VISHAY IRFP2 datasheet

IRFP23N50L, SiHFP23N50L
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Superfast Body Diode Eliminates the Need for
External Diodes in ZVS Applications
500
RDS(on) (Ω)
VGS = 10 V
0.190
Qg (Max.) (nC)
150
Qgs (nC)
44
Qgd (nC)
72
Configuration
• Lower Gate Charge Results in Simpler Drive
Requirements
Available
RoHS*
COMPLIANT
• Enhanced dV/dt Capabilities Offer Improved Ruggedness
• Higher Gate Voltage Threshold Offers Improved Noise
Immunity
Single
D
• Lead (Pb)-free Available
TO-247
APPLICATIONS
• Zero Voltage Switching SMPS
G
• Telecom and Server Power Supplies
• Uninterruptible Power Supplies
S
• Motor Control Applications
D
S
G
N-Channel MOSFET
ORDERING INFORMATION
Package
TO-247
IRFP23N50LPbF
Lead (Pb)-free
SiHFP23N50L-E3
IRFP23N50L
SnPb
SiHFP23N50L
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
Drain-Source Voltage
SYMBOL
VDS
LIMIT
500
Gate-Source Voltage
VGS
± 30
Continuous Drain Current
VGS at 10 V
TC = 25 °C
TC = 100 °C
Pulsed Drain Currenta
ID
UNIT
V
23
15
A
IDM
92
2.9
W/°C
Single Pulse Avalanche Energyb
EAS
410
mJ
Repetitive Avalanche Currenta
IAR
23
A
Repetitive Avalanche Energya
EAR
37
mJ
PD
370
W
dV/dt
14
V/ns
TJ, Tstg
- 55 to + 150
Linear Derating Factor
Maximum Power Dissipation
TC = 25 °C
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 1.5 mH, RG = 25 Ω, IAS = 23 A (see fig. 12).
c. ISD ≤ 23 A, dI/dt ≤ 430 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91209
S-81352-Rev. A, 16-Jun-08
www.vishay.com
1
IRFP23N50L, SiHFP23N50L
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
Maximum Junction-to-Ambient
Case-to-Sink, Flat, Greased Surface
Maximum Junction-to-Case (Drain)
SYMBOL
RthJA
RthCS
RthJC
TYP.
0.24
-
MAX.
40
0.34
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
V
V/°C
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
VDS
VGS = 0 V, ID = 250 µA
500
-
-
ΔVDS/TJ
Reference to 25 °C, ID = 1 mAd
-
0.27
-
VGS(th)
VDS = VGS, ID = 250 µA
3.0
-
5.0
V
Gate-Source Leakage
IGSS
VGS = ± 30 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 500 V, VGS = 0 V
-
-
50
µA
VDS = 400 V, VGS = 0 V, TJ = 125 °C
-
-
2.0
mA
Drain-Source On-State Resistance
RDS(on)
Forward Transconductance
gfs
-
0.190
0.235
Ω
VDS = 50 V, ID = 14 Ab
12
-
-
S
ID = 14 Ab
VGS = 10 V
Dynamic
Input Capacitance
Ciss
VGS = 0 V,
-
3600
-
Output Capacitance
Coss
VDS = 25 V,
-
380
-
Crss
f = 1.0 MHz, see fig. 5
Reverse Transfer Capacitance
Output Capacitance
Coss
Effective Output Capacitance
Coss eff.
Effective Output Capacitance
(Energy Related)
Coss eff. (ER)
Internal Gate Resistance
RG
Total Gate Charge
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
Turn-On Delay Time
td(on)
Rise Time
Turn-Off Delay Time
Fall Time
tr
VGS = 0 V
-
37
-
VDS = 1.0 V , f = 1.0 MHz
-
4800
-
VDS = 400 V , f = 1.0 MHz
-
100
-
VDS = 0 V to 400 Vc
-
220
-
VDS = 0 V to 400 Vd
-
160
-
-
1.2
-
f = 1 MHz, open drain
VGS = 10 V
ID = 23 A, VDS = 400 V
see fig. 6 and 13b
VDD = 250 V, ID = 23 A
-
-
150
-
-
44
-
-
-
26
72
-
-
94
-
td(off)
RG = 6.0, VGS = 10 V
-
53
-
tf
see fig. 10b
-
45
-
-
-
23
S
-
-
92
TJ = 25 °C, IS = 14 A, VGS = 0 Vb
-
-
1.5
-
170
250
-
220
330
-
560
840
-
980
1500
-
7.6
11
pF
Ω
nC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge
Reverse Recovery Current
Forward Turn-On Time
trr
Qrr
IRRM
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
TJ = 25 °C
TJ = 125 °C
TJ = 25 °C
IF = 23 A,
dI/dt = 100 A/µsb
TJ =1 25 °C
TJ = 25 °C
V
ns
µC
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising fom 0 to 80 % VDS.
d. Coss eff. (ER) is a fixed capacitance that stores the same energy time as Coss while VDS is rising fom 0 to 80 % VDS.
www.vishay.com
2
Document Number: 91209
S-81352-Rev. A, 16-Jun-08
IRFP23N50L, SiHFP23N50L
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
1000.00
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
10
ID, Drain-to Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1
0.1
4.5 V
0.01
TJ = 25 °C
100.00
TJ = 150 °C
10.00
20 µs PULSE WIDTH
20µs PULSE WIDTH
Tj = 25 °C
0.001
TJ = 150°C
1.00
0.1
1
10
100
1.0
6.0
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
100
3.0
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
RDS(ON), Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
16.0
Fig. 3 - Typical Transfer Characteristics
ID = 23 A
TOP
10
11.0
VGS, Gate-to-Source Voltage (V)
1
4,5 V
20µs PULSE WIDTH
Tj = 150 °C
2.5
2.0
1.5
1.0
0.5
VGS = 10 V
0.1
0.0
1
10
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
Document Number: 91209
S-81352-Rev. A, 16-Jun-08
100
-60
-40
-20
0
20
40
60
TJ, Junction Temperature
80
100
120 140
160
(°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRFP23N50L, SiHFP23N50L
Vishay Siliconix
12
f = 1 MHZ
VGS = 0 V,
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
10000
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
100000
Ciss
1000
Coss
100
ID = 23
VDS = 400 V
VDS = 250 V
VDS = 100 V
10
7
5
2
Crss
10
0
1
10
100
0
1000
24
120
96
QG, Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage
25
ISD, Reverse Drain Current (A)
100.00
20
Energy (µJ)
72
48
15
10
5
TJ = 150 °C
10.00
TJ = 25 °C
1.00
VGS = 0 V
0
0.10
0
100
200
300
400
500
600
0.0
1.5
1.0
0.5
2.0
VSD, Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 8 - Typical Source-Drain Diode Forward Voltage
25
1000
OPERATION IN THIS AREA LIMITED
BY RDS(ON)
ID, Drain Current (A)
ID, Drain Current (A)
20
100
10us
100us
10
15
10
1ms
5
1
TC = 25 °C
TJ = 150 °C
Single Pulse
10
10ms
0
100
1000
10000
VDS, Drain-to-Source Voltage (V)
Fig. 9 - Maximum Safe Operating Area
www.vishay.com
4
25
50
75
100
TC, Case Temperature
125
150
(°C)
Fig. 10 - Maximum Drain Current vs. Case Temperature
Document Number: 91209
S-81352-Rev. A, 16-Jun-08
IRFP23N50L, SiHFP23N50L
Vishay Siliconix
RD
VDS
VDS
90 %
VGS
D.U.T.
RG
+
- VDD
10 %
VGS
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
td(on)
Fig. 11a - Switching Time Test Circuit
td(off) tf
tr
Fig. 11b - Switching Time Waveforms
(Z thJC)
10
1
Thermal Response
D = 0.50
0.1
0.20
0.10
PDM
0.05
0.01
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D =
t1 / t2
2. PeakT
J = P DM x Z thJC + T C
0.001
0.00001
0.0001
0.001
0.01
0.1
1
t1, Rectangular Pulse Duration (sec)
Fig. 12 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
750
4.5
4.0
ID = 250 µA
3.5
3.0
2.5
2.0
1.5
1.0
EAS, Single Pulse Avalanche Energy (mJ)
VGS(th) Gate Threshold Voltage (V)
5.0
ID
10A
15A
BOTTOM 23A
TOP
600
450
300
150
0
- 75 - 50 - 25
0
25
50
75
100
125 150
TJ, Temperature (°C)
Fig. 13 - Threshold Voltage vs. Temperature
Document Number: 91209
S-81352-Rev. A, 16-Jun-08
25
50
75
100
Starting T , Junction Temperature
150
125
(°C)
Fig. 14 - Maximum Avalanche Energy s. Drain Current
www.vishay.com
5
IRFP23N50L, SiHFP23N50L
Vishay Siliconix
VDS
tp
15 V
L
VDS
Driver
D.U.T
RG
+
- VDD
IAS
20 V
tp
A
IAS
0.01Ω
Fig. 15a - Unclamped Inductive Test Circuit
Fig. 15b - Unclamped Inductive Waveforms
Current regulator
Same type as D.U.T.
50 kΩ
12 V
QG
10 V
0.2 µF
0.3 µF
QGS
+
D.U.T.
-
VDS
QGD
VG
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 16a - Gate Charge Test Circuit
www.vishay.com
6
Fig. 16b - Basic Gate Charge Waveform
Document Number: 91209
S-81352-Rev. A, 16-Jun-08
IRFP23N50L, SiHFP23N50L
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
-
-
•
•
•
•
RG
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
dI/dt
D.U.T. VDS Waveform
Diode Recovery
dV/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig. 17 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91209.
Document Number: 91209
S-81352-Rev. A, 16-Jun-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1