 90 km/h till farten 50 km/h på 4,0 s. Bilens massa är 1100 kg.
Beräkna ändringen i rörelsemängd och rörelseenergi. (2 p)
6. Temperaturen utomhus sjunker kraftigt en eftermiddag från 4°C till -2°C. Hur många
Kelvin motsvarar detta? (1 p)
7. Beräkna den mängd energi som måste tillföras för att värma 3,0 kg vatten från
25°C till 100°C. (1 p)
8. Vad blir temperaturen hos det blandade vattnet om man blandar 3,4 l vatten med
temperaturen 20°C med 1,5 l vatten med temperaturen 95°C? Ingen energi utväxlas
med omgivningen. (2 p)
9. En ljusslinga är ansluten till spänningen 24 V. Ljusslingan är tänd i adventstid under
sammanlagt 200 h. Hur stor är energiförbrukningen om strömmen i ljusslingan
är 0,25 A. (2 p)
10. Två vinkelräta krafter, 6 N och 8 N, är komposanter till en resulterande kraft. Beräkna
storleken hos resultanten. (1 p)
11. I plexiglas är ljusets hastighet 2,012 ⋅ 108 m/s. Beräkna brytningsindex för
plexiglas. (1 p)
12. Två små kulor (laddningar) befinner sig på 1,2 cm avstånd från varandra och påverkar
varandra med en attraktionskraft. a) Avståndet ökas mellan kulorna. Blir attraktionskraften större eller mindre? (1 p) b) Med vilken faktor ändras attraktionskraften mellan
kulorna om avståndet ökas till 7,2 cm? (1 p)
13. Två motstånd med resistanserna 270 Ω och 390 Ω parallellkopplas. I serie med
parallellkombinationen är kopplat ett okänt motstånd. Ersättningsresistansen för hela
kopplingen är 490 Ω. Beräkna det okända motståndets resistans. (2 p)
Del B Teorifrågor, motivering krävs (totalt max 18 poäng)
14. Förklara med hjälp av Newtons första lag varför framdukat porslin kan stå kvar på bordet
efter att bordduken mycket snabbt ryckts bort. (2 p)
15. Ge två exempel på när hastighet och acceleration inte är riktade åt samma håll. (2 p)
16. Om du kastar ett rått ägg mot en vägg så går det sönder. Om du kastar ett ägg mot en fritt
hängande gardin går det inte sönder (förrän det faller i golvet). Förklara vad som händer med
begrepp från mekaniken. (2 p)
17. En atoms massa och storlek bestäms bl a av protoner och elektroner. Vad av proton eller
elektron bidrar främst till atomens massa? Samma fråga vad gäller atomens storlek? (2 p)
18. En viss mängd värme tillförs både till 1 kg vatten och till 1 kg järn. I vilket av ämnena
ökar temperaturen mest? Varför är det så? (2 p)
19. När kan värme tillföras utan att det sker en temperaturhöjning? (2 p)
20. Du behöver en 100 Ω-resistor men har bara 120 Ω-resistorer. Rita kopplingsschema
och berätta hur du går till väga för att få en ersättningsresistans på 100 Ω genom att koppla
120 Ω-resistorerna på rätt sätt. (2 p)
21. När en luftbubbla stiger i vatten, vad händer då med bubblans massa, volym och
densitet? (2 p)
22. Varför kommer en boll som hålls under vattenytan att ha en större lyftkraft än en boll som
flyter? (2 p)
Del C (använd g = 9,8 m/s2) Fullständiga beräkningar och motiveringar krävs (totalt
max 24 poäng)
23. En familj som består av mamma, pappa och ett barn ska gunga på en gungbräda som
är 4,0 m lång. Pappan med massan 80 kg tänker placera sig 1,45 m från mitten. Var ska
mamman och barnet placera sig för att det ska väga jämnt. Anta att mamman och barnet
har massorna 60 kg respektive 20 kg, och att barnet placeras 20 cm närmare mitten än
mamman. Bortse från gungbrädans vikt. (3 p)
24. En bil med massan 1100 kg ökar farten med konstant acceleration från 0 till 20 m/s
under 5,0 s. Beräkna
a) bilens medelhastighet under fartökningen. (1 p)
b) bilens acceleration. (1 p)
c) den avverkade sträckan under fartökningen. (1 p)
25. En liten boll släpps från höjden 2,40 m. När den studsar mot ett golv förlorar
den 30 % av sin rörelseenergi. Anta bollens massa 150 g.
a) Hur högt studsar bollen upp? Bortse från luftmotstånd. (2 p)
b) Vart tar den förlorade energin vägen? (1 p)
26. En impuls som verkar under 3,0 s genom kraften 10,6 N, gör att en kropp med
massan 6,0 kg ändrar sin hastighet. Beräkna storleken hos denna
hastighetsändring. (2 p)
27. 500 g vatten med temperaturen 80 °C blandas med 300 g nollgradig is.
a) Kommer isen att smälta helt? Motivera med enkel kalkyl. (1 p)
b) Vilken blir blandningens sluttemperatur? (3 p)
28. Tre resistorer R1 = 100 Ω, R2 = 200 Ω och R3 = 300 Ω är kopplade i serie till ett
batteri med spänningen 4,5 V.
a) Beräkna delspänningarna över resistorerna R1 och R2. (2 p)
b) Resistorerna kopplas istället parallellt till samma batteri. Beräkna strömmarna som
går genom resistorerna. (3 p)
c) I vilken av resistorerna utvecklas mest effekt om de är parallellkopplade och anslutna
till batteriet? (1 p)
29. En ljusstråle i luft infaller mot en glasyta med infallsvinkeln 46°.
a) Beräkna brytningsvinkeln. Glasets brytningsindex är 1,5. (2 p)
b) I motsatt riktning, från glas till luft, kan totalreflektion inträffa. Bestäm gränsvinkeln
för totalreflektion glas till luft. Samma brytningsindex som i uppgift a. (1 p)