1 LÄMPÖOPPI 1. Johdanto Työssä on neljä eri osiota, joiden avulla tutustutaan lämpöopin lakeihin ja ilmiöihin. Työn suoritettuaan opiskelijan on tarkoitus ymmärtää lämpöopin keskeiset käsitteet, kuten lämpö, lämpötila, sisäenergia ja ominaislämpökapasiteetti sekä niihin liittyvät matemaattiset kaavat. Opiskelija myös oppii hyödyntämään graafista esitystä osana tulosten käsittelyä. Ennen harjoitustyöosastolle tuloa opiskelija tekee valmiista selostuspohjasta löytyvät ennakkotehtävät. Muut tehtävät suoritetaan mittausten yhteydessä ja vastaukset kirjataan selostuspohjalle. 2. Ominaislämpökapasiteetti Lämpökapasiteetti C kuvaa kappaleen kykyä sitoa Ominaislämpökapasiteetti c on aineen vastaava ominaisuus. tai luovuttaa energiaa. 2.1 Veden ominaislämpökapasiteetti Lämmitä vettä sähkövastuksella ajan t verran. Pohdi, kannattaako ennen mittausten alkua määrittää ennemmin veden massa vai tilavuus. Sähkövastuksen (resistanssi R) päiden välinen jännite on U ja läpi kulkeva virta I. Määritä veden ominaislämpökapasiteetti mittaamalla lämmitysvastuksen virta ja jännite sekä veden lämpötilan muutos kahden minuutin välein. Jatka mittauksia, kunnes veden lämpötila on muuttunut vähintään 20 °C lähtölämpötilaan verrattuna. Sekoita vettä säännöllisin väliajoin. Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello HUOM! Työn jälkeen kalorimetri tyhjennetään ja kuivataan. Kansi nostetaan telineeseen. Tehtävät 1. Selvitä veden ominaislämpökapasiteetti graafisesti. 2. Mitä voit sanoa veden energiansitomiskyvystä saadun numeerisen arvon perusteella? Miten tätä ominaisuutta hyödynnetään? 3. Vertaa tulostasi kirjallisuusarvoon. Jos tulos poikkeaa kirjallisuusarvosta, miksi? Mikä on tuloksen kannalta merkittävin virhelähde? 2 3. Tiheyden lämpötilariippuvuus Koe on kolmeosainen. Jokaiseen mittaukseen liittyviin kysymyksiin vastataan erikseen. Koe 1. Mittaa aluksi toiseen keitinlasiin mahdollisimman lämmintä ja toiseen mahdollisimman kylmää vettä (mittaa molempiin keitinlaseihin sama määrä vettä, n. 400 ml). Lisää kuumaan veteen väriainetta ja sekoita vesi tasaväriseksi. Mittaa vesien alkulämpötilat. Kaada vedet sulkuportilliseen astiaan. Nosta sulkuportti hitaasti ylös. Mittaa vesikerrosten lämpötilat reaktion tasoituttua. Koe 2. Tyhjennä allas ja toista koe, kuten edellä. Vesikerrosten tasoituttua, lisää keskelle allasta metallitanko. Koe 3. Tyhjennä allas. Mittaa keitinlaseihin samat tilavuudet saman lämpöistä vettä. Lisää toiseen vesiastiaan väriainetta. Valmista toisesta vedestä lähes kylläinen suolaliuos. Kaada altaan toiseen päähän värjätty vesi ja toiseen päähän lähes kylläinen suolaliuos. Nosta sulkuluukku. Vesikerrosten tasoituttua heiluttele allasta varovasti. Sulje luukku ja sekoita altaan toisen päädyn vesi tasaväriseksi. Avaa jälleen luukku. Tarvittavat välineet: Kaksi keitinlasia, kaksi lämpömittaria, sulkuportillinen allas Kuva 1. Sulkuportillinen akryyliallas Tehtävät Koe 1. 1. Mitä havaitset portin nostamisen jälkeen? Mitä voit tämän perusteella todeta veden tiheyden lämpötilariippuvuudesta? 2. Tarkastele vesikerrosten rajapintaa. Mitä havaitset? 3 3. Mitä voit todeta energian tasoittumisnopeudesta? Mikä ominaislämpökapasiteettiin? siirtymisestä lämpönä yhteys havainnolla ja lämpötilojen on veden Koe 2. 4. Miten metallitangon lisääminen muuttaa tilannetta verrattuna ensimmäiseen kokeeseen? Selitä ilmiö. Koe 3. 5. Tarkastele vesikerroksia. allasta heilutellaan varovasti? Mitä havaitset? Sekoittuvatko vedet, kun 6. Kun altaan toisen päädyn vesi on sekoitettu tasaväriseksi ja portti jälleen avataan, mitä tapahtuu? Selitä ilmiö. 4. Kaasun kokoonpuristuvuus Sisäenergia U kuvaa systeemin sisään varastoitunutta energiaa. Sisäenergian arvoja ei voida mitata, mutta sen muutoksia voidaan. Esimerkiksi kun systeemiin tuodaan energiaa lämpönä tai systeemi tekee työtä, sisäenergia muuttuu. Lämpöopin 1. pääsäännön mukaisesti ΔU=ΔQ+ΔW. Sisäenergia on ekstensiivisuure, eli se on riippuvainen systeemin koosta (vrt. intensiivisuure, esim.lämpötila T). Yksi tapa muuttaa systeemin varastoituneen sisäenergian määrää on tehdä systeemiin työtä. Kun kaasua puristetaan, tehdään työtä sen painetta vastaan. Tutki ilman kokoonpuristamista sulkemalla lääkeruiskuun 50 ml ilmaa. Lääkeruiskun kaasutilan tilavuutta säädetään liikkuvan männän avulla. Työnnä ruiskun mäntää 5–10 ml sisään ja lue paineanturin lukema. Mittaa tällä tavoin muutamia (V,p)-pareja. Piirrä mittaustulosten pohjalta kuvaaja (V,p)-koordinaatistoon. Tarvittavat välineet: Lääkeruisku, paineanturi, mittatietokone Ohjeet mittauslaitteiston ja mittatietokoneen käyttöön löydät työpisteeltä. Työn graafisissa osioissa hyödynnetään Multilab-ohjelmaa. 4 Kuva 2. Mittatietokone, paineanturi ja lääkeruisku Tehtävät 1. Miten systeemin sisäenergia muuttuu kokeen aikana? 2. Totea graafista esitystä käyttämällä, päteekö Boylen laki (pV=vakio). 3. Määritä tehty työ W kuvaajan fysikaalisena pinta-alana. 4. Perustele, onko työssä suoritettu ilman kokoonpuristaminen adiabaattinen vai isoterminen prosessi. 5. Mitä virhelähteitä mittaukseen liittyy? Pohdi mikä niistä on merkittävin. 5. Alijäähtynyt vesi suola-jäähauteessa Mittaa koeputkiin yhtä suuret määrät vettä ja aseta kumpikin koeputki omaan jäähauteeseen. Lisää toiseen jäähauteeseen suolaa. Aseta molempiin koeputkiin lämpömittarit. Havaitse lämpötilat säännöllisin väliajoin. Tarvittavat välineet: Kaksi koeputkea, kaksi dekantterilasia, kaksi lämpömittaria, suolaa ja jäämurskaa Tehtävät 1. Selitä kokeessa havaitut fysikaaliset ilmiöt ja energian siirtyminen lämpönä kokeessa. 2. Mitä tapahtuu suola-jäähauteessa olevan veden lämpötilalle veden jäätyessä? 5 Multilab-ohjelman käyttöohje 1. Käynnistä NOVA 5000 -mittatietokone 2. Käynnistä Multilab-ohjelma: Start Programs Science & Math Multilab 3. Määritä asetukset: Setup Rate: Manual Sensors: Input1: Pressure 0-700 kPa OK 4. Aloita mittaukset: Klikkaa ”Run” purista mäntää. Toista muutamia kertoja. 5. Mittaustulokset löytyvät ”muistilehtiön” –painikkeen takaa 6. Sulje ohjelma rastista. Tuloksia ei tallenneta. 7. Sulje mittatietokone.
© Copyright 2024