IRFP26N60L, SiHFP26N60L Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Superfast Body Diode Eliminates the Need for External Diodes in ZVS Applications 600 RDS(on) (Ω) VGS = 10 V 0.21 Qg (Max.) (nC) 180 Qgs (nC) 61 Qgd (nC) Requirements • Enhanced dV/dt Capabilities Offer Improved Ruggedness 85 Configuration Available RoHS* • Lower Gate Charge Results in Simpler Drive COMPLIANT Single • Higher Gate Voltage Threshold Offers Improved Noise Immunity D • Lead (Pb)-free Available TO-247 APPLICATIONS G • Zero Voltage Switching (SMPS) • Telecom and Server Power Supplies S D • Uninterruptible Power Suplies S G • Motor Control Applications N-Channel MOSFET ORDERING INFORMATION Package TO-247 IRFP26N60LPbF Lead (Pb)-free SiHFP26N60L-E3 IRFP26N60L SnPb SiHFP26N60L ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 600 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID UNIT V 26 17 A IDM 100 3.8 W/°C Single Pulse Avalanche Energyb EAS 570 mJ Repetitive Avalanche Currenta IAR 26 A Repetitive Avalanche Energya EAR 47 mJ Linear Derating Factor Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw PD 470 W dV/dt 21 V/ns TJ, Tstg - 55 to + 150 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 1.7 mH, RG = 25 Ω, IAS = 26 A, dV/dt = 21 V/ns (see fig. 12). c. ISD ≤ 26 A, dI/dt ≤ 480 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91218 S-81264-Rev. B, 21-Jul-08 www.vishay.com 1 IRFP26N60L, SiHFP26N60L Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 40 Case-to-Sink, Flat, Greased Surface RthCS 0.24 - Maximum Junction-to-Case (Drain) RthJC - 0.27 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 600 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.33 - V/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 600 V, VGS = 0 V - - 50 µA VDS = 480 V, VGS = 0 V, TJ = 125 °C - - 2.0 mA Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage - 0.21 0.25 Ω gfs VDS = 50 V, ID = 16 A 13 - - S Input Capacitance Ciss 5020 - Coss VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - Output Capacitance - 450 - - 34 - - 230 - - 170 - - - 180 - - 61 - - 85 - 31 - - 110 - - 47 - - 42 - - - 26 - - 100 Drain-Source On-State Resistance RDS(on) Forward Transconductance ID = 16 Ab VGS = 10 V Dynamic Reverse Transfer Capacitance Crss Effective Output Capacitance Coss eff. Effective Output Capacitance (Energy Related) Coss eff. (ER) Total Gate Charge Gate-Source Charge Qgs Qgd Turn-On Delay Time td(on) Rise Time Fall Time VDS = 0 V to 480 Vc VGS = 10 V ID = 26 A, VDS = 480 V, see fig. 7 and 15b Qg Gate-Drain Charge Turn-Off Delay Time VGS = 0 V tr td(off) VDD = 300 V, ID = 26 A, RG = 4.3 Ω,VGS = 10 V see fig. 11a and 11bb tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Reverse Recovery Current Forward Turn-On Time IRRM ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 26 A, VGS = 0 Vb - - 1.5 TJ = 25 °C, IF = 26 A - 170 250 TJ = 125 °C, dI/dt = 100 A/µsb - 210 320 TJ = 25 °C, IF = 26 A, VGS = 0 Vb - 670 1000 - 1050 1570 - 7.3 11 TJ = 125 °C, dI/dt = 100 TJ = 25 °C A/µsb V ns nC A Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. Coss eff. (ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91218 S-81264-Rev. B, 21-Jul-08 IRFP26N60L, SiHFP26N60L Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted ID, Drain-to-Source Current (A) Top 100 Bottom 1000.00 VGS 15 V 12 V 10 V 8.0 V 7.0 V 6.5 V 6.0 V 5.5 V ID, Drain-to-Source Current (A) 1000 10 1 5.5 V 0.1 100.00 TJ = 150 °C 10.00 TJ = 25 °C 1.00 20 μs PULSE WIDTH TJ = 25 °C 0.10 2.0 0.01 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) RDS(on), Drain-to-Source On Resistance (Normalized) VGS 15 V 12 V 10 V 8.0 V 7.0 V 6.5 V 6.0 V Bottom 5.5 V ID, Drain-to-Source Current (A) 5.5 V 1 20 μs PULSE WIDTH TJ = 150 °C 0.1 0.1 1 10 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91218 S-81264-Rev. B, 21-Jul-08 6.0 8.0 10.0 14.0 12.0 16.0 Fig. 3 - Typical Transfer Characteristics Top 10 4.0 VGS, Gate-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 100 VDS = 50 V 20 μs PULSE WIDTH 100 3.0 ID = 26 A VGS = 10 V 2.5 2.0 1.5 1.0 0.5 - 60 - 40 - 20 0 20 40 60 80 100 120 140 160 TJ, Junction Temperature Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFP26N60L, SiHFP26N60L Vishay Siliconix 12.0 VGS = 0 V, Ciss = Cgs + Cgd, Cds Crss = Cgd Coss = Cds + Cgd 10000 C, Capacitance (pF) ID = 26 A f = 1 MHz SHORTED VGS, Gate-to-Source Voltage (V) 1000000 Ciss 1000 Coss 100 VDS = 480 V VDS = 300 V 10.0 VDS = 120 V 8.0 6.0 4.0 2.0 Crss 10 1 0.0 1000 100 10 0 25 VDS, Drain-to-Source Voltage (V) 125 150 Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 1000.00 30 ISD, Reverse Drain Current (A) 25 20 Energy (μJ) 100 50 75 QG, Total Gate Charge (nC) 15 10 100.00 TJ = 150 °C 10.00 TJ = 25 °C 1.00 5 VGS = 0 V 0.10 0 0 100 200 300 400 500 600 700 VDS, Drain-to-Source Voltage (V) Fig. 6 - Typical Output Capacitance Stored Energy vs.VDS www.vishay.com 4 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) Fig. 8 - Typical Source-Drain Diode Forward Voltage Document Number: 91218 S-81264-Rev. B, 21-Jul-08 IRFP26N60L, SiHFP26N60L Vishay Siliconix 1000 30 OPERATING IN THIS AREA LIMITED BY RDS(on) 25 ID, Drain Current (A) ID, Drain Current (A) 100 100 μsec 10 20 15 10 1 msec 1 5 TC = 25 °C TJ = 150 °C Single Pulse 0.1 10 msec 0 1 10 1000 100 10000 50 25 Fig. 9a - Maximum Safe Operating Area 125 100 150 Fig. 10 - Maximum Drain Current vs. Case Temperature RD VDS 75 TC, Case Temperature (°C) VDS, Drain-to-Source Voltage (V) VDS 90 % VGS D.U.T. RG + - VDD 10 % VGS 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % td(on) Fig. 11a - Switching Time Test Circuit tr td(off) tf Fig. 11b - Switching Time Waveforms Thermal Response (ZthJC) 1 0.1 D = 0.50 0.20 0.10 0.05 0.01 0.02 0.01 PDM t1 SINGLE PULSE (THERMAL RESPONSE) 0.001 t2 Notes: 1. Duty factor D = t1/ t2 2. Peak TJ = PDM x ZthJC + TC 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t , Rectangular Pulse Duration (sec) Fig. 12 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Document Number: 91218 S-81264-Rev. B, 21-Jul-08 www.vishay.com 5 IRFP26N60L, SiHFP26N60L Vishay Siliconix 1050 EAS, Single Pulse Avalanche Energy (mJ) VGS(th), Gate threshold Voltage (V) 6.0 5.0 4.0 ID = 250 μA 3.0 2.0 TOP 900 BOTTOM ID 12 A 16 A 26 A 750 600 450 300 150 0 -75 -50 50 -25 0 75 25 TJ, Temperature (°C) 125 100 150 50 25 75 Fig. 13 - Threshold Voltage vs. Temperature tp QGD VG + A - VDD IAS 20 V QGS Driver D.U.T RG 150 QG VGS V L 125 Fig. 14c - Maximum Avalanche Energy vs. Drain Current 15 V VDS 100 Starting TJ, Junction Temperature (°C) Charge 0.01 Ω Fig. 14a - Unclamped Inductive Test Circuit Fig. 15a - Basic Gate Charge Waveform Current regulator Same type as D.U.T. VDS 50 kΩ tp 12 V 0.2 µF 0.3 µF + D.U.T. - VDS VGS IAS 3 mA IG ID Current sampling resistors Fig. 14b - Unclamped Inductive Waveforms www.vishay.com 6 Fig. 15b - Gate Charge Test Circuit Document Number: 91218 S-81264-Rev. B, 21-Jul-08 IRFP26N60L, SiHFP26N60L Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Body diode VDD forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 16 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91218. Document Number: 91218 S-81264-Rev. B, 21-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2024